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Structural phase transitions and polymorphism in miged crystals
M(CN) X, (M =Na, K, Rb; X=Cl, Br, I)
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A microscopic model, which takes into account quadratic and cubic interactions between transla-
tional and orientational degrees of freedom, for mixed alkali-cyanide —alkali-halide crystals is pro-
posed. The resulting free energy allows us to clarify the mechanisms which lead to the orthorhom-
bic, monoclinic, and rhombohedral phases. The inAuence of external parameters such as tempera-
ture, CN concentration, and pressure is discussed.

I. INTRODUCTION

The alkali cyanides MCN, ' where M stands for an
alkali-metal atom (Na, K,Rb), and the mixed alkali-
cyanide —alkali-halides M(CN), X, „, where X is a
halogen atom (Cl,Br,I), exhibit a large variety of crystal-
line phases. Transitions among these phases are charac-
terized by interesting anomalies in elastic, ' '" optical, '

and dielectric properties. ' ' The phase transitions are
influenced by experimental parameters such as pres-
sure, ' ' temperature, and composition. ' ' '

In the present paper we study the polymorphism of
these crystals as a function of external parameters. The
problem is of considerable interest. Recently it has been
suggested' that KCN at the ferroelastic transition is
close to a triple point where cubic, orthorhombic, and
monoclinic phases coexist. In mixed crystals, the substi-
tutional impurities cause random strain fields. ' ' The
random strain fields are essential for the formation of the
orientational glass state. ' It has also been proposed, as
an extension of these concepts, that dynamic random
strain fields in molecular crystals can be generated by
molecules in an excited rotational state.

Previously, the occurrence of the ferroelastic phase
transition in the alkali cyanides has been described by a
theory based on bilinear translation-rotation coupling.
Comparison with group-theoretical arguments shows
that this microscopic model is incomplete. It does not
lead to a negative fourth-order term in the free energy. If
one considers an order parameter of Tz symmetry only,
the existence of such a term is required in order to obtain
a first-order phase transition to the orthorhombic struc-
ture. On the basis of experimental results, ' we will re-
strict ourselves here to T2 symmetry.

On the other hand, if one allows for a coupling of one
component of E symmetry with a square of T2 symme-
try, it is possible to obtain a first-order transition, too.
This coupling was introduced by Sahu and Mahanti,
who have derived a Landau free energy with third- and
fourth-order terms, including coupling terms of E and
T2 symmetry.

In the next section we will extend the model by making
the electric quadrupole interaction displacement depen-

dent. Such a generalization of the compressible Ising
model lehds to a negative fourth-order term in the free
energy. In Sec. III, we calculate the free energy by start-
ing from the microscopic model. The calculation is based
on molecular-field theory, but takes into account random
strain fields in mixed crystals. Next (Sec. IV) we discuss
the physical consequences, in particular the polymor-
phism as a function of experimental parameters. We
shall show that the present model leads in a consistent
way to transitions from the cubic to the.orthorhombic,
monoclinic and rhombohedral phases. In particular, we
find that the monoclinic structure is due to cubic cou-
pling between a Brillouin-zone —center mode and two
zone-boundary modes. Concluding remarks are given in
Sec. V

II. THE MODEI.

We consider a mixed crystal M(CN) X, „ in the
high-temperature cubic phase. The lattice structure has
Fm3m space-group symmetry. The CN ions have dy-
namic orientational disorder (plastic phase). Starting
from MCN, the mixed crystal is obtained by random sub-
stitution of CN ions by halogens (X). The total interac-
tion potential is given by

y TT+ y TR+ yR+ ERR+ ySR+ yRRT (2.1)

The first four terms on the right-hand side have been con-
sidered previously. ' The harmonic acoustic-phonon po-
tential is given by

V =
—,'gM; (q)s,t(q)s, (q),

q

(2.2)

M(k) stands for the corresponding bare dynamical ma-
trix in absence of T Rcoupling. s;(-q) denotes the
Fourier transform of the ith Cartesian component of the
acoustic lattice displacements of wave vector q. The con-
tribution V in Eq. (2.1) represents the bilinear transla-
tion (T) -rotation (R) coupling

V =gv;(q) I' (q)s;(q) . (2.3a)
q

Here Y (q) is the Fourier transform of the three
symmetry-adapted functions F of T2g symmetry and an-
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gular momentum quantum number l =2. Y are propor-
tional to x y, y z, and z x for +=1, 2, and 3, respectively.
The matrix v(q) is given by

i2Bv(q)=-
&m

sin(q a) sin(q, a) 0

0 sin(q, a) sin(q~a)

0 sin(q a)

(2.3b)

B is a constant, and m is the average total mass per unit
cell.

Substitutional disorder is taken into account by the oc-
cupation variable o.(n) with value +1 in presence of a
CN ion and value 0 in presence of an X ion at lattice site
n. We therefore write

Y (q)= —o(n)Y (n)e
1 (2.4)

Here

h (q, Icr])= gh (n, to I)e
1

n

(2.8)

is a static random field for which we assume a Gaussian
distribution. We have h =0 and

where N is the number of unit cells, and where X(n)
denotes the rigid-lattice position. The term V in Eq.
(2.1) refers to a sum of single-particle crystal-field poten-
tials of symmetry A

&
. The electrical quadrupole-

quadrupole interaction among neighboring CN ions
is given by

V~ =
—,'g J &(q) Y (q) Y&(q) . (2.5)

q

The matrix J(q) is quoted in Appendix A. In the case of
a compressible lattice, the quadrupole interaction has to
be expanded in terms of lattice displacements. Addition-
al details of the calculation are given in Appendix A.
Here we quote the result

Va = —g J'@(p,q) Yt (p+q) Y&(p)s;(q) . (2.6)
1

2 Npq
The term V in Eq. (2.1) accounts for the interaction. of
the residual CN ions with the static random strain fields
which are generated by the substitutional halogen ions, '

V =gY (q)h ( —q, Io]) . (2.7)

h hp=x(1 —x)h 5 p=H5 g, (2.9)

where the overbar denotes a configurational average.
The quantity h has been calculated in Ref. 19.

F=Tr(pV+Tplnp) . (3.1)

Here Tr denotes the trace and T=P ' denotes the tem-
perature (with units in which kz = 1). The density matrix

p and the instantaneous expectation values s' and Y'
satisfy the relations

Trp=1,
s (q) =Tr[ps;(q)],
Y' (q) =Tr[p Y (q)] .

(3.2a)

(3.2b)

(3.2c)

We have used the method of Lagrange multipliers,
which was applied before to a spin-phonon coupled sys-
tern and to molecular crystals. Details of the calcula-
tion will be published separately. The final result for the
free energy reads

III. FREE ENERGY

In the preceding section we derived the model poten-
tial V, Eq. (2.1), for a system of interacting molecules on
a compressible lattice and in the presence of static
random-strain fields. The positional disorder is
quenched. Here we will calculate the free energy for that
model. We will use the same procedure as in Ref. 19.
This means that we take the virtual-crystal approxima-
tion in treating the effective orientational interaction. In
contradistinction with spin-glass theory, we neglect the
random-bond aspects of the molecular interaction. This
seems to be reasonable because in the present system the
elastic interactions are strong and vary on a length scale
much larger than the average distance between CN
molecular ions. On the other hand, we treat the effect of
the halogen impurities as a static random field which cou-
ples to the orientational order parameter. As has been
shown ' for an Ising spin system, the random-field prob-
lem can be treated within molecular-field theory. We will
adopt here the same point of view. We first calculate the
free energy for a given configuration I o I of substitutional
halogen impurities. At the end of the calculation, we
take the configurational averages.

We start with the free energy

F=F„h+Fz+g —,'M, (q)s (q)s'. (q)+v;(q)Y' (q)s (q)+ —,
' J(q)+1C'+1 X(2)

XA')
Y' (q)Y~(q)

aP

+ —J'&;(p, q)Y' (p+q)Y&(p)s (q) +Fs"'+Fs '+Fs ' . (3.3)

Here 1 stands for the unit matrix and summation g is
understood to be over the wave vector q, p and over re-
peated indices i, a, . . . . The first five terms on the right-
hand side have been derived previously. ' The contribu-
tions Fz"', n =3,4, 6, are due to entropy. Explicitly we
have

Fs '=, , X(»1) —y Y'(p) Y/3(q)3!x a, N

X Y'~(p+q)s py, (3 4a)

where s f3&=1 if a, f3, and y are different, and s &&=0
otherwise. Furthermore, we have
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Fs' '= —g[[6azX(3,2) —3aiaiX(4, 1) 3aiazX (2)](1—5 &)
4!x n& &

+ [6a~zX(3,2)+3a,a2X2(2) —a,a2X(4, 2)]5 &]
Y' (p) Y (q) Y&(k) Y&(p+q+k) . (3.4b)

Here we have introduced the definitions

X(3, 1)= ( YYY)uX (2),
(3.5a)

(3.5b)

The coefficients 8&, C& and D&,D2 are given in Appendix.
B; the quantity H has been defined in Eq. (2.9). The
thermal averages ( )o are evaluated with the single-
particle density matrix

X(4, 1)=(Y Y' )0X (2),
X(4,2)=( Y")OX (2),

(3.5c)

(3.5d)
p~=exp( —PW )/Tr[exp( —PW")], (3.7)

X(3,2)=X (3, 1)( Y )0,

ai= 1 —B,H/T, aq= 1+CiH/T

a, = 1 D i H /T—, a z
= 1 D2H /T—

(3.5e)

(3.6b)

where 8' is the sum of the crystal-field potential and the
self-interaction. We have not calculated explicitly the
sixth-order term. We only assume that Fz '~0. For a
given configuration of orientations t

Y' j, we determine
the displacements [s ] by minimizing F with respect to
s (q) and obtain

s,'(q)= —M, '(q) u' (
—q)Y'(q)+ —g J'& (p, —q)Y' (p —q)Y&(p)

2 X p

We then eliminate s' and obtain F as a Landau expansion in Y',

F =F„„+FR+F,+F~ .

Here F~ is the contribution due to interaction,

(3.8)

(3.9)

F~ =g —,'L &(q) Y' (q) Y&(q) — I p s(p, k;q) Y't(p+q) Y&(p) Y't(k —q) Ys(k)

2
—& ~r(p, q)Y' (p+q)Y&(p)Yr(q) (3.10)

where

L ii(q)=J is(q) C is(q)+5—AC',

I &rs(p, k;q)= J'&;(p, q)M, '(q)J's (k, —q),
& pr(p, q)=J'p;(p, q)M; '(q)u' ( —q),
C p(q)=u;(q)M; '(q)up (

—q),
C'= —gC (q);S

(3.11a)

(3.11b)

(3.11c)

(3.11d)

(3.1 1e)

We have already specified F& ' and Fz ', and we quote

Fs '= ——gY' (q)Y'(q), (3.13)

the index ~ stands for transposed. The entropy contribu-
tion F& is given by

Fs=+Fq"', n =2, 3,4, 6 .

IV. DISCUSSION

Expression (3.9) of the free energy describes the state of
the mixed crystal M(CN)„X, „ in the orientationally
disordered phase. The coefficients of the series expansion
in powers of the orientational order parameter Y depend
on temperature, CN concentration x, and lattice constant
2a. The dependence on these external parameters is
different for the interaction contribution F~ and the en-
tropy Fz, respectively. The competition between internal
energy and entropy is essential in determining the crystal-
line structure. A priori, there exists a wide range of possi-
bilities for the low-T phases. Our present knowledge of
the atomistic constants, in particular of the electric quad-
rupole moment of the CN ion in a crystalline struc-
ture, is not sufficient to allow for a quantitative calcula-
tion for the free energy. We therefore restrict ourselves
to a more qualitative discussion, using group theory and
experiment as guidelines.

A. Orthorhombic phases
where

y =xa X '(2) . (3.14)
We first consider the ferroelastic transition

Fm 3m ~Immm in KCN and NaCN. One component of
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T2 symmetry condenses with wave vector q at the
Brillouin-zone center. We consider qo=(q„, 0, 0), with
q„—+0. The order parameter is Y&'(q) =&X g, with
Y' =0, a=2, 3. The free-energy term I'I, Eq. (3.10),
reads

(1/N)FI = Alrl +Clq

with

(4.1)

wl=lL i(qo»

C, = —
—,'Jii. (0 qo)M..'(qo)~'ii (o qo)

From Eq. (3.12}we get

(1/Ã}+s = ~sr)'+ Csq'+Ds

with

(4.2a)

(4.2b)

(4.3)

(4.4a)

Cs=, „[3a2X (2)—a,X(4,2)] .T
4)x a&

(4.4b)

We observe that in all cases which we have studied nu-
merically, Cz was found to be positive. For an Ising
model, Cs=T/12. Condition (4.5) apparently holds for
x =1 in M(CN), X, , for M given by Na or K. The
first-order transition occurs at a temperature

C2
1 c

S
(4.6}

where C = —
~ CI ~+Cs and

7; =~1~ii(qo}I (4.7a)

Defining A' by A = A'(T —T, ) with 3 = 21+ As, we
have

A'= A~T (4.7b)

The discontinuity of the order parameter is given by

i /2

2D~
(4.8)

By applying hydrostatic pressure, one finds that T& in-
creases and that the first-order character of the transition
becomes more pronounced. ' ' An increase of pressure
leads to a decrease of the lattice constant a. From Eqs.
(A8c) and (4.2b) it then follows that ~J'~ and ~C~~ in-
crease. On the other hand, quantities such as Tc, M, Cz,
and Dz, which depend on attractive and repulsive forces,

We have not explicitly calculated Dz. All we need in the
following is the assumption that Dz is positive. For an
Ising model, Ds = T /30.

Applying Landau theory to F =FR+I'z, we find a
first-order or a second-order phase transition, depending
on whether the fourth-order term in the expansion is neg-
ative or positive. Consequently, the transition to the or-
thorhombic phase is of first order if

(4.5)

are practically unaffected by pressure. %'e conclude that
the orthorhombic phase is stabilized by hydrostatic pres-
sure since the negative fourth-order term ~ —~CI ~i1" in
the free energy becomes dominant. Recalling that
q ~ x y, we see that this term also favors an alignment of
the CN quadrupoles along [110]directions of the original
cubic phase. In Eq. (4.8), heal increases with

~ CI ~.

From Eqs. (4.2b) and (4.4b) we notice that CI ™xand
Cz x, x being the CN concentration. If C~ and CI
are of the same order of magnitude, it follows that the in-
equality (4.5) can be reversed with decreasing x. In
K(CN)„Br, , the orthorhombic phase already becomes
unstable for x =0.95, while in Na(CN)„Cli „ the ortho-
rhombic phase extends to x =0.90.

The first-order nature of the ferroelastic transition to
the orthorhombic structure is more pronounced in NaCN
than in KCN, while RbCN exhibits a transition to an an-
tiferroelastic monoclinic structure. We recall that
a =2.95, 3.25, and 3.42 A for these three compounds,
respectively. Since CI ~a ', we are led to the con-
clusion that, in NaCN,

~ Cl ~
& Cs, while, in RbCN,

~CI~ +Cs In KCN, ~CI~=Cs, and thermal cycling ex-
periments show that KCN acts as a "bistable borderline
case."' The ferroelastic phase obtained in the first cycle
consists of orthorhombic domains. By returning to
higher T, scars of these domains remain as imperfections
in the cubic phase. These imperfections are sources of
random strain fields (similar to random strain fields
caused by substitutional halogens). The strain fields
aff'ect the free energy through the factors a, [see Eqs.
(3.6a) and (4.4b)]. In Eq. (3.6a) for ai, the random field H
is now caused by the scars. An increase of Cz ~a,
leads to a destabilization of the orthorhombic structure
to the advantage of the antiferroelastic monoclinic phase.

B. Monoclinic phases

The monoclinic structure has been found in KCN sub-
jected to thermal cycling, ' in RbCN, and in com-
pounds M(CN) Xi (Refs. 8, 9, 39, and 40) for certain
ranges of concentrations. The structure contains two for-
mula units per primitive unit cell, the CN ions are ar-
ranged in skewed directions. In addition to shear defor-
mations with respect to the cubic structure, refIections
have been detected at the L, point of the original cubic
Brillouin zone. On the other hand, the transition to the
"antiferroelastic"' monoclinic structure is also preceded
by a softening of the elastic constants c44 in the cubic
phase. ' We attribute the interplay of these phenomena
to a coupling of type (2.6) between two orientational
modes at the L point of the Brillouin zone and a shear
mode at the zone center. See Eqs. (A10a) and (A10b).

Following Parlinski, we consider the reduction of the
physical representation of orientations to the point group
of the wave vector pt =(m/2a)(1, 1, 1). We consider the
irreducible representation v with basis spanned by the
symmetry adapted function YI" 2 y z and YI' 2

—z x.
They correspond to our functions +Y, o.=2, 3, respec-
tively. Following Ref. 24, we take the amplitude p of the
two components equal but with an opposite sign:
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Y (n)=+(p/+N )cos[pI X(n)], (4.9) T&=gy . (4.1 1)

ERR g
2 (4.10)

where g=V2~Q /a . This interaction corresponds to a
staggered (antiferroelastic' ) arrangement of the CN
quadrupoles in space. If there were no coupling to the
elastic degrees of freedom, the corresponding transition
temperature would be given by

where we retain the + sign for +=2 and —sign for
o.=3. At the I. point, the electrical quadrupole interac-
tion (A2) is nondiagonal in the components a, and we
find from Eq. (2.5)

With x =1, o., =l, X '(2)=0.08, and /=939 K, we
would obtain T& =75 K for KCN, while the ferroelastic
transition, with the same parameters, occurs at 191 K.
For RbCN, we estimate T& =58 K, while the experimen-
tal result is 132 K, ' close to a value to be expected from
a ferroelastic transition.

We consider the free energy (3.3) and separate shear
modes, which are related to the Brillouin-zone center
qo=(0, 0,q, ) with q, —&0, from zone-boundary (L point)
modes:

F(pl, q, ) = ,'M;; (q, —)s (q, )s;(q, )+u;(q, ) Y't(q, )s,'(q, )+—. J(q, )+C'+—
2

Y' (q, )Y'(q, )

ic Nq,+—
( T —Tg)p + — [s ( q) +s,(,q) jp +NCsp" +NDsp

m
(4.12)

where c =5~Q /[a (&2) ], and Minimizing Eq. (4.15) with respect to s; for p fixed, we

get
Cs = [12azX(3,2)+ 6a&azX (2)

4(x a&

—3a&a&X(4, 1)—a&a&X(4, 2)] . (4.13)

s, (q, ) =i q, D, , (q, )p
. c&X

m

Elimination of s; yields

(4.17)

Both Cz and Dz are positive. We assume that fourth-
and higher-order terms in Y'(q, ) are negligible. Further-
more, we neglect the longitudinal modes s, (q, ) and also
the orientational modes Y&(q, ). These modes are stiff in

comparison to the soft transverse modes. We therefore
consider Eq. (4.12) for the indices a=2 and 3, and i =x,
and y. For a given configuration of p and s;(q, ), we mini-

mize F with respect to Yz (q, ) and obtain

(1/N)F(pl, q, )=(1/y)(T —T&)p +C'p +Dip

C'=Cs —(c /2m)q, D»'(q, ) .

(4.18a)

(4.18b)

If C' is negative, we obtain a first-order transition at a
temperature T& which follows from the solution of

Yz(q, ) = —[Jzz(0)+C'+ ( T/y)] 'uz (q, )s (q, ) . y ( T, )[C'(T, )] —4(T, —Tg)D~(T) ) =0 . (4.19)

(4.14)

A similar expression is obtained for Yz(q, ) with uz re-
placed by U3„and s„by s„. We notice that Jz& =J33:J.
Eliminating Yz(q, ) and Y~(q, ), we obtain for the free en-

ergy (4.12)

F(pL, q, ) = ,'D;;(q, )s (q, )s (—q,)

+ —q, l, , s (q, )p
m

T1 —TC +
Cs+2[( T, —Tg )Ds ']' (4.20)

The + sign has to be taken if Cs ( [(T,—Tg )Dsy ']'~ .
We have defined

We recall that T& is of the order of 0.5T, . Furthermore,
y, Cz, and Dz are smooth functions of T. The dominant
T dependence arises from the last term on the right-hand
side of Eq. (4.18b) if T approaches T, . Taking for the
smooth functions their value at T„we obtain the transi-
tion temperature

+—(T —Tg)p +NCsp +NDsp

where D« =D&z. with

(4.15)
C

2

[T,+(C'+ J)y] .
4a c44

(4.21)

T + ( C'+J)y
(4.16)

The ferroelastic transition temperature T, is given by Eq.
(4.7a). Due to the coupling c in Eq. (4.15) between shear
modes and staggered quadrupoles, the real transition
occurs at a temperature T, & T, . We new determine T].

The discontinuity of p at T, is given by

]. /2—C'
2D'

T —T1 Q

yDs
(4.22)

Since Dz~x, we get Ap~x and consequently Ap
decreases with decreasing x. This result is in agreement
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with the decrease of the intensity of L-point rejections
with decreasing concentration of CN. Defining the shear
mode E„by

iq, s (q, )=&mN E„, (4.23)

i =x,y, we obtain from Eq. (4.17) that a discontinuity in

p implies a discontinuity in c. Since D„„(q,) =D~~(q, ), we
have c,, =c, , which is characteristic for the monoclinic
phase. A coupling linear in zone-center- shear modes and
quadratic in zone-boundary optical modes has been previ-
ously considered in order to describe the structural trari-
sitions in perovskites. There the optical displacements
at the zone boundary drive the antiferrodistortive transi-
tion. Our model here is more complicated since in the
cyanides we include, in addition, the interaction between
zone-center modes.

C. Rhombohedral phase

A rhombohedral phase which is characterized by three
equal shears has been found for certain ranges of T and x
in K(CN) Br i „(Refs. 8, 43, and 44) and
Na(CN), Cl, . The transition from the cubic phase is
close to second order in the first compound and first or-
der in the second. The three equal shear strains lead to a
shortening of the cubic lattice cell along the diagonal
[111],in the first case, and to a stretching along [111],in
the second. These situations correspond, respectively, to
an orientation of the CN ions in a (111)plane and to an
alignment along the [111]direction.

In order to account for the rhombohedral symmetry,
we must have

F'(q=0)—:&X q =&N g, a=1,2, 3 . (4.24)

Here g is the amplitude. Retaining only terms linear in g
we obtain from Eq. (3.8) in the long-wavelength limit for
q = (q„,0, 0)

iq s'=iq, s,'=pg .

Similarly we have for q = (0,q, 0)

iq s'=iq s,'=pq,
and for q=(0, 0, q, )

iq, s ' =iq, s '=pg,
where P=B (mN)'~ la c« Defining.

E;J= ,'i(q;s' +q—s ) j(mN). '~ =p'g,

(4.25a)

(4.25b)

(4.25c)

(4.26)

we obtain

exy Eyz
=

Ezx =p 'q
~

with

p'=8/a c~4 .

In the case of K(CN)„Br, „, the functions I'„I'z, I'3
correspond, respectively, to an alignment along [110],
[011],and [101]. Since, then, x y, y z, and z x are nega-
tive, we write il= —~g~. Since B is positive, we see that

an alignment of the CN ions in a (111)plane leads to neg-
ative shear components or equivalently to a contraction
of the cubic lattice (squeeze) along the diagonal [111).

On the other hand, in the case of Na(CN) Cl, „ the
functions Y &, F2, F3 correspond to components along
[110],[011],[101] and x y, y z, and z x are positive. We
then write g=+ ~g~. The shears are positive and lead to
a stretching of the cubic lattice cell along [111].

The third-order terms in the free energy are diA'erent
from zero. From Eq. (3.4a) we obtain in the long-
wavelength limit

P(3)— C(3)~ 3
S S

where

(4.28a)

x cx]
(4.28b)

The last term on the right-hand side of Eq. (3.10) yields

/(3) —C(3)~I I

with

12c8
I 0 2

C44a

(4.29a)

(4.29b)

Under the assumption that the coefficient of the fourth-
order term in the free energy is positive, we know that
the nature of the phase transition is determined by the
sign and magnitude of the coefficient

C(3) C(3) C(3)I S (4.30)

of the third-order term. If C' '=0, the transition is
second order; otherwise it is of first order. If C' ' & 0, the
stable solution in the ordered phase corresponds to g (0,
while if C' '&0 one has g) 0. The first case seems to be
realized in K(CN), Br, with x close to 0.73, while the
second case seems to hold in Na(CN)„C1, „. We have
made numerical calculations, starting from microscopic
potential parameters. We find that, for K(CN), Br,
C' ' is indeed positive for x )x, with x, =0.86. Experi-
mentally one finds that the transition from the cubic to
the rhombohedral phase is already continuous at
x, =0.73. Given the uncertainties in the microscopic pa-
rameters, we consider our value for x, to be a fair result.
For details of the calculation, we refer to Appendix C.

V. CONCLUDING REMARKS

On the basis of a microscopic model, we have given a
theory of the polymorphism of mixed crystals
M(CN) Xi, where M is an alkali-metal ion and X a
halogen ion. As an extension of previous work, where
only bilinear interactions between displacive acoustic and
orientational degrees of freedom had been considered, we
have also taken into account cubic interactions. They are
due to the dependence of the electric quadrupole interac-
tion on lattice displacements. In calculating the free en-
ergy, we obtain negative fourth-order terms in the orien-
tational order parameter. The negative terms due to in-
teraction compete with positive fourth-order terms due to
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entropy. This competition is influenced by experimental
parameters such as T, x, and P (pressure).

The ferroelastic orthorhombic phase is obtained from
the condensation of a single orientational mode
Y;(qo)=&Kg at the Brillouin-zone center qo=(q, 0,0),
as q„~0. The concomitantly condensing shear mode is
obtained from Eq. (3.8) with the result

E„=iq s l(mN)'~ =Bulla c« . (5.1)

The cubic interaction (A9b) corresponding to a coupling
of a stretching mode c, and is in this respect analogous
to the compressible Ising model.

The situation which leads to the monoclinic structure
is more complicated. A cubic coupling between a shear
mode at the zone center and two different orientational
components at the I. point is essential in driving the tran-
sition from the cubic to the monoclinic phase. The two
orientational modes have the same amplitude p but oppo-
site sign. Two shear modes c, =c., become different.
The present theory accounts for two main characteristics
of the antiferroelastic monoclinic structure: a staggered
arrangement of the CN quadrupoles and the equality of
two shear modes. Due to the coupling between zone-
boundary and zone-center modes, the transition is still
preceded by a softening of c44 in the cubic phase.

The transition to the orthorhombic and to the mono-
clinic phases are of first order. The first-order character
decreases with decreasing CN concentration, since
there is in the free energy a competition between fourth-
order terms with different signs.

We have finally discussed a mechanism which leads to
the rhombohedral phases. The existence of three
coherent and equal shears 'E

y E'yz E'zx follows from the
equality of the three T2 orientational components. The
sign of the orientational amplitude g determines the sign
of the shears and possibly accounts for the difference be-
tween K(CN)„Br, and Na(CN) Cl, . The first-
versus second-order character of the phase transition is
now governed by the competition of entropy and interac-
tion contributions to the third-order term in the free en-
ergy.

All the previous results have been obtained from a
Landau expression of the free energy. The free energy
has been calculated on the basis of the microscopic mod-
el. The concentration dependence has been taken into ac-
count by performing configurational averages within
mean-field theory. %'e have also included in our model
static random strain fields which are due to the substitu-
tional halogens. The inclusion of random strain fields al-
lows us to give a consistent interpretation of thermal cy-
cling experiments.

The present approach of discussing the phase transi-

ACKNOWLEDGMENTS

The authors are indebted to J. M. Rowe, K. Knorr, A.
Loidl, J. K. Kriiger, and R. Sikora for helpful discus-
sions. The work has been financially supported by the In-
teruniversitair Instituut voor Kerwetenschappen, Belgi-
um. The present work has been carried out in the frame
of the Belgian Programme on interuniversity attraction
poles initiated by the Belgian State, Prime Minister's
OSce, Science Policy Programming. The scientific
responsibility is assumed by its authors.

APPENDIX A

The Fourier transform of the quadrupole-quadrupole
interaction reads

J (k) —gJ (X(h))e ik.x(h)

h
(Al)

Here X(h) is the position vector of one of the 12 nearest-
neighbor CN ions which surround a given CN at the
origin X(0)=0 in the fcc structure. The calculation of
J &(k) has been outlined in Ref. 29. Here we quote the
full matrix J(k), since we will need the result in the fol-
lowing. %'e obtain

tions on the basis of the molecular-field theory may ap-
pear primitive from the point of view of critical phenom-
ena. The critical behavior of an Ising model on a
compressible cubic lattice has been studied by
renormalization-group methods. It has been found that
at constant pressure, the anisotropic cubic solid has a
first-order transition.

The purpose of our work has been the proposal of a
new microscopic model which exhibits the polymorphism
of mixed crystals with orientational disorder. In a first
approach, a discussion of the phase transition based on
Landau-type theory is, therefore, legitimate. As an ex-
tension for further studies, we mention the inclusion of
surface effects which have been found to be relevant in
metal-hydrogen systems.

Beyond the problem of polymorphism, our results are
relevant for the understanding of the mechanism which
leads to the orientational glass state ' in M(CN) X,
and related compounds. It has been suggested" that, in
addition to a smooth T-dependent freezing, a rionergodic
instability can occur as a characteristic feature of the
orientational glass. The threshold condition for such an
instability is realized close to a virtual second-order phase
transition. Since dilution of CN concentration favors the
second-order character of the structural transition, it is
conceivable that a nonergodic instability occurs only
below a critical concentration x, .

2J (k ) = —I cos[(k, +k )a]J+'~'+ cos[(k, —k )a]Ja'&2
+cos[(k, +k )a]J+' '+cos[(k, —k )a]J ' I+cos[(k +k )a]J+' '+cos[(k —k )a]J

(A2)
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with R(n) =X(n)+u(n), (A5)

{} +1
J+(yz) 0 19 010

(A3)

u(n) being the lattice displacement. We expand the po-
tential (A4) in powers of u, take Fourier transforms ac-
cording to Eq. (2.4), and use

+1 0
5

The matrices J—+'"' and J+—' ~) follow from Eq. (A3) by
cyclic permutation of elements. Q stands for the quadru-
pole moment of the CN ion. In order to calculate the in-
teraction on a compressible lattice, we start from

I/~~=
—,'g g J(R(n+h) —R(n))

u(n) = 1

( ) 1/2~ 1/2 y ( )
iqx( )

foal CN q

(A6)

Finally, we transform to acoustic coordinates. The result
corresponds to a zeroth-order term in u which is given by
Eq. (2.5) and a first-order correction, given by Eq. (2.6).
Retaining only the coupling to long-wavelength acoustic
phonons, we find

J'@(p,q) =J'pg)(p, q)+ J'g)(p, q)+ J'g'(p, q) .

X o (n+h) Y (n+h)(T(n) Y&(n), (A4)
(A7)

where Here

J'g'(p, q) =0,

J'g)(p, q)=, , I(q +q„)J+p ~)cos[(p„+p )a]+(q —
q )J i3

~'cos[(p —p )a]),
&m a'(V'2)'

(A8b)

~ 2

J'g'(p, q)= — —,—,t(q +q~)J+&""cos[(p +p )a]+(q —
q )J &

~)cos(p —p )a]] .
ma ( 2)3

(A8c)

The expressions for J'g)(p, q) and J'g)(p, q) follow by
permutation of indices from Eqs. (A8a) —(A8c). In Eq.
(A8b), m =m CN +m ~ denotes the total mass per unit
cell.

Having the explicit form of the interaction J, we find
that in the limit p=O and q~O, the terms a=)33 in Eq.
(2.6) correspond to a coupling or orientational interac-
tions to stretching, while the terms a&)(3 correspond to a
coupling to lattice shears. Defining

J' y(q„pL)s (q, )= J+(~'q, s (q, ), (A10a)

J.'..(q„p, )s.(q, )= " J.+.'"'q, s„(q,),
m

(A lob)

which corresponds to a coupling of zone-boundary orien-
tational modes Y to shear waves. The interaction (2.6)
then reduces to

c =5lrQ /[a ( &2) ],
we find, for instance,

(A9a)
V (pI, q, )=i —'„'q, [s (q, )+s„(q, )]p

Xm

APPENDIX 8

(A 1 1)

J' i)„(0,q)s„(q) = — —[q„(J+p'~'+ J+~"' )5 g

+q (J+(XJf) +J+(XZ) )y aP aP

X(l —5 i3)]s, (q) . (A9b)

5& Y'),' —2( Y'Y'), (Y, ), —
2& Y'), (81)

2 ( YYY )()
(82)

We quote explicit expressions for the coeScients B]„
C

&
D

&
and D2 which have been introduced in Sec. III:

Taking q=(q„,0, 0), we see that Jii„(O,q ) in Eq. (4.2b)
corresponds to a coupling of two pairs of Y& functions,
which is mediated by compressional lattice waves.

With p=pI (Sec. IV), we obtain a coupling to shear
modes from J';(q, pI ). In particular, with q=(0, 0, q, ),
we get

D) = — [(Y )()—4( 1' Y )0—18(( YYY) )0
1

2g )

+12( YY1')()—l l( 1' )(p) ],
with

(83a)



STRUCTURAL PHASE TRANSITIONS AND POLYMORPHISM IN. . . 5769

y, =( Y4),—3& Y'Y'& (83b)

D2=
2 (3/y, )[—(Y Y )0( Y )0+2(y, +2(Y Y )0)( Y Y )0+6(yi+3( Y Y )0)((YYY) )0)

—6 2 1+3 '
( YYY&'—(( Y'Y'& +2& Y'Y'& )& Y'& +7& Y'&0 (84)

APPENDIX C

We have calculated for K(CN) 8ri „ the critical con-
centration x, where the transition from the cubic to the
rhombohedral phase becomes second order. We start
from the same microscopic parameters for the Born-
Mayer, Coulomb and van der Waals potentials, which
have been used in the second paper of Ref. 27 for the cal-
culation of T, in KCN. With a quadrupole moment

Q =0.72QO, where Qo= —4.64X10 ' esu A~, we have
obtained T, (x =1)=191 K and B=1461 K/A. We
then find from Eq. (4.29a)

C,"'=5916 K, (Cl)

W (Q)=a4,E4, (Q)+a6,K6, (Q), (C2)

where the coefticients a,4=23. 8 K and n6& = —88.5 K
have been calculated in Ref. 27 by including self-energy

where we have used c4& =0.48 X 10" dyn/cm and
a =3.25 A.

In order to calculate the single-particle susceptibilities
which enter Eq. (4.28b) for Cz' ', we need to know the
single-particle potential W (Q). Here Q=(8,y) denotes
the polar angles for the CN orientation. Expansion in cu-
bic harmonics K (Q) yields

eCects. The corresponding single-particle susceptibilities
are then evaluated:

( Y„y Yy, Y„,)0=0.0147,

( Yy )0=0.082,

(C3a)

(C3b)

for T=150 K. With F2=1, o., =1, and observing that
T, (x)=xT, (x =1),we get

x T, (x = 1 ) X26.66Cs—
X

(C4)

Comparing with Eq. (Cl), we find that Ct'3'~ Cs' ' for
x «0. 86. Experimentally one finds x =0.73. From
Eq. (4.28b) we see that Cs' ' is very sensitive to the-value
of ( Y'

~ )o. Uncertainties in the values of a4, and a6„due
to uncertainties about the value of the quadrupole mo-
ment Q (see Refs. 29 and 27), and due to uncertainties in
the values of the Born-Mayer potentials, cause uncertain-
ties in the value of ( Y )0.

We have performed similar calculations for the case of
Na(CN)„Cl, „. For x =0.7 and T =200 K, we obtain

C& '& CI ', with C& '=13643 K and CI '=12654.6 K.
Here we have used the values T, (x =1)=286 K,
a4i= —200, a6i= —120, ( Y„~)0=0.068, ( Y„~ Y~, Y, )0
=0.0105 at T=200 K, B=2478 K/A, c«=0.75X10"
dyn/cm, and a =2.95 A.
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