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The electronic density of states and the spectral density of quantum wells are calculated as func-
tions of the impurity position z;. A multiple-scattering method which accounts for the formation of
impurity bands is used. The study of the spectral densities provides us with the behavior of the
averaged wave functions of the ground- and excited-state impurity bands in the k space. We
demonstrate that our approach can be used to study hybridization effects between different bands.

Shallow impurities in restricted geometries such as
quantum wells have recently been studied both experi-
mentally (for a review, see Ref. 1) and theoretically (for a
review, see Ref. 2). The calculations of the bound states
of Coulomb-like impurities are usually done in the
single-impurity limit via variational methods® and cannot
account for the overlap of impurity wave functions.

Recently, we have calculated impurity bands in silicon
metal-oxide-semiconductor structures* and in quantum
wells.> We have studied impurity bands well separated
from the conduction band (at low impurity concentration
N;) and band tails (at high impurity concentration). The
merging of excited impurity bands for impurities located
at the center of the well has been discussed in Ref. 6.
There we have also studied the spectral density which is
connected to the configuration-averaged wave functions
in the k space. We were able to describe hybridization
effects when the impurity bands come near each other.

The aim of this paper is to investigate the effects of the
location z; of impurities on the electronic structure of
ground- and excited-state impurity bands and of the
conduction-band edge. Our numerical results apply to
the case of a GaAs quantum well. Specifically, we study
the energy location of the band edges and the evolution
of the spectral density (SD) and the density of states
(DOS) as functions of z;. The merging of the impurity
bands (IB’s) which yields a band tail by varying z; is also
studied. As N, goes to zero we find that the energy of the
ground- and the excited-state IB’s is in agreement with
the variational results.>” As we have shown recently, the
SD analysis allows one to clearly distinguish between 1s
and 2p. states for impurities located at the center of the
quantum well.® A change from the 1s to the 2p, symme-
try of the ground state as a function of the location z; of
impurities has been shown by Lane and Greene;’ this
point will be discussed below.

As in Refs. 4-6 we calculate the one-electron Green’s
function G(k, E) for the vector k and energy E for a two-
dimensional electron gas in the presence of charged im-
purities. The imaginary part of the Green’s function
defines the spectral density A4 (k,E). The density of
states is calculated as the sum of 4 (k, E) over the k’s and
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the spin states. The self-energy in the Green’s function
which is due to charged impurity scattering is calculated
with Klauder’s best multiple-scattering method.® For de-
tails, see Ref. 4.

Two infinite potential barriers in the x-y plane at z =0
and z =L define the quantum well (QW) with width L.
Impurities are randomly distributed in the x-y plane at a
distance z; from the left interface. z;=0 and z;=L /2
correspond to impurities located on the edge and at the
center of the QW, respectively. The screened electron-
impurity interaction formula was given in Ref. 6. For the
form factors which enter the expressions of the bare
electron-impurity interaction and the screening function
we use results given in Ref. 9. The form factors account
for the finite width of the QW and also for the impurity
position z;.

In the inset of Fig. 1 we show the DOS versus energy
for a QW with L =100 A, electron density N =1X108
cm ™2, impurity density N;=1X10® cm™?, and z;=L /2.
The units of the DOS and of the energy are the free-
electron DOS and the effective Rydberg, respectively.
The screening effect reduces the binding energy of shal-
low impurities.! Experimental results' indicate that im-
purities in QW’s are slightly screened. Our systematic
study of the binding energy versus electron density’
confirms this result: for N <1X 108 cm ™2 the binding en-
ergy is nearly independent on N and this indicates that
for N<1X10® cm™? we are dealing with nearly un-
screened impurities.

With parameters used in the inset of Fig. 1 we found
three IB’s. The energies of the edges of these bands, as
indicated in the inset of Fig. 1, versus z; are shown in Fig.
1. The strong z; dependence of the binding energy of the
ground-state IB contrasts with the weaker one of the
excited-state IB’s. This is in agreement with the varia-
tional results.” The high- (low-) lying excited IB merges
with the conduction band (CB) at z;=—0.2L (—0.9L),
respectively. Clearly, these values depend on N, N;, and
L. In realistic systems the barrier height of QW is finite.
In this situation, the wave function extends outside the
well. It is then expected that the electron-impurity in-
teraction is weaker when the impurities are located inside
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FIG. 1. Band-edge energies (see inset) vs the location for im-

purities z;. The inset shows a typical DOS vs energy for impuri-
ties located in the center of the QW. The dots indicate the z;
and energy values for which we show the spectral density, see
Fig. 2. Ry is the effective. Rydberg.

the well and stronger when they are outside, because of
evident electron-impurity proximity effects. The width
W of the IB’s increases with increasing impurity density,
W « N}/2, as found in the coherent-potential approxima-
tion for a different system.!! The merging of an IB with
the CB can arise either from an increase of N; (Refs. 4-6)
or from an increase of |z;|. The latter effect is demon-
strated in Fig. 1.

More information on the nature of the IB’s is con-
tained in the SD, which is given by A(k,E)
=—(1/7)ImG (k, E +i0). One can show (see Ref. 6
and Ref. 16 therein) that

A(k,E)= <2|\1/ (k)|*8(E —E; )) (N

W¥,(k) is the Fourier transform of the wave function
Wi(r). (---) represents the impurity-configuration
average and the sum runs over the eigenstates. (Q is the
area. For N;,—0, we get

A(k,E)=Ng;|¥;(k)|*8(E —E;) . 2)

Here, g; is the degeneracy of the atomic state with the
eigenenergy E =E; and the SD is determined by the
wave functions of the single impurity problem. In Ref. 6
we have calculated the Fourier transform of the wave
functions (1s,2s,2p,3s,3p4,3d ) for the ideally two-
dimensional Coulomb problem (L =0, z;=0) (Ref. 12)
and found an excellent agreement with our numerical re-
sults for 4 (k,E) at low N;, according to Eq. (2). It is
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worth noticing that the squared Fourier transform
|¥(k)|? for a pure 2p ;. state behaves as k2 for k —0 (Ref.
6), while for 1s and 2s states it has the form a-B8k?2, where
a and fB are positive constants. Thus, for z; =0, we have
identified the IB’s as 1s, 2p, and 2s IB’s with the same
energy ordering as found with variational calculations,’
see inset of Fig. 1. Let us remark that we found a twofold
degeneracy for the 2p_. IB as expected.

In Fig. 2, we show the SD versus the wave number for
the same parameters (L,N,N;) as in Fig. 1. The solid,
dashed, dashed- dotted and dotted lines are for z; =50,
10, —50, and —100 A, respectlvely The corresponding
energy values are indicated in Fig. 1 as solid circles. As
the impurities are moved away from the center of the
QW, the IB wave functions become more localized in the
two-dimensional k space [see Eq. (2) and Fig. 2], i.e.,
more extended in the x-y plane. This effect is stronger for
the ground state than for the excited states and reflects
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FIG. 2. Spectral density A4 (k,E) vs wave number k for (a)
the ground-state IB, (b) the first low-lying excited-state IB, (c)
the next-low-lying excited state IB, and (d) states near the CB
edge. Solid, dashed, dashed-dotted, and dotted lines are for
z; =50, 10, —50, and —100 1‘)\, respectively. The energy values
are indicated in Fig. 1. For L, N;, and N we used the same
values as in Fig. 1. The inset shows the spectral density at the
center of the well for the 2s state for N;=1X 10" cm ™2 and for
larger wave numbers. a* is the Bohr radius.
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the z; dependence of their respective binding energies.

Lane and Greene’ have shown that as a single impurity
is moved from the center to the edge of a QW, the ground
state undergoes a symmetry change from 1s to 2p, state
while the 2p, excited states take the character 3d.. A
ground state of 2p, symmetry is found in the case of an
impurity located at the interface with infinite barrier
height, the electron moving in the semiconductor half-
space. This is what we refer to hereafter as Levine’s
geometry.!3

Now, in Fig. 2(a), as the impurities are moved from the -

center, the shape of the SD remains qualitatively un-
changed in the sense that it has the form a-B8k? for small
k; however, a increases. Let us first remark that the QW
width we have considered with impurities located on the
QW edge corresponds to a situation intermediate between
the ideally two-dimensional system and the Levine’s
geometry. To get a better understanding of this situation
we have done the following. (i) We have calculated
analytically the SD for a single impurity according to Eq.
(2) in the Levine’s geometry.!> We found indeed that
A(k,E)~a—pk? as k—0, the constant a being much
larger than that of the ls ground state in two dimen-
sions.® (ii) We have simulated the change from the pure
two-dimensional geometry to Levine’s one by increasing
the QW width from 100 to 800 A and by putting the im-
purities on the QW edge. Using our multiple-scattering
method, we get the SD. In all cases studied, we obtained
for the ground-state IB a SD of the form a-Bk? (as
k—0), a being larger as the QW becomes wider. This is
in agreement with the expected gradual change from the
1s to 2p,-ground-state IB, as one goes from one geometry
to the other. All these results confirm the work of Lane
and Greene.’

The wave function of a 2p state has a maximum at
finite k, see Fig. 2(b) and Ref. 6. The finite value of
A (k—0, E) for the 2p,. in Fig. 2 is due to the hybridiza-
tion effects between the 2p. IB and the 2s IB; see also
Ref. 6, where hybridization effects versus N; are dis-
cussed.

The Fourier transform of the wave function of the 2s
state has a node at a finite wave number. For the ideally
two-dimensional Coulomb problem the node occurs at
ka*=2.% a* is the Bohr radius. Due to the finite width
of the QW this number is reduced (the wave function is
more delocalized in the x-py plane) and the node occurs at
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ka*=~0.45; see the inset in Fig. 2(c), where we have
shown the SD for a lower density (N;=1X10" cm™?) in
order to reduce hybridization effects.

The SD near the CB edge, see Fig. 2(d), is probably
reminiscent of the 3s, 3p,, and 3d, atomic states. The
strong energy dependence of the SD (Ref. 6) near the CB
edge complicates the interpretation of the SD versus z; in
terms of single-atomic orbitals. The broad minimum in-
dicates that the main contribution to the SD comes from
the 3d, states, where |W(k)|? is proportional to k* as
k —0 and shows a maximum at k ~0.25.°

To explain how the above hybridization effects are in-
cluded in our multiple-scattering method, let us recall
that this method is an alternative way to solve the many-
impurity quantum problem. Starting with an unper-
turbed system, the multiple-scattering equation is the re-
sult of the summation of a series expansion in powers of
concentrations and potentials.!* It is then not surprising
that as soon as the IB’s come near each other, a mixing of
the corresponding states occurs due to the perturbing po-
tential.

To summarize, we have calculated the dependence of
the binding energy and of the width of IB’s (1s,2p,2s)
in QW’s on the impurity position z;. The binding energy
is in good agreement with variational results.>’ Even for
a rather low impurity concentration N;=1X10% cm™?
the calculated width of the IB’s indicates that the overlap
of the impurity wave functions cannot be neglected and it
is indeed important for a consistent interpretation of ex-
periments.’

The study of the spectral density in the limit of low im-
purity density gives evidence that the ground-state IB has
an s character for impurities located at the center of the
QW. A gradual mixing with the 2p, character is ob-
served as the impurities are moved towards the QW edge,
in agreement with the results of Ref. 7. We have shown
that hybridization effects between the different atomiclike
levels can be studied within our theory.
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