
PHYSICAL REVIEW 8 VOLUME 40, NUMBER 8 15 SEPTEMBER 1989-I

Steady-state quantum kinetic equation
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Starting from the Dyson equation in the Keldysh formulation, we derive a kinetic equation for
steady-state quantum transport under the simplifying assumption that the inelastic scattering is
caused by uncorrelated point scatterers, such as impurities with internal degrees of freedom. This
assumption allows us to write a transport equation that involves only the electron density and not
the spatial correlations of the wave function. Assuming local thermodynamic equilibrium we then
simplify the transport equation to a form which resembles the Landauer-Buttiker formula extend-
ed to include a continuous distribution of probes.

Since 1985, experiments on mesoscopic structures have
revealed a wealth of new quantum effects such as the
Aharonov-Bohm effect, conductance fiuctuations, nonlo-
cal effects, and the quantized conductance of point con-
tacts. Much of the current theoretical work on mesoscop-
ic structures is based on the Landauer formula as mod-
ified by Biittiker for multiprobe structures, '

It- g(TIE.—T-p )- QT (It —
]u ) .(.1)

J J
where we note that gl (TJ —TJ., ) 0. Equation (1)
reduces the problem of computing the conductance of a
device to that of computing its scattering matrix. It is
usually assumed that there is no phase-breaking scattering
process within the device; all such processes occur in the
contacts. The scattering matrix for the device can then be
computed from the time-independent Schrodinger equa-
tion Hp% EO, where

Hp [(p —eA) /2rrt +eV]; (2)

A(r) and V(r) are the vector and scalar potentials. This
approach has been quite successful in explaining qualita-
tively many of the recent experimental observations in
mesoscopic systems. However, in order to make quanti-
tative comparisons, it is necessary to include the phase-
breaking processes that are inevitably present in any de-
vice. Phase-breaking processes are those that involve a
change in the state of the scatterer and thus cannot simply
be included in the Schrodinger equation by choosing a
time-varying scattering potential V(r, t). To include ir-
reversible dissipative processes within the device one has
to include the reservoir explicitly and trace over the states
of the reservoir. Diagrammatic techniques based on the
Kubo formalism do include phase-breaking processes, but
these techniques are more suited to computing ensemble-
averaged rather than sample-specific properties.

Quantum kinetic equations provide a powerful ap-
proach to including dissipative processes in quantum
transport theory for both linear and nonlinear response.
Here the semiclassical distribution function f(r, k, t ) is re-
placed by the Wigner distribution function W'(r, , kEt),
which is obtained from the Green's function G (r],rz,.
t],tz) i(]it (rz, tz)]]]t(r],t])&/l'z by transforming to cen-
ter-of-mass and relative coordinates, and then Fourier

I] (X] —Xz)I+„dX3Z(X]iX3)G(X3qXz) (3)

where X stands for (r, t) and I is the (2x2) identity ma-
trix. G is a (2 & 2) matrix

whose elements are defined by

6 ((X],Xz) -—'&]ltt(Xz) y(X])&,

6 (X],Xz) ——(I/f(X ) ]itt(Xz) &,

6 (X],Xz) B(i] t z)G —(X],Xz)

+B(tz t])G (X—],Xz),
6'(X,,X,) -B(t]—tz)6 (X],Xz)

+B(t,—t, )6 (X,,X,).

(4a)

(4b)

(sa)

(sb)

The angular brackets ( & denote an average over the
available states of the system, that is, a trace over the
reservoir states. The self-energy function Z is also a
(2&&2) matrix of the same form as G. It is convenient to
define two additional functions as follows:

6 (X],Xz) -B(t]—tz) [6 (X],Xz) —6 (X],Xz)],
(6a)

G"(X],Xz) B(tz —t])[G (X],Xz) —6 (X],Xz)] .
(6b)

The retarded and the advanced self-energy functions Z
and Z" are also defined similarly.

In this paper we will derive a simple quantum kinetic
equation starting from Eq. (3) that can be used to de-
scribe steady-state transport; similar results were derived

transforming with respect to the relative coordinate:
r] —rz k, t] tz —E. An equation of motion for the
Green s function (and hence the Wigner distribution func-
tion) is derived starting from the Dyson equation in the
Keldysh formulation:

[i h8/8t] Hp(r])]G(X] Xz)
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by us earlier using a heuristic one-electron picture. Usu-
ally in quantum transport theory we encounter the in-
dependent variables (r 1,r2, t ~, t 2) or equivalently (r;k;E;t ),
as we just discussed. Because we restrict ourselves to
steady-state transport, the time variable t (tl+t2)/2 is
averaged over. This leaves us with functions of the form
G(r~, r2,E) or G(r, k;E). A further simplification is
achieved by assuming a special form for the inelastic
scattering. We arrive at a transport equation that only in-
volves the diagonal elements G(r, r;E) of the Green's
functions. Spatial correlations of the field represented by
the off-diagonal elements G(rl, r2,E), rl er2 do not appear
in this equation. In order to achieve this simplification, we
assume that inelastic scattering is caused by a distribution
of independent oscillators, each of which interacts with
the electrons through a b potential Mult. iphonon process-
es are neglected in evaluating the self-energy function,
just as one does in deriving Fermi's "golden rule;" howev-
er, the elastic processes are treated exactly. With these
assumptions, the self-energy is a b function in space lead-
ing to a simple transport equation. This model closely ap-
proximates a laboratory sample with impurities having
internal degrees of freedom. For other types of inelastic
scattering the model may not be accurate; however, we be-
lieve that it should still be possible to describe much of the
essential physics of dissipation in quantum transport.

The simplification described above is important for two
reasons. First, the number of independent variables is re-
duced from (rl, r2,E) [or equivalently, (r;k;E)] to (r;E).
Second, the diagonal elements have simple physical inter-
pretations; for example, the electron density per unit ener-
gy n(r;E) is identified with

We assume that each oscillator interacts with the elec-
trons through a b' potential, so that the interaction Hamil-
tonian H' can be written as

H' QUb(r —r )(at+a ).
The strength of inelastic scattering can be adjusted
through the density of scatterers per unit volume per unit
energy, described by some function Jo(r;@to). The sum-
mation over m is eventually replaced by an integraL

dr d(hc0) Jp(r;@to) . (io)

Self-energy function. In calculating the self-energy we
restrict ourselves to one-phonon processes as one does in
deriving Fermi's "golden rule. " For one-phonon processes
the self-energy function can be shown to be a b function,
assuming that the reservoir of oscillators is in a state of
thermodynamic equilibrium:

Z) (ri, rp.,E)-— ' b(ri -r2),
(r;E)

Z (ri, r2,E)- b(ri —r2),ih
r~ ri,E

(i ia)

(i ib)

tion with the Poisson equation, as well as externally im-
posed potentials, and all sources of elastic scattering such
as impurities, defects, boundaries, etc. For the inelastic
scattering we assume a reservoir of independent oscillators
labeled by the index m:

Hp -g 5 co (a t a + —,
' ) .

n(r;E) iG (—r, r;E)/2x, (7a)
where

p(r;E) +iG (r, r;E)/2n. (7b)

while the hole density (in the same band) per unit energy
p(r;E) is identified with

dE'F(r;E' —E)p(r;E'),

dE'F(r;E —E')n (r;E'),

(i2a)

(i2b)

The transport equation can thus be understood in simply
physical terms, and involves only positive quantities. This
may make numerical solutions less sensitive to grid size.

Our model is closely related to the Landauer picture.
Since the inelastic scattering process is purely local, it can
be viewed as an exit into a reservoir followed by reinjec-
tion into the main structure. From this point of view it
would seem that distributed inelastic scattering processes
can be simulated by connecting a continuous distribution
of reservoirs throughout a structure. Indeed, when we
simplify our transport equation assuming local thermo
dynamic equilibrium we obtain what looks like Eq. (1)
generalized to include a continuous distribution of probes.
A direct generalization of Eq. (1), however, would appear
to be a phenomenological approach to simulating inelastic
scattering. This paper provides the rigorous justification
for such an approach, by deriving the transport equation
starting from a model Hamiltonian.

The model. We consider any arbitrary structure in
which the propagation of electrons is described by the
one-electron effective-mass Hamiltonian, Ho [Eq. (2)].
The vector and scalar potentials A(r) and V(r) include
the Hartree potential obtained from a self-consistent solu-

ImX" (rl, r2', E) „b(ri—r2),2r" r)',E
Rex"(r|,r2,E) -cr (ri,E)b'(ri —r2),

where
1 1 + .1

r"(r;E) i (r;E) r (r;E) '

and

(,E)-
4 (E—E') rn(r;E')

P represents the principal value of the integral.

(isa)

(15b)

F(r;e) -U'J, (r; ] e ) )x1
%(i ei )+1, e (0,

W(l ~)-(e"'"'—i) -'.
Physically I/~ (r;E) is the rate at which electrons are
scattered out of energy E at the point r assuming that it is
initially full. Similarly I/z (r;E) is the rate at which
holes are scattered out of energy E at the point r assuming
that it is initially empty. The retarded self-energy func-
tion is given by
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Transport equation T. o derive the transport equation we start from Eq. (3) and consider only the component involving
6 on the left, which can be rewritten as

Ho(r~) 6 (X~,X2) dX3X (Xf X3)6 (X3 X2) g dX3Z (X] X3)6 (X3 X2) . (IS)

Fourier transforming with respect to t ~

—t2
t

E —Ho(r) ) —cr"(r ),.E)+
2zn(r).,E)

and using Eqs. (15a), (15b), and (1 lb),
6"(r), rz.,E) (i9)

It can also be shown from Eq. (3) that

E —Ho(r() —o ~{r),E)+ 6~(r), r2,E) -b'(r) —r2) .ih
2z~ r(,E

(20)

Using Eq. (20) we can write the solution to Eq. (19) as

6'(r i, r3.,E)6"(r3, r2,E)
G r~, r2,E i „dr3

r3,.E
(2i)

We now set r~ r2 —=r; using Eq. (7a) and noting that
6"(r(, r2,E)- [Gn(r2, r(,E))',

, ) 6~(r, r';E) )
'

2n 4 z ~(r';E)

By considering the component of the matrix equation, Eq.
(3), corresponding to 6 instead of G, we obtain

( E) It 'd, 6~(r, r';E) )
'

(23)
2x ~ z ~ (r';E)

Adding Eqs. (22) and (23) and using Eq. (16), we obtain
an important relationship.

N ( ) 5 ~d, 6 (r, r';E))
(24)z"(r',E)

where No(r;E) n(r;E)+p(r;E) is the electronic density
of states. Equation (24) represents an identity that can
also be derived directly from Eq. (20).

External current. So far we have not considered any
external sources. We will now modify Eqs. (22) and (23),
somewhat heuristically to include the external current
which is assumed to be injected or extracted incoherently.
First, we note that since the self-energy is a 8 function
[Eqs. (1 la) and (lib)], the rate at which electrons are
inelastically scattered out is given by n(r;E)/z {r;E),
while the rate at which holes are inelastically scattered
out is given by p(r;E)/z (r;E). Equations (22) and (23)
can be rewritten in terms of the inelastic scattering rates
as

en(rE) + eA, ) G (rr';E) )

(r;E) 2& " z (r';E) z (r;E)
(25a)

ep(r;E) I E + eh d, )
6~(r, r';E)

)

'
(r;E) 2& 4 z (r;E) z (r';E)

(251 )

We have added the terms I„(r;E) and I~(r;E) to account

Substituting for z (r';E) from Eq. (12b) and z (r';E)
from Eq. (12a), we obtain the desired transport equation.

n(r;E) —I(r;E)z (r;E)/e

+ dr' dE'K„(r, r', E,E')n(r', E'),
p(r;E) -I(r;E)z~(r;E)/e

fO fO

+ dr' dE'E~ (r, r';E, E')p (r';E'),

where the kernels are given by

(27a)

(27b)

K„(r,r';E,E')
) G (r, r';E) ) F(r';E —E'), (28a)

K~(r, r';E,E')
) 6 (r, r';E) )

F(r';E' —E) . (28b)

Either Eq. (27a) or (27b) may be solved to obtain the car-
rier density per unit energy.

Local thermodynamic equilibrium. We will now sim-
plify the transport equation, assuming that the distribu-
tion of electrons at any point can be characterized by a lo-
cal electrochemical potential:

N. (r;E)
n(r;E) No{r;E)f(r E)

[ (
')

)
(29)

where p(r) is the local electrochemical potential. With
this assumption, it can be shown that

n(r E) p(r E) (30)
(rE) z (rE) '

(r;E) z (r;E)f(r;E) z (r;E)[1—f(r;E)l. (31)

I

for the external source; these are related to the externally
injected current per unit volume per unit energy I(r;E) by
I(r;E) I~(r;E) —I„(r;E). To determine I„and Ir indi-
vidually we multiply Eq. (25a) by z (r;E) and Eq. (25b)
by z (r;E), add them, and compare with Eq. (24). This
yields

en(r;E) —I(r;E)z (r;E)+ dr'eA, '6 (r, r',E) )

2x z ~ (r';E)
(26a)

eh ', G~(r r'E)
ep (r;E) I(r;E)z"(r;E)+ dr'

2x 4 r',E
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Note that Eqs. (30) and (31) are only valid under condi-
tions of local thermodynamic equilibrium. As Eq. (30)
shows, the rate at which electrons are scattered out
inelastically at any point is then exactly balanced by the
rate at which holes are scattered out. This local balance is
not expected to hold, in general, when the system is driven
far from equilibrium.

Subtracting Eq. (25b) from Eq. (25a), using Eqs. (30)
and (31),and noting that I I~ —I„,we obtain

where

Tp(r, r') ~ dE T(r, r',E) . (35)

I(r) is the total external current integrated over all ener-
gies. Equation (34) looks like Eq. (1) generalized to a

I(r;E) — dr'T(r, r',E)[f(r',E)—f(r;E)1, (32)

where (, ) & '
I
G"(r,r';E) I

'
(33)

r ~(r;E)r"(r';E)
It is evident that if p(r) is equal to a constant pp every-
where, the corresponding distribution function satislies
Eq. (32) with the external current I(r;E) set equal to
zero. We now expand f(r;E) in a Taylor series about
p pp and integrate over E to obtain

continuous distribution of probes. This is not surprising
since the inelastic scatterers in our model act like indepen-
dent reservoirs in the Landauer model. It can be shown
that the coefficients Tp(r, r') have the same properties as
the coefficients TJ, ' namely, Tp(r, r') IH Tp(r', r) I -H
and fdr'fTp(r', r) —Tp(r, r')] -0.

To summarize, we have presented a simple steady-state
quantum transport equation that involves only the elec-
tron density per unit energy n(r;E) and not the spatial
correlations of the wave function. Under conditions of lo-
cal thermodynamic equilibrium, the electron density
n(r;E) can be written in terms of a local chemical poten-
tial Jt (r) and the transport equation reduces to a form that
resembles Eq. (1) for a structure having a continuous dis-
tribution of probes. We believe that the simplicity of this
transport equation will make it feasible to obtain numeri-
cal solutions for speci6c microstructures self-consistently
with the Poisson equation, and thereby quantitatively
answer some of the fundamental questions of quantum
transport. Also, by comparing the predictions of our
model with experiment, it should be possible to identify
new phenomena arising from correlations between inelas-
tic scatterers.
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