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Collective excitation spectra of one-dimensional electron systems
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We calculate, within the random-phase approximation, the elementary excitation spectrum of
quasi-one-dimensional electron systems as occurring, for example, in semiconductor microstruc-
tures. Using multisubband models, we derive and discuss the dispersion relations for both in-
trasubband and intersubband excitations and consider the mode-coupling e6'ect between them.
We show that the depolarization shift correction for the intersubband excitation could be very
large, increasing the intersubband collective mode energy substantially above the single-particle
intersubband separation, and, thus explaining a puzzling recent far-infrared spectroscopic experi-
mental observation.

Recently, there has been increasing theoretical' and
experimental interest in quasi-one-dimensional electron
systems (1D ES's) based on semiconductor microstruc-
tures. In transport studies, one finds interesting quanti-
zation of the ballistic conductance which is understood9
on the basis of the opening or closing of 1D subbands
(which are also called the "channels" as in the multichan-
nel Landauer formula). The usual energy separations be-
tween these 1D subbands are of the order of a few meV so
that far-infrared optical spectroscopy is one of the main
experimental techniques to study the electronic excita-
tions in these 10 ES structures, either with or without an
external magnetic field. In this Rapid Communication,
we theoretically derive and discuss the plasma excitation
spectrum of such 1D ES.

The usual practice in studying electronic properties of
semiconductor systems of restricted dimensionality is to
discuss two diH'erent kinds of elementary excitations:
namely, the intrasubband and intersubband excitations.
The intrasubband excitations involve electron dynamics
only along the "free" direction (i.e., along the one-
dimensional direction in our case), whereas the intersub-
band excitations are associated with quantum transitions
between the electron subbands, thus necessarily involving
dynamics along the directions of confinement. Clearly,
this intuitively appealing separation of the elementary ex-
citation spectrum into distinct intrasubband and intersub-
band modes is strictly valid only at long wavelengths
(q~ 0) because at finite wave vectors the electric fields
associated with the "longitudinal" and "transverse"
motions couple and the distinction between intrasubband
and intersubband excitations is no longer strictly valid.
We calculate both intrasubband and intersubband plasma
modes of 1D ES's and discuss the mode coupling between
them. One of our important findings is that the 1D inter-
subband collective mode can be significantly higher in en-
ergy than the single-particle excitation at the subband
separation. This is in agreement with the recent experi-
mental results of Demel et al. who studied the far-
infrared response of such a system. In Ref. 5 it was found
that the maximum absorption peak is located at a fre-
quency about four times higher than the simple energy-
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p;(y) is a confining wave function of the ith subband and
Ke(x) is a modified Bessel function of the second kind. e
is the background lattice dielectric constant.

The collective excitation spectrum is obtained by the
condition of the vanishing of the determinant of the
dielectric matrix given in Eq. (1):

det I etjpppg I 0, (3)

If we restrict ourselves to a two-subband model in which
only the lowest subband (denoted by 1) is occupied by

level separation determined by the dc magnetotransport
measurement. Based on our calculation we suggest that
the observed absorption peak is the intersubband collec-
tive excitation which is depolarization shifted from the in-
tersubband separation by a very large amount. This situa-
tion is difi'erent from the usual two-dimensional case
where the typical depolarization shift is less than the sub-
band separation.

Our model is of electrons confined in a zero-thickness
(along the z direction) xy plane for the sake of simplicity.
We shall use the same notation as in Ref. 10. The gen-
eralized dielectric function for a single 1D ES is given
by j0

eijmn(qico) ~im~jn vijmn(q)Ilmn(quito) ~

where l,j,m, n denote quantized 1D subbands because of
y confinement (since we assume the z width to be zero, we
are always in the lowest subband of the z motion). q is a
wave vector in the x direction in which the motion is free.
The function II „(q,co) is a generalized 1D irreducible
polarizability function. The subband matrix element of
the Coulomb interaction is given by
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electrons, Eq. (3) gives

(1 V l l l lIIl l ) (1 U l2l2g12) U l l l211l lgl 2 0, as
In the long-wavelength limit q ~ 0, we can simplify (8)

where gl2 IIl2+II2l is the intersubband polarizability.
Within the random-phase approximation (RPA) one can
use the noninteracting polarizability function ("bare bub-
ble") for II in Eq. (3).

These noninteracting 1D polarizability functions at zero
temperature are easily calculated to be

m ro (Eq qvF )
IIl 1(q, ro) - ln, ', , (Sa)
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where the subband separation E2l E2 —El, Eq q /2m,
and vF kF/m is the Fermi velocity (we use h 1 in this
paper). In the long-wavelength limit, i.e., when q 0,

s qII» (q, ro)
' +O(q 4), (Sc)
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Here N, is the 1D density of electrons (i.e., number of
electrons per unit length). Notice that the long-wave-
length forms of polarizability given by Eqs. (Sc) and (5d)
are independent on the dimensionality of the system and
have the same form as in Eqs. (5c) and (Sd) for higher di-
mensions as well.

If we take the confining potential in the y direction to be
of square-well form, then the quantizing wave function is

le�(x,y,z) -(l/JL )e""y„(y)[a(z)] 't2, (6a)
where

ro E2l+2E2lN, vl2l2(q) ~E)l+Wz+O(q), (9)

where W~ [2E2lN, v l2l2(q 0)] ' is the so-called
depolarization shift'2 which measures the energy differ-
ence between the intersubband single-particle and collec-
tive excitations. Ul2l2(q~0) is about 1.2e /e for a
square-well potential. Physically, this intersubband col-
lective excitation corresponds to the collective motion of
electrons in the transverse y direction.

In Fig. 1, we show the calculated dispersion of the inter-
subband collective excitation between the first and the
second subbands and the corresponding intersubband
single-particle excitation which is determined by the zeros
of @12'(q,ro) within the two-subband model. One can see
that for q 0 the collective excitation frequency is about
six times as high as that of the single-particle excitation.
This is in qualitative agreement with the experimental re-
sult of Demel et a/. To characterize this large enhance-
ment due to the electronic collective motion, we introduce
a parameter.

rl2(q) -to f2(q)/nl f2(q) (10)

which takes into account the fact that the experimental
sample5 has twelve subbands occupied whereas in our
model calculation only one subband is assumed to be pop-
ulated. E„n2l/r22ami2s the energy bottom of the nth

as the ratio of the intersubband collective excitation and
the single-particle excitation frequencies. yl2(q 0) is
about 6.3 in our two-subband model. The parameters
used in our calculation are chosen according to the experi-
mental situation in Ref. 5 (sample A) except that N, is
scaled down for our calculation from the experimental to-
tal electron density by a factor

Ngl (EF l
—El) 't2

N 12
12

X (EF l2 En)

with a denoting the width of the square well.
For a symmetric potential well, v;J „(q) is strictly zero

for arbitrary q if (i+j +m+n) is an odd number. " In
our case, vl l l2 is zero and, therefore, the mode-coupling
term [the last term on the left-hand side of Eq. (4)] van-
ishes. Equation (4) in this situation becomes decoupled,
with 1 —VllllIIll 0 determining the intrasubband one-
dimensional plasma mode which has earlier been calculat-
ed by Das Sarma and Lai. ' It was shown in Ref. 1 that
this plasma mode dispersion depends strongly on the
width a of the 1D ES. The other decoupled mode corre-
sponds to the intersubband collective excitation

1 —v l2l2(q)gl2(q, ro) 0.
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We can solve Eq. (7) using Eqs. (2) and (5),

to2 [A(qa)ro2+ —ro2 ]/[A(qa) —1],
where

A(qa) exp[q n/m vl2l2(q)],

to~ E2l+ qvF+q /2m.
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FIG. 1. The intersubband single-particle excitation (lower

branch) and the intersubband collective excitation (higher
branch) between subbands 1 and 2 as a function of qa in a two-

subband model. (The parameters a 390 nm, 1V, 0.166& 106

cm ' are chosen according to Ref. 5).
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(1 V 121~12)(1 V 2323+23) V 2~32 lgl 2+23 0 ~ (12)

subband and EF is the Fermi energy. We further assume
that the Fermi energy EFI (EFI2) is at the bottom of the
second (thirteenth) subband. Because the generalized
dielectric matrix defined by Eq. (1) has a dimension
82X82, where 8 is the number of subbands in the model,
it is numerically impossible to calculate the elementary
excitation spectrum for a thirteen-subband model using
our method. Thus the semiquantitative comparison be-
tween theory and experiment as carried out here is the
best one can do at this stage. In the rest of this paper, we
extend our calculation of the elementary excitation spec-
trum to a three-subband model which exhibits some in-
teresting features not found in the two-subband calcula-
tion described above. In particular, the mode coupling be-
tween the intrasubband and intersubband excitations
shows up in the three-subband model. We also discuss the
intersubband collective and single-particle excitations be-
tween second and third subbands. The agreement be-
tween theory and experiment improves in this three-
subband calculation, lending further support to our model.

In the three-subband model, we assume that only the
two lowest subbands are occupied. Using this condition
and the symmetry of the potential well, Eq. (3) can be
decoupled to two 4 x 4 determinants which can be further
reduced to the following two equations after considerable
algebra:

(1 v2222H22)V I I I311l lgl3 0 ~ (13)

Clearly Eq. (12) is the mode coupling between inter-
subband collective excitations of subbands 1 and 2 and
that of subbands 2 and 3. Equation (13) is more compli-
cated describing the coupling among the intersubband col-
lective excitation of subbands 1 and 3 and the two in-
trasubband plasma excitations of subbands 1 and 2. We
start with Eq. (12) which we believe includes the relevant
physics needed to explain the experimental results of
Demel et al. 5 First, we calculate the intersubband collec-
tive excitation nl23(q) of subbands 2 and 3 which is deter-
mined by

v 2323 (q 423 (q, al ) -o . (14)

In the three-subband model, y23 (q-0) is about 5.4,
which is smaller than yl2 (q 0) 6.3 in our two-subband
model and is closer to the experimental result of y 4.0.
In Fig. 2 we show the numerical solution Q(q) of Eq.
(12) as a function of qa. The uncoupled intersubband col-
lective excitation modes io23 and single-particle excitation
c023 are also plotted in the figure for comparison. After
mode coupling, the collective excitation is about 1.3%
above co23 at q 0. We can see that the correction due to

and
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FIG. 2. The intersubband excitation between subbands 2 and 3 as a function of qa in a three-subband model (a-390 nm,
¹

0.486&106 cm '). The solid line is for Q(q), the solution of the coupled Eq. (12), whereas the dashed hne and the dot-dashed
lines are for the uncoupled single-particle and collective excitations, respectively. The coupling e6'ect pushes the other branch of
Q(q) below the abscissa in the figure. Inset: The coupling between intrasubband plasma excitations as a function of qa in the same
system. The solid lines are for the coupled modes and dashed lines are for the uncoupled individual plasma excitations of subbands 1

and 2, respectively.
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mode coupling is rather small here. The reason is that @~2
is much smaller than @23 in the three-subband model as a
result of our assumption that subbands 1 and 2 are occu-
pied while subband 3 is empty.

In the inset of Fig. 2, we show the coupling between in-
trasubband plasma excitations of subbands 1 and 2:

(1 U 1 1 1 l III 1 )(I V22221I22) V 11221111II22

The uncoupled plasma modes ra~~ and t022 in each sub-
band are also plotted for comparison. Finally, in Fig. 3 we
plot the three branches of the solution of Eq. (13). Ap-
parently, the highest branch corresponds to ta&3 while the
two lower branches correspond to the coupled intrasub-
band plasma excitations (cf. inset of Fig. 2).

Summarizing our results, we calculate the elementary
excitation spectrum of a quasi-1D electron system within
two-subband and three-subband models and using the
RPA for the dielectric response. We 6nd that the inter-
subband collective excitation energy can be signi6cantly
higher than the corresponding single-particle excitation
energy for experimentally realizable parameter values.

FIG. 3. The solution of Eq. (13) which describes the coupling
between the intersubband collective excitation (13) and the in-

trasubband plasma excitations of subbands 1 and 2. The system
is the same as in Fig. 2.

Our calculation shows that the ratio of the two energies
can be as high as 5-6.5 using the experimental parameters
adopted from Ref. 5. This is in good qualitative and semi-
quantitative agreement with the experimental result. s We
identify the experimentally observed infrared absorption
peak to be the intersubband collective excitation mode.
This identi6cation is supported by the fact that the ab-
sorption peak was observed in Ref. 5 only when the light
was polarized in the direction perpendicular to the 1D
quantum wire but not when it was parallel. We urge more
experimental study in samples with less subbands occu-
pied (ideally only one or two) so that one can have a direct
quantitative comparison between our theory and experi-
ments.

We conclude by pointing out various approximations
and limitations of our theory and their validity. We use
the RPA rather uncritically, based mainly on the fact that
we do not know how to go beyond the RPA ("the sum of
the bubble diagrams") in a controlled approximation.
The validity of the RPA in the 1D ES of interest here is
unknown, but it is expected to be less valid than in higher
dimensions. We are, however, encouraged by the excel-
lent agreement" between the RPA theory and experiment
on collective excitations in two-dimensional semiconduc-
tor quantum wells and superlattices, systems which are
very closely related to the 1D ES being studied here.
Our use of a model confinement ("in6nite square-well"
potential) defined by Eq. (6) can be and should be im-
proved in subsequent calculations in a more realistic self-
consistent manner. ' We do not expect this correction to
be qualitatively significant though, because self-consistent
calculations'3 show that our model confinement works
well for 1D ES's with 6nite electron density.
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