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Solid and liquid Gibbs free energies of Cu, Ag, Au, Ni, Pd, and Pt have been calculated through
the use of the embedded-atom method, and the results are in good agreement with experiment. The
melting points of the materials are calculated from the intersection of the solid and liquid free-

energy curves. The values of the melting point are in excellent agreement for the noble metals and
in reasonable agreement for Ni, Pd, and Pt. The thermal expansions of the solids are computed and
the results are in excellent agreement with experiment over the entire temperature range.

I. INTRODUCTION

The embedded-atom method' (EAM) has become a
popular method for computing the energetics of metallic
systems for use with various computer simulation tech-
niques. The ability to perform molecular-dynamics (MD)
and Monte Carlo (MC) simulations with this approach
makes it appealing to use in determining the high-
temperature properties of metals and defects in metals.
However, the experimental information used to deter-
mine the empirical functions in the EAM is all for zero-
temperature solids (see below). It is therefore not clear
that this approach will produce reliable high-temperature
properties. In particular, it is known that the closely re-
lated X-body potentials developed by Finnis and Sinclair
fail to correctly predict the thermal expansion of the bcc
metals. In earlier work, Foiles and Daw showed that
the EAM correctly describes the room-temperature
thermal expansion of the fcc metals provided that the
functions are fit to the zero-temperature equation of state
of the solid.

The primary purpose of this paper is to compute the
thermodynamic properties of the solid and liquid phases
of the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as predicted
by the EAM functions developed by Foiles, Baskes, and
Daw (EAM-FBD). This provides a stringent test of the
interatomic interactions in this model. In particular, the
Gibbs free energy of the solid and liquid phases are com-
puted and compared with experiment. The melting
points are determined from the intersections of the solid
and liquid free energies. In addition, the thermal expan-
sion of the solids is computed up to the melting point and
compared with experiment. The calculations are per-
formed by Monte Carlo simulations for both the solid
and liquid phase and quasiharmonic (QH) approximation

calculations for the solid phase.
In addition to providing a test of the EAM energetics,

these results are potentially useful. The accurate
knowledge of the melting point of this model is useful for
studies of melting, solidification, or the properties of
solid-liquid interfaces. For example, some of the early
computer simulation work on the possibility of grain
boundary premelting was misinterpreted due to in-
correct estimates of the bulk melting temperature. Fi-
nally, if the EAM is found to provide an accurate
description at high temperatures, the approach in this pa-
per can be used to determine the thermodynamics of
metastable amorphous and liquid phases and the high-
temperature thermodynamics of point defects.

The next section will brieAy review the EAM. This
will be followed by a description of the calculational pro-
cedures for computing the free energies and equilibrium
volumes of the solid and liquid phases. Finally, the re-
sults of the calculations will be compared to experiment
for the fcc elements Cu, Ag, Au, Ni, Pd, and Pt.

II. KMBKDDKD-ATOM METHOD

The embedded-atom method (EAM) is a semiempirical
technique for computing the energy of an arbitrary ar-
rangement of atoms. This approach has been widely used
recently to study a variety of problems including point
defect properties, surface relaxations ' and reconstruc-
tions, ' surface and bulk phonons, "' liquid structure, '

thermal expansion, ' segregation in alloys, ' grain
boundary structure, ' and mechanical properties. ' In
this approximation, the energy is modeled as having two
contributions: the energy to embed an atom into the lo-
cal electron density provided by the remainder of the
atoms and an electrostatic interaction represented by pair
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interactions. In particular, the energy is written

E„,=QF(p;)+ —,
' g q); (R; ) .

In this expression, p, is the electron density at site i, F, is
the energy to place atom i into that electron density, and

is the pair interaction between atoms i and j. The
electron density at each site is computed from a superpo-
sition of atomic electron densities,

p;=g pj(R; ), (2)

where p'(R) is the atomic electron density of atom j at a
distance R from its nucleus.

The embedding functions F and the pair interactions y
are determined empirically by adjusting them so that Eqs.
(1) and (2) reproduce the zero-temperature equation of
state of the solid, the elastic constants of the solid, and
the vacancy formation energies. The requirement that
the equation of state is reproduced is important since it
introduces some information about the anharmonicity of
the interactions into the potentials. The functions stud-
ied here were determined earlier by Foiles, Baskes, and
Daw. The EAM has the advantage that it includes cer-
tain many-body contributions to the energy though the
computational effort is comparable to that required by
pair interaction models. There are various other ap-
proaches which are similar to the EAM. The local
volume potentials of Chen, Voter, and Srolovitz' and the
glue model of Ercolessi, Tosatti, and Parinello' are
essentially the same. The X-body potentials of Finnis and
Sinclair are also similar in practical application though
the physical motivation behind the method is different.
Derivations of the EAM energy form from first principles
have been given by Jacobsen, Ndrskov, and Puska' and
by Daw.

III. CALCULATION OI THE THERMODYNAMIC
PROPERTIES

In this paper, we wish to compute the thermodynamic
properties of the metals as described by the EAM. In
particular, we are interested in the free energy, enthalpy,
and equilibrium volume. The most reliable method of ob-
taining thermodynamic information is from either Monte
Carlo or molecular-dynamics computer simulations.
However, there are limitations to these methods. First,
these simulation methods are classical. This is not a
problem for temperatures greater than or on the order of
the Debye temperature of the solid. (The Debye temper-
atures of the elements being studied here vary from
around 170 K for Au to 375 K for Ni. ') However,
below this temperature quantum mechanics significantly
alters the thermodynamics through the freezing out of vi-
brational modes and zero-point contributions. For-
tunately, for low temperatures, quasiharrnonic methods
(see below) provide a good quantum-mechanical descrip-
tion of the thermodynamics.

The other problem with the computer simulations for
the determination of the thermodynamics is that the usu-
al methods do not directly yield information about the

d 6
dT T NP

H
T2

(3)

A. Quasiharmonic calculations

In the quasiharmonic approximation, the full intera-
tomic interactions are replaced by a quadratic expansion
of the potential energy about the ideal lattice for each lat-
tice constant, a. Anharmonic effects are included only
through the variation of the quadratic expansion with lat-
tice constant and through the variation of the ideal lattice
energy with the lattice constant. At each lattice con-
stant, the system is equivalent to a collection of harmonic
oscillators. The Helmholtz free energy F of a solid with
lattice constant a and temperature T is

fico)(k)
F(a, T)= E( o)ak

+Tsar

ln2 sinh
2k~ T (4)

In this expression, Eo(a) is the energy of the ideal static

entropy and so one cannot obtain the free energy. Free-
energy differences between states at different tempera-
tures within a given phase can be computed either by
thermodynamic integration, as will be done here, or by
using energy sampling techniques. In the solid phase,
the absolute free energy can be obtained at low tempera-
tures from quasiharmonic calculations, as will be done
here, or by a method due to Frenkel and Ladd. In this
approach, the free-energy difference between the actual
solid and a reference Einstein model solid is computed.
For the liquid phase, the calculation of the free energy is
more difficult. The approach used here is to use MC
simulations in the grand canonical ensemble. Another
method, due to %'idom, ' samples the energy associat-
ed with adding a test particle to the system at random lo-
catioris. Finally, the free energy can be related to that of
the ideal gas by a two-step process. First, the free-energy
difference between the liquid and a reference liquid with
purely repulsive interactions is computed. Then this
latter system is expanded to a dilute gas and the change
in free energy computed by thermodynamic integration.
This latter method has been used recently by Broughton
and Li to compute the free energy of liquid Si.

The approach used here to obtain the free energies of
the solid and liquid phases involves two steps. Firs( the
free energy is obtained at some temperature in each
phase. For the solid, quasiharmonic calculations at a
temperature above the Debye temperature but below the
point where anharmonic effects are important are used to
obtain this value. (We will see below that such a range of
temperatures does exist. ) For the liquid, simulations in
the grand canonical ensemble are performed at tempera-
tures well above the melting point but below the boiling
point. These yield the chemical potential and so the free
energy at a point in the liquid phase as discussed below.
The second step is to compute the enthalpy, which can be
readily obtained from a MC simulation, for the desired
range of temperatures. The Gibbs free energy at an arbi-
trary temperature can then be obtained by integrating
over temperature using the expression
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lattice evaluated for the lattice constant a, the sum is
over the different phonon polarizations, j, and wave vec-
tors k in the Brillouin zone, and co~(k) is the frequency of
the phonon modes. There is an implicit dependence of
the frequencies co (k) on the lattice constant. The pro-
cedure for computing the phonon frequencies within the
EAM is described by Daw and Hatcher. " Equation (4)
yields the free energy as a function of lattice constant, or
equivalently volume, and temperature. The free energy
and volume at zero pressure is then obtained by minimiz-
ing this expression with respect to the lattice constant for
each temperature. Other thermodynamic properties,
such as the entropy and enthalpy, can be computed by
similar sums over the phonon modes. This approach
has been used earlier to compute the room-temperature
coefficient of thermal expansion for the EAM-FBD.

B. Monte Carlo simulations

The general technique of using Monte Carlo simula-
tions in statistical mech'anics has been extensively dis-
cussed and reviewed in the literature. In the following,
the general method will be outlined. For a discussion of
the theoretical basis of the approach and other applica-
tions see, for example, the books edited by Binder. The
goal of the simulations is to produce a series of atomic
configurations such that the probability of a
configuration being generated in this series is proporti. on-
al to the probability of the configuration occurring in the
statistical ensemble. This is achieved by numerous re-
petitions of the following cycle. Start with some atomic
configuration denoted by i with statistical probability P;.
The arrangement of the atoms is then changed to pro-
duce a new configuration, j, and the relative statistical
probabilities of the two configurations, PJ /P;, is comput-
ed (see below). If this ratio is greater than unity, the new
configuration j is retained. If the ratio is less than unity,
the new configuration is retained with a probability given
by the ratio P /P, . If the new configuration is not re-
tained, the system returns to configuration i. This pro-
cess is repeated numerous times (10 —10 per atom). The
result is that configurations are generated by this process
with the probability P, . Thus to compute the equilibriium
properties of the system, one simply averages the desiIred
quantity over the configurations that are generated. The
two quantities of interest here are the internal energy and
the pressure. The internal energy is evaluated using Eqs.
(1) and (2). The pressure can be evaluated in the EAM
using the virial expression

PV =Nkii T —— g [F (p; )p' (R; )+ ,'p'(R; )]R;—
i,j,i wj

This procedure requires that one can compute the rela-
tive probabilities of two configurations, i.e., P /P; For.
the case of the canonical ensemble where the number of
atoms, the volume, and the temperature are held con-
stant, the probability of configuration i is just the
Boltzmann distribution

P.'=e
P;

—(E.—E- )/k Tj i B

In the canonical ensemble, therefore, determining the rel-
ative probability of two configurations reduces to com-
puting the energy difference between them.

In practice, it is often desirable to fix the pressure of
the system rather than the volume. The simulation can
then be performed in the isothermal-isobaric ensemble.
In this ensemble, the relative statistical probabilities of
two configurations i and j are

P Vj
exp[ —[E E;+P(—Vz

—V~)]/k~ T j
1 1

In this expression, V; is the volume of the system for
configuration i and P is the desired pressure of the sys-
tem. The changes in the volume are accomplished by an
expansion or contraction of the periodically repeated cell.
In the present calculations, the cell is also allowed to dis-
tort orthorhombically.

To obtain the free energy in the liquid phase, Monte
Carlo simulations in the grand canonical ensemble can be
used. In this ensemble, the temperature, volume, and
chemical potential of the system are held fixed and atoms
can be created or destroyed during the simulation. From
such a simulation, one can calculate the energy, pressure,
and density for the given temperature and chemical po-
tential. Since the chemical potential of the one-
component system is just @=G/N, the Gibbs free energy
per atom, such a simulation relates the free energy to the
temperature and pressure. The probability of a given
configuration in this ensemble is proportional to

'X

exp[ —(E, N, p)/k~ T) . — (9)

In this expression, N, is the number of atoms, E; is the
potential energy of the configuration, V is the volume,
and A is the thermal de Broglie wavelength of the atom.
The simulations include two types of changes to the sys-
tem. The first is small displacements of the atoms. For
such changes, the only term that remains in the ratio of
the probabilities is the Boltzmann factor as in the case of
the canonical ensemble. The other change to the system
is to create or destroy an atom. In the case of creating an
atom, the position of the atom is chosen at random in the
simulation cell. The computational bottleneck is that
Monte Carlo steps which create and destroy atoms are
seldom accepted. This means that a very long simulation
is required to produce statistically significant results.
This problem is less severe at higher temperatures and

1 —Ei. /kB TP.=—e
Z

In this expression, E, is the energy of configuration i, Z is
the partition function, and T is the temperature. In this
case the ratio of the probabilities just reduces to the
Boltzmann factor associated with the energy difference
between the two configurations, i.e.,
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lower densities. That is why the simulations here were
performed at temperatures of about twice the melting
point.

In a grand canonical simulation, one chooses the chem-
ical potential, temperature, and volume. In the current
case, what we want is the chemical potential at zero pres-
sure. One can obtain this by a trial and error series of
simulations at various chemical potentials and from these
results determine the chemical potential that yields zero
pressure. This process is aided by the Maxwell relation

(10)

which relates the derivative of the pressure with respect
to the chemical potential to computable quantities. In
practice, an estimate of the chemical potential at zero
pressure is determined. Then several simulations are per-
formed at chemical potentials near this value (within
-0.2k~ T). The pressure as a function of chemical po-
tential is then assumed to have a quadratic behavior with
the coefficients determined by a simultaneous least-
squares fit to the pressure and to the derivative of the
pressure with respect to chemical potential at each chem-
ica1 potential simulated. The chemical potential at zero
pressure is then determined from this quadratic fit.
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IV. RESULTS AND DISCUSSION

A. Gibbs free energy

The Gibbs-free-energy curves for the solid and liquid
phases computed as described above are compared with
experiment in Fig. 1. The Gibbs free energy is refer-
enced to that of the solid fcc phase at 300 K. In general,
the agreement between experiment and theory is quite
good for both the solid and liquid phases. It is surprising
that the EAM describes the Gibbs free energy of the solid
phase at elevated temperatures, since it is only fit to prop-
erties of the bulk solid at 0 K or room temperature. It is
especially surprising that the EAM describes the li'quid

phase, since the EAM functions were fit only to parame-
ters of the bulk solid phase.

The EAM functions for Ag, Cu, and Pd are in especial-
ly good agreement with experiment in predicting the
Gibbs free energies of the solid phase. The functions for
Au and Pt are in slightly less agreement, and the Ni func-
tion is in the least agreement. The same trends generally
hold true for predictions of the free energy of the liquid
phase, except that the Pd functions are slightly worse in
predicting the liquid phase. For Au, Pd, and Pt, the pre-
dicted free energies of both solid and liquid phases are al-
ways slightly lower than experimental values, whereas for
Ni the predictions are higher than experiment.

Recall that the calculation of the Gibbs free energy at
moderate to high temperatures uses the enthalpy from
the MC calculations with Eq. (3) to extend the QH values
of the free energy to higher temperatures. This approxi-
mation required that there exists a temperature range for
which both methods yield the same results. Figure 2
shows a comparison of the Gibbs free energy of solid Ni,
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as calculated by the QH techniques and by integrating
the MC enthalpies. They show excellent agreement up to
the melting point, and the agreement is equally good for
all the other metals (better than 2% accuracy at the melt-
ing point). This level of agreement is interesting since the
QH technique approximates the anharmonic contribu-

FIG. 1. Gibbs free energy of the solid and liquid phases of (a)
Cu, Ag, and Au and (b) Ni, Pd, and Pt in units of kcal/mole and
referenced to the free energy at 300 K. The vertical axis applies
to the results for Ni and Cu with the other curves offset by 10
kcal/mole. The points represent the experimental values ( X for
solid and + for liquid phase) from Ref. 28. The solid curves are
the EAM solid free energies and the dashed curves are the
EAM liquid free energies.
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FICx. 2. Comparison of QH (squares) and MC (solid lines)
calculations of Gibbs free energy of solid Ni in units of
kca1/mole.

tions to the energy. This is an important result since MC
calculations of the thermodynamic properties require a
couple of orders of magnitude more computer effort than
the QH calculations.

B. Melting point

TABLE I. Comparison of theoretical and experimental melt-
ing points (in K).

Element

Ag
Au
CU
Ni
Pd
Pt

mp (MC)

1170
1090
1340
1740
1390
1480

mp (Expt}

1234
1338
1358
1726
1825
2045

The melting point may be determined by the intersec-
tion of the Gibbs free energy curves of the liquid and
solid phases (see Fig. 1). Table I summarizes the
melting-point information for the elements. In all cases
except Ni, the calculated values are lower than the exper-
imental values. The agreement is quite good for Ag, Cu,
and Ni, somewhat poorer for Au, and off by almost 600
K for Pd and Pt. The good agreement for Ag and Cu is
consistent with the accurate prediction of the Gibbs free
energies. The good agreement for Ni is totally fortuitous,
since both the solid and liquid free-energy curves are too
high, but the errors offset one another. The discrepancies
for Au and Pt are somewhat to be expected, since their
free-energy curves are somewhat inaccurate. The
discrepancy for Pd is quite interesting: the free energy of
the solid phase is accurately predicted, but the prediction
for the liquid phase is low.

It is important to realize that small inaccuracies in the
free-energy curves may lead to large errors in predictions
of the melting point. The difference in the slopes of the
solid and liquid free energies is given by bH/T, where

AH is the latent heat of melting and T is the melting
point. This ranges for the elements considered here from
0.93 to 1.03X10 eV/(atom K) for Ag and Ni, respec-
tively. Thus an error of 0.01 eV in the Gibbs free ener-

gy per atom can lead to an error of 100 K in the melting
point. (The simulations were performed until the statisti-
cal uncertainty in the energies was less than 0.002 eV. )

Also, as in some cases of Ni, it is possible to get a good
value of the melting point even though the free energies
are in error. Consequently, it is far more informative to
calculate Gibbs free energies than to simply calculate
melting points.

As a comparison, the melting point was also estimated
for Ni by a MD simulation technique. The basic idea is
to determine the temperature at which a sample melts.
There are two problems with this approach. First of all,
unless the solid already contains a free surface, there is a
nucleation barrier to melting due to the liquid-solid inter-
face energy. Secondly, computer simulations are limited
to very short times, on the order of picoseconds, so the
solid may not melt during the simulation even if it is
above the melting point. Therefore, this simple method
tends to overestimate the melting point of the potential.

However, both of the above limitations may be over-
come by beginning with a material containing both a
liquid and a solid. The liquid and solid should be geome-
trically arranged such that the solid-liquid interface
remains constant in area as freezing or melting occurs.
For example, imagine a cube of liquid in contact with a
cube of solid. This configuration removes the nucleation
barrier due to interface energy. MD runs for several pi-
coseconds are typically long enough for the interface to
move provided that the temperature is not near the melt-
ing point. If either the solid or liquid phase grows, then
the temperature of the simulation is known to be above
or below the melting point. It is important in these cal-
culations that the MD simulations are performed at con-
stant temperature rather than at constant energy. If the
simulation is at constant energy, then the motion of the
interface is suppressed since there is no source or sink for
the energy associated with the latent heat of the materials
that transforms between phases.

The above MD technique was used to calculate the
melting point of the EAM-FBD function for Ni. The
starting configuration was a rectangular solid in contact
with a rectangular liquid region. The material was then
held at constant temperature (1400—2000 K) for up to 10
picoseconds. For temperatures from 1400 to 1600 K, the
interface region slowly advanced into the liquid region,
solidifying the liquid. For temperatures from 1800 to
2000 K, the reverse occurred. For temperatures of 1600
to 1800 K, the interface did not move sigmficantly, since
the driving force for solidification and/or melting (the
difference in Gibbs free energies between the liquid and
solid) was small. Thus, the melting point was found to be
between 1600 and 1800 K which is consistent with the
value of 1740 K determined from the free energies. The
melting point can be determined even more accurately by
extrapolating the rate of motion of the solid-liquid inter-
face to zero velocity, since the velocity increases as the
difference between the temperature and the melting point
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is increased.
1.07

C. Thermal expansion

Both QH and MC techniques were also used to calcu-
late the lattice constant of the solid phase over the entire
temperature range. (In previous work, Foiles and Daw
computed the coefficient of thermal expansion at room
temperature using the QH approximation. ) The QH ap-
proximation is expected to be more accurate at low tem-
peratures since it includes quantum effects (zero-point
motion and freezing out of modes) which are ignored in
the classical MC simulations. The MC results should be
more reliable at high temperature since it fully includes
anharmonic effects. Figure 3 compares the QH and MC
results for Ag. The values of the expansion are normal-
ized by the QH values for the lattice constant at 0 K. At
low temperatures the MC computed lattice constant is
smaller than the QH value due to the neglect of zero-
point motion in the MC calculations. At moderate tem-
peratures, the two approaches agree well. The difference
between the QH and MC results at high temperature was
largest for the case of Ag, smaller for Ni and Pt, and
smallest for Cu, Au, and Pd.

Figure 4 compares the calculated thermal expansion
with the experimental values for the six elements studied.
The calculated values are taken from the QH calculations
below 500 K and from the MC calculations above 500 K.
In general, the shape of the calculated thermal expansion
curves are in excellent qualitative agreement with experi-
ment. ' The thermal expansion of Cu and Ni are the best
(the two highest experimental data points for Ni are
suspected of being inaccurate '). The calculated thermal
expansion of Au and Pd were almost as accurate, and
predictions for Ag and Pt were the worst, although still
reasonable. The predicted values for Ag, Au, and Ni
were too high, and the predicted values for Pd and Pt
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FIG. 4. Linear thermal expansion of (a) Cu, Ag, and Au and
(b) Ni, Pd, and Pt. The vertical axis applies to Au and Pt and
the other curves are offset by 0.02. The experimental data from
Ref. 31 are plotted as points, and the calculated values are plot-
ted as curves. Note that the two highest temperature experi-
mental points for Ni are suspect (Ref. 31).
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FIG. 3. Comparison of QH and MC calculations of thermal
expansion of solid Ni. The difference between the two curves is
due primarily to the neglect'of zero-point motion in the MC
simulations.

were too low.
The accurate prediction of both the thermal expansion

and the free energy implies that the average Gruneisen
constant of the system is correct. The Gruneisen con-
stant y is related to the average derivative of the phonon
frequencies with respect to volume changes. It is relat-
ed to the linear coefficient of thermal expansion, cx, by
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QCU

38 '

where c, is the specific heat and 8 is the bulk modulus.
Since the results for the free energy suggest that c„ is ac-
curately described and the bulk modulus is also correctly
predicted by this model, the Gruneisen parameter must
be accurately reproduced. This implies that the variation
of the phonon frequencies and so the interatomic force
constants with volume is accurately reproduced.

V. SUMMARY

The QH and MC techniques were shown to be capable
of determining the Gibbs free energy of solid phases, and
the MC technique could also handle liquids. The two
methods were shown to agree to within 2% for the solid
phase even near the melting point, which is important
since the QH calculations are much less computationally
intensive. Also, both MD techniques and comparison of
Gibbs free energies (from MC) were used to determine
the melting points associated with the EAM-FBD ener-
getics. The two methods agreed with one another for the
case of Ni (the only case examined) and the computed
melting points are in reasonable accord with the experi-

mental values. Finally, QH and MC techniques were
used to calculate thermal expansion of the metals.

The FBD functions yielded qualitatively correct values
for the Gibbs free energy and thermal expansion, al-
though some of the functions were more quantitatively
accurate than others. Small inaccuracies in Gibbs free
energies may lead to large inaccuracies in the melting
points. It is especially encouraging that the EAM-FBD
functions predict the properties of liquids fairly accurate-
ly, since they were fit only to the properties of bulk solids.
This strongly suggests that the EAM correctly approxi-
mates much of the actual physics. Of the EAM-FBD
functions, the Cu function was the most successful in pre-
dicting the Gibbs free energy of the solid and liquid, as
well as the thermal expansion of the solid.
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