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Path-integral simulation of positronium in a hard sphere
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We employ the path-integral Monte Carlo method to study the binding energy of positronium
trapped within a hard sphere. The two-body density matrix and the total- and kinetic-energy ma-
trices are obtained by matrix squaring. The pair-product approximation is then used to obtain the
entire density and estimator matrices for the Monte Carlo simulation. Ground-state binding ener-
gies are obtained as a function of sphere radius and the system is found to become unbound near a
radius of 4 bohrs. Annihilation times are calculated which vary from 125 ps for free-space posi-
tronium down to 76 ps at a sphere radius of 4 bohrs.

I. INTRODUCTION

Since the first discovery of positroniurn, the localiza-
tion of positronium in molecular media has attracted
both theoretical and experimental interest. ' In molecu-
lar liquids and dense gases, positronium can be trapped in
a cavity where the medium's atoms are pushed away by
the exchange repulsion interaction between the
positronium's electron and the medium's electrons. This
phenomenon has been observed in He, Ne, Ar, H2,
and many other organic liquids and gases. ' Accompany-
ing the positronium trapping, the positronium lifetime is
increased sharply and shows a nonlinear relationship
with the medium's density. This phenomenon is known
as "positronium bubble" formation by analogy with the
"electron bubbles" observed in He Auid.

An important application of positron spectroscopies in
molecular solids is the measurement of vacancy density
and configuration. This is because positronium localized
in vacancies and defect voids has annihilation rates which
are sensitively related to void size and configuration.
This is one of the classic ways to determine void sizes in
nonmetallic crystals. Localized and delocalized posi-
tronium also have different lifetimes. The lifetime
responds to changes in the structure of the material due
to temperature, "' pressure, ' or external field. ' This
property has been used in the study of the dynamics of
phase transitions.

A natural way to study positronium in complex
dynamical systems is by path-integral simulation. The
method is based upon Feynman's formulation of quan-
tum mechanics. ' As a precursor towards a direct study
of positron and positronium solvated in liquid and defec-
tive crystalline inert-gas systems, we first investigate posi-
tronium within a hard-sphere system. This is, of course,
a two-quantum-particle problem with no exchange which
can be treated rather simply by path integrals. In Sec. II
we describe the path-integral Monte Carlo algorithm.
Section III gives our results first for free positronium,

then for a particle (with mass equal to that of the elec-
tron) in hard spheres of different sizes, and finally for po-
sitronium in those same spheres. Section IV presents our
conclusions.

II. ALGORITHM

where i labels states of the system, P are eigenfunctions,
E is energy, and P is (1/kT). R refers to the 3N-particle
coordinates. All static properties of the system are ob-
tainable from the density matrix which satisfies the iden-
tity

E(R,R',P)= f fdR, dR~

XE(R,Ri, r) E(Rst i, R', r),

where v=13/M and M can be any integer. E(r) is the
density matrix at the higher temperature MT. This mul-
tidimensional integral can be evaluated by the Monte
Carlo method if the integrand is known. When M is
sufficiently large, E (r) can be approximated by its classi-
cal form,

E(R,R';r)=E (R,R';r)

X exp I r!2[V(R)]+V(R—') I, (3)

where K is the free-particle density matrix
T

E (R, R', ~) =(m /2mrh ) exp
—m (R—R')

2~h

(4)

The density inatrix (E) of an N-particle system at tem-
perature T is given by

E(R,R', P) = g P;(R)P,. (R')exp( 13E;), —
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In this so-called primitive algorithm each quantum parti-
cle is represented as a necklace of M classical beads in
which each bead interacts with only its nearest neighbors
via a harmonic potential (which depends upon tempera-
ture) and with a reduced external field of V(R)/M. It is
thereby possible to implement Monte Carlo importance
sampling algorithms (we used the Metropolis scheme) to
treat quantum many-body systems via a classical analog.
The necklace analogy makes it clear that these (distin-
guishable) quantum systems are M times more computa-
tionally burdensome than the equivalent classical systems
because of the typically slow convergence of path in-
tegrals. The situation is even worse when exchange
effects are included in the study of boson or fermion sys-
tems.

What is required is an algorithm which reduces M and
yet adequately describes the quantum nature of the parti-
cles in the system. One way of determining how impor-
tant quantum effects are likely to be is through the
thermal de Broglie wavelength:

g = (g 2/mkZ. )
t~2

If A, is small compared with relevant length scales (d) in
the system, such as mean atomic distances or length
scales of potential energy variation in accessible parts of
configuration space, then the system may be treated clas-
sically. The order of M to adequately describe a quantum
particle can be estimated by

M =(A, /d)

where d is the length scale described above and M in-
creases as temperature decreases.

For a single quantum particle in a smooth potential
field, the number of beads needed is small, and the primi-
tive algorithm is sufficient to get good convergence.
Many realistic problems have been studied by this
method such as the excess electron in molten KC1, ' in
helium, ' and in water, ' muonium in H20, ' and neg-
atively charged NaC1 clusters. For pathological sys-
tems, however, such as quantum particles in coarse po-
tential media at low temperature, the number of beads
needed in the primitive algorithm is too large to get good
convergence. For the attractive Coulomb system the
primitive algorithm fails completely; the singularity at
the origin cannot be handled by a finite number of beads.
One way to reduce the bead number is to include higher-
order terms in the Trotter expansion for the density ma-
trix. ' " This method has been applied to the ground
state of the hydrogen atom and to the study of helium
phase transitions on graphite. In another approach a
staging algorithm, involving primary and secondary
necklaces, has been developed by Sprik, Klein, and
Chandler to increase the efficiency of Monte Carlo sam-
pling in the study of systems with strong short-ranged
repulsive interactions. The method has been applied to
the solvated electron in hard spheres and liquid am-
monia.

An alternative way of reducing the number of beads is
to use the quantum effective potential instead of the clas-
sical potential in the high-temperature approximation

In the study performed here, however, we use matrix
squaring and the pair-product approximation, but instead
of the end-point approximation, the entire two-body den-
sity matrix is employed. We find that we need to do this
to describe positronium properly. Ceperley and Pol-
lock, ' in their paper on the superAuid transition of liquid
helium also used off-diagonal elements of the density ma-
trix but parametrized to a low-order expansion in (r —r').

The idea, then, is to matrix square down to a tempera-
ture (T,z) at which the pair-product approximation is
good and then, using the contents of the resulting density
matrices, to employ Monte Carlo simulation to take us to
the temperature of interest ( Ts„).

The matrix-squaring method follows directly from Eq.
(2) which is exact. The two-body density matrix at tem-
perature T can be obtained by numerical multiplication
of the two identical density matrices representative of
twice T,

K(r, r';p)= Jdr&K(r, r, ;p/2)K(r„r';p/2) .

Starting at high temperature Tz; at which K may be ap-
proximated by its classical expression [i.e., akin to Eq.
(3)], after p iterations of matrix squaring, we end up with
the density matrix for the lower temperature Ti,;/2p.
Larger and larger values of p and different mesh sizes
may be tried until the resulting density matrices at T,„
become invariant.

Turning now to the estimator matrix and noting that
the total energy of a system is given by

1 dZ
tat Z yp

where Z is the partition function obtained from the full
density matrix and that the kinetic energy is given by

Pl dZ
PZ dm

we define the following total-energy estimator matrix:

dK (r, r', P)r, r; (12)

and kinetic energy estimator matrix,

[Eq. (3)]. The matrix-squaring method, which is an ac-
curate and efficient method for obtaining the two-body
density matrix, provides the means to produce an
effective potential from the diagonal terms of the density
matrix. The off-diagonal terms and the property estima-
tors may be obtained from those on the diagonal via the
end-point approximation. The entire density matrix
may then be constructed using the pair-product approxi-
mation

K(R, R',P)= gK (r;, r';;P) g K(r;, r'j,'P), (7)
l i (j

where r represents atomic coordinates and K represents
the normalized pair density matrix

K(r J,r J;P)=K(r;, r J. ;P)/K (rj, r'J;/3) .
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dK (r, r';P)
dm

These estimator matrices (EM) satisfy

EM(r, r';P) =
—,
' Idr, [EM(r, r, ;P/2)K (r„r',P/2)

+K (r, r„P/2)EM(r„r';P/2)] .

(13)

(14)

K(r, r';P)= g, k&(r, r', P)P&(cos6),
2l +1

I=0
(15)

where 8 is the angle between r and r' and P&(x) are
Legendre polynomials. Each k& obeys analogous matrix
squaring relationships to Eq. (9) as do the 1 partial wave
expansions for the energy estimators.

The potential energy estimator is obtained as the sim-
ple ensemble average of the potential energy (PE) be-
tween particles in the system. Thus, we have indepen-
dent methods for obtaining potential, kinetic, and total
energies and are able to determine internal consistency
between the values of all three.

III. RESULTS

In the ensuing, energy is given in Rydbergs, distance in
bohrs, and temperature in Kelvin. For positronium,
Monte Carlo steps involve moving pairs of beads at a
time, that is, an electron and a positron bead and the rel-
ative distance between them. We found that many bead
moves, such as moving the center of mass of a necklace,
or moves associated with the normal modes of a necklace,
had negligible effect on the quality of the estimator statis-
tics.

Again, in determining system properties, the full estima-
tor matrix, including both the diagonal and off-diagonal
terms, is employed. Starting at the same high tempera-
ture as the density matrix, p iterations of matrix squaring
were performed to obtain the estimator matrices for the
lower temperature of T„;/2p.

To order to simplify the calculations, the three-
dimensional density matrix can be reduced to a sum of
one-dimensional matrices by the following I-partial wave
expansion:

Ki(r, r', P) = dr i k&(r, r &,P/2)kl(r „r',P/2),
0

(16)

where R is chosen sufficiently large (12 bohrs) that it has
minimal effect (less than 0.1%) on the value of k& in re-
gions of high probability in phase space. Sufficient par-
tial waves, depending upon T,d, are included in the sum
of Eq. (15) to make K converge. For the range of T,d
values studied here, this upper limit on 1 was 40.

In Table I the ground state energy of free positronium
is evaluated. Starting the matrix squaring at
T„;=2' X10 K, Table I shows the effect of different
values of T,d on the numerical accuracy achieved
through Monte Carlo simulations. We know that the sys-
tem is in its ground state at 10 K, and this is the temper-
ature at which we run the Monte Carlo code. As expect-
ed, the root-mean-square energy Auctuation increases
with bead number (i.e., T,d ), and this is why there ap-
pears to be an M dependence to the results despite the
fact that we are using the exact density matrix. Even
though this system is unbounded at any finite T ((R ) is
infinite), the electron-positron pair was never observed to
separate during the course of the simulation.

B. Particle in a hard sphere

As discussed by Barker, the primitive Monte Carlo
algorithm is not suitable for the hard-potential-well prob-
lem. In order to satisfy the boundary condition at the

A. Free positronium

It is impossible to simulate the hydrogen atom by the
primitive Monte Carlo algorithm because the Coulombic
potential is pathological. The beads collapse into the nu-
cleus because of the singularity in the potential. The
high-order Trotter expansion for the density matrix has
been used to handle this problem but the convergence
with bead number is very slow. Storer showed, using
the S partial wave matrix-squaring method, that it was
possible to obtain diagonal terms of the density matrix
and hence the quantum effective potential. Here, howev-
er, we used the l partial wave expansion for the positroni-
um problem:

TABLE I. The ground-state energy of free positronium as a function of the medium temperature
T,d. The radial mesh size is 0.075, and the angular mesh size needed to accurately express the angular
terms increases as T,d increases.

T,d (K)

0.4X10'
0.8 X 10
1.6X10'
3.2X 10
6.4X10'

12.8 X10'

E (Ry)

—0.4994+0.0002
—0.4990+0.0002
—0.4991+0.0006
—0.4995+0.0021
—0.4990+0.0060
—0.5243+0.0165

KE (Ry)

0.4952+0.0011
0.4940+0.0013
0.4938+0.0030
0.4897+0.0053
0.4809+0.0119
0.4804+0.0278

PE (Ry)

—0.960+0.014
—0.954+0.007
—0.973+0.005
—0.970+0.009
—0.966+0.019
—0.957+0.030

8
16
32
64

128

—0.5000 0.5000 —1.000
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FIG. 1. Ground-state wave function of an electron in a hard sphere of radius 6 bohrs for difterent starting matrix-squaring temper-
atures (Tp). Exact wave function (solid line); image approximation Eq. (18) (dashed line); image approximation Eq. (17) (dash-dotted
line); and semiclassical approximation Eq. (3) (dotted line). (a) Th; =512X10 K; (b) Th; =2048X10 K; (c) Th; =8192X10 K; (d)
Th; =32768X10 K. T,d=0. 5X10 K in each case.

wall, he used the one-dimensional image approximation
to correct the high-temperature density matrix and was
able to reduce the number of beads required for accurate
solution of the problem.

In the present calculation, we have investigated two
forms of image approximation for use within the hard
sphere. The erst is due to Jacucci and Omerti and the
second to Whitlock and Kalos:

T,d (K)

0.4X 10
0.8 X 10
1.6x10'
3.2x10'
6.4x10'

12.8 X 10

E (Ry)

0.2747+0.0001
0.2744+0.0003
0.2742+0.0022
0.2726+0.0044
0.2732+0.0063
0.2747+0.0084

10
10
10
20
20
30

4
8

16
32
64

128

0.2742

TABLE II. The ground-state energy of one quantum particle
(mass of an electron) in a hard-sphere potential well of radius
6.0 bohr for various T,d. The radial mesh size is 0.075, and the
angular mesh size increases as T,d increases. l, represents the
total number of partial waves included in the sum for the pair
matrices [Eq. i15)].

T,d (K)

0.4 X 10'
0.8 X 10
1.6x10'
3.2 X 10
6.4X 10

E (Ry)

—0.276+0.001
—0.324+0.002
—0.360+0.005
—0.386+0.016—0.399+0.013

PE (Ry)

—1.095+0.013
—1.057+0.011
—1.037+0.016

1.046+0.030
—1.034+0.014

TABLE III. The ground-state binding and potential energy
of positronium in a hard sphere of radius 8.0 bohr at difFerent
values of T,d. The ground-state binding energy converges as
the pair-product approximation becomes more accurate with in-
creasing T,d. The error caused by the Auctuation increases as
the number of beads in the Monte Carlo simulation increases.
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FIG. 2. The 2y-annihilation lifetime of positronium as a
function of sphere radius.

FIG. 3. Comparison of the electron ground-state wave func-
tion in the positronium hard-sphere system (squares) with that
of a single electron (solid line) in a hard sphere of the same size.

(Ro —r)(RO —r')
K(r, r', P)=K (r, r';P) 1 —exp

K(r, r';P)=K (r, r', P) 1 —exp
(R 2 r2)(R 2 ri2)

2pR 0
(18)

where R0 is the sphere radius. We assume the mass of
the sphere to be infinite and the mass of the particle to be
that of the electron. These equations are used to start the
matrix squaring. Because matrix squaring can start at
very high temperatures, the image approximation only
affects a narrow region near the hard-sphere wall at these
temperatures. Differences near the hard wall at high
temperature propagate to have a profound inAuence on
the wave function at the center of the sphere at T,d

and/or Tf,„. This effect is demonstrated in Fig. 1 for a
hard-sphere radius of 6 bohrs, where the image approxi-
mation of Eq. (18) is found to be superior. The diagonal
terms of the ground-state density matrix can actually be
obtained accurately (i.e., compared with the known exact
answer) by starting at high enough temperature and om-
itting the image approximation. The difference in the
final density matrix between starting with just the classi-
cal or with the image approximation is less than the nu-
merical error associated with matrix squaring (i.e., the
use of the trapezium rule in the integration) itself under

these circumstances.
At the temperature at which we start our matrix squar-

ing, the image approximation given by Eq. (18) provides
the initial matrix. Table II presents values for the total
energy for different values of T,d for a sphere of radius 6
bohrs. Again, the starting temperature is T0=2' X10
K and the final (i.e., close to ground state) temperature is
10 K. The exact ground-state energy is 0.2742. The
upper limit on the number of partial waves included was
30. Again, we note that the root-mean-square fluctuation
in energy grows with bead number.

C. Positronium in a hard sphere

Positronium in a hard sphere is a three-body problem
and may be handled by making the pair-product approxi-
mation to the density matrix. The hard sphere is taken to
have infinite mass. For each sphere radius it is necessary
to find the value of T,d for which the pair-product ap-

TABLE IV. The ground-state binding energy, kinetic energy, and potential energy of positronium in
a hard sphere as a function of T,d for sphere radius of 10.0 bohr. The result is consistent with E equal
to the sum of the kinetic and potential energies within the statistical errors.

T „(K.)
0.4x10'
0.8 X 10'
1.6x10'
3.2X 10

E (Ry)

—0.372+0.002
—0.407+0.002
—0.423+0.007
—0.427+0.008

PE (Ry}

—1.019+0.008
—1.018+0.008
—1.016+0.008
—1.013+0.013

KE (Ry)

0.643+0.004
0.608+0.006
0.590+0.009
0.582+0.012

E-PE (Ry)

0.647
0.611
0.593
0.586
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TABLE V. Binding energy and potential energy of grourid-state positronium inside hard spheres of
different radii. T~ is the minimum temperature at rvhich the pair-product approximation is valid. This
determines the number of beads required to reach the ground state. T~ increases as the sphere radius
decreases; hence, the statistical Auctuation increases also. For sphere radii smaller than 4.0 bohr, the
fluctuation is larger than the magnitude of the binding energy. The last column is the energy (E„f)of
unperturbed positronium in a hard sphere (see text).

R (bohrs)

4.0
5.0
6.0
7.0
8.0

10.0
13.0

E (Ry)

—0.026+0.046
—0.151+0.023
—0.227+0.025
—0.349+0.013
—0.399+0.013
—0.427+0.008
—0.453+0.003

PE (Ry)

—1.299+0.041
—1.177+0.023
—1.120+0.029
—1.061+0.021
—1.034+0.014
—1.009+0.008
—1.000+0.009

Tp (K)

2.56X10'
2.56 X 10
1.28X10'
1.28X10'
0.64X10'
0.32X10'
0.08 X 10

E„f (Ry)

—0.192
—0.303
—0.363
—0.399
—0.423
—0.451
—0.471

—0.500 —1.000 —0.500

proximation is valid. T,d increases, of course, with de-
creasing radius size. Thus, the bead number in the
Monte Carlo part of the calculation increases with de-
creasing sphere size. The greatest estimator noise is
therefore found for small spheres.

Table III demonstrates this point. The energies and
potential energies converge (i.e., diff'erences are in the
noise) after 64 beads for a sphere radius of 8 bohrs. Table
IV shows that at the larger radius of 10 bohrs, 32 beads
are required for convergence. Further, the kinetic, po-
tential, and total-energy estimators are compared and
found to be internally consistent. Finally, Table V
presents tota1 energy as a function of sphere size. The ki-
netic energy becomes equal to the potential energy near a
radius of 4 bohrs. Also included is a column involving
the sum of the tota1 energy of free positronium and the
kinetic energy of a particle of two electron masses as a
function of a hard-sphere size. This would be the energy
of the system if the positroniurn wave function was un-
perturbed by the presence of the hard sphere. Compar-
ison of this column with the second indicates that very
significant changes are occurring in the positronium at
radii less than 7 bohrs, a fact corroborated by the posi-
tronium lifetime data given below.

Annihilation rates (P~ ) may be found from the follow-

ing approximate equation:

P~ =vcr, n, ,
2

where r, is the classical electron radius, c is the velocity
of light, and n, is the electron density at the positron ori-
gin. The probability density as a function of relative
electron-positron coordinate was extrapolated to its ori-
gin to obtain n, . Table VI presents lifetime results as a
function of sphere size. %e note that the lifetimes vary
by a factor of 2 for the sphere sizes considered and that it
asymptotcs to the exact free-space value. The lifetime de-
creases rapidly for small-sphere radii as shown in Fig. 2.

Last, we present two figures to illustrate changes in
probability density behavior from related reference sys-
tems. Figure 3 compares the wave function of a single
electron in a hard sphere with that of the electron in posi-
tronium in the same sized (6 bohrs) sphere. The presence
of the oppositely charged particle causes an increase in
density at the center of the sphere. Figure 4 demon-
strates the effect of containment on the relative positroni-

0.7

0.6

TABLE VI. The 2y-annihilation lifetime of positronium as a
function of sphere size. It asymptotes to the free positronium
value as the sphere radius increases.

0.5

0.4

0.3
R (bohrs)

4.0
5.0
6.0
7.0
8.0

10.0
13.0

Free Positronium

Lifetime (ps)

76+8
94+5

110+4
118+3
123+3
125+3
125+3

125.0

0.2

0.1

0
0 6

r (Bohr)
10 12

FIG. 4. Radial distribution function of positronium in a hard
sphere (solid line) as compared with that of free positronium
(dashed line).
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um wave function. The maximum in the radial probabili-
ty density increases in height but moves very little to-
wards the origin.

study positronium bubbles in inert-gas liquids and posi-
tronium localization at crystal vacancies using similar
techniques.

IV. CONCLUSION

We have seen that it is possible to accurately represent
positronium behavior in hard spheres of di6'ering radii
down to 4 bohrs using combined matrix-squaring and
path-integral Monte Carlo techniques. Annihilation life-
times vary from 125 ps at a radius size of 13 bohrs down
to 76 ps at the smallest radii. We are now in a position to
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