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Electron states associated with 90 partial dislocations in germanium
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The unreconstructed 90' partial dislocations in germanium are examined by means of a linear
combination of atomic orbitals electron Hamiltonian with ten Gaussian-type atomic orbitals for
every atom, which for a perfect crystal yields accurate results for both the valence- and conduction-
band states. A pair of alternate unreconstructed 90 partial dislocations with corresponding stack-
ing faults are incorporated via a supercell containing 256 atoms. When the bound electron states
were evaluated, the translation symmetry both along the dislocation line and in the plane perpendic-
ular to the dislocation line was exploited. A powerful mathematical approach for large sparse ma-
trices makes it possible to treat this supercell, its size being large enough to decouple the interac-
tions between neighboring dislocations. The deep energy levels in the gap and the resonant states
were extracted with use of the Lanczos algorithm and a continued-fraction representation of the lo-
cal density of states. Two defect bands for the 90 partial dislocation in germanium were obtained.
In the center of the one-dimensional Brillouin zone the two bands are widely split and are joined to-
gether at the zone boundary. The upper band is a resonant state near the center of the zone and be-
comes a bound state at the zone boundary. The lower band is a bound state over the entire zone.

I. INTRODUCTION

Many of the most important properties of semiconduc-
tor materials and semiconductor devices are determined
by the presence of lattice defects: point defects and dislo-
cations. Dislocations in semiconductors seem at a first
glance to be less important, since first they may well be
avoided in growing single crystals and secondly they can-
not move at room temperature. For a rather long time,
dislocations in semiconductors were investigated in only
a few places. The situation was somewhat changed when
it became known that dislocations may be produced not
only during device fabrication, but also afterwards in de-
vices working at elevated temperature. Well-known ex-
amples are dislocations which make semiconductor lasers
deteriorate and shorten the lifetime of the devices. Re-
cent years have seen an expansion in both the theoreti-
cal' and experimental investigation of the deep elec-
tron levels associated with dislocations in plastically de-
formed covalent crystals.

Investigations using the weak-beam technique of elec-
tron microscopy show that the dislocation in silicon and
germanium of either screw type or 60 type are dissociat-
ed into partial dislocations. For the 60 dislocation a
30' partial dislocation and a 90 partial dislocation are
formed through dissociation, while the screw splits into
two 30 partial dislocations. Each of the dislocations has
a total Burgers vector of the —,'a(1, 1,0) type lying on a
I111I slip plane with line direction (110). Dislocations
running in other directions in the lattice are to be
thought of as kinked segments of these types. Thus, it is
generally believed that the important elemental defects
(other than point defects) which control the mechanical
and electronic properties of tetrahedrally coordinated
semiconductors at low temperatures are the 30 partial
dislocation, the 90 partial dislocation, and kinks. These
dislocation may also lie on either the closely spaced (111)

glide planes or on the more widely spaced (111) "shuNe"
planes. Recent evidence favors the glide model. The
stacking faults associated with the partial dislocations are
found to be either intrinsic or extrinsic, but a majority of
intrinsic faults were reported.

It was generally accepted that there are no deep levels
associated with the stacking faults, ' whereas the dang-
ling bonds in the core region of the dislocations have a
great inAuence on the defect bands which can be resonant
states or bound states. The exact structure of
configurations in the core region of the dislocations is not
clear at present either experimentally or theoretically.
The lattice-model simulations for the core structure of
the dislocations show that the partial dislocations may
exist in different core configurations which, although be-
ing translationally invariant parallel to the dislocation
line, differ with regard to the point symmetry of the
atomic arrangements. It seems that the low-symmetric
reconstructed cores of partial dislocations without dan-
gling bonds are energetically more probable than the
high-symmetric unreconstructed partial dislocations with
dangling bonds in the core.

In investigating the deep levels of dislocations, the
main technical problem arises from the fact that disloca-
tions are topological defects of the lattice. The topologi-
cal disorder introduced by a dislocation prevents one
from modeling dislocations in a simple way by local per-
turbation potentials. The theoretical approachs
developed for point-defect problems such as the Green-
function method cannot be applied to the case of disloca-
tions. Thus in all presently used methods the deep elec-
tron levels of dislocations are found by comparing calcu-
lated energy spectra of the crystals containing disloca-
tions with those of perfect crystals.

Dislocations are one-dimensional defects, maintaining
the translational symmetry of the lattice parallel to the
dislocation line but destroying this symmetry in the plane
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orthogonal to the dislocation line. However, in all the
theoretical investigations made so far of the deep electron
levels at dislocations in semiconductors, this symmetry is
artificially modified by two methods. In the first
method" ' the translational symmetry perpendicular to
the dislocation line is restored by considering periodic ar-
rangements of pairs of alternate dislocations forming a
superlattice with large unit cells. In the second
method, ' ' the translational symmetry is ignored alto-
gether. The crystal with a dislocation is modeled as a
spherical cluster of a limited number of atoms (typically
700 to 1500) around a dislocation core, and the deep lev-
els are determined from a continued-fraction density of
states (DOS). '

In the spherical-cluster treatment of the deep electron
levels at dislocations in Si, Jones' and Jones and Mark-
lund' characterize the electron in the tight-binding inter-
polation scheme of Slater and Koster. ' The parametriz-
ation developed by Pandey and Phillips' is used, with ex-
ponential scaling of the tight-binding parameters under
deformations. In the superce11 approach other treatment
of electrons have been used. For example, for Si North-
rup et al. ' and Chelikowsky' used a Gaussian-orbital
description combined with local-atomic-model potentials.
They applied a standard technique of the band-structure
calculation to the supercell. In order to reduce the size of
the matrix while still retaining some of the variational
content of the d-symmetry orbitals, they employ Louie's
method of phase-dependent chemical orbitals. Louie
has shown that by properly preparing the s, p, and d or-
bitals, one may treat the d orbitals in a modified form of
Lowdin s perturbation theory. In this method, the varia-
tional content of the d orbitals is included implicitly in an
e6'ective Hamiltonian whose dimension is determined by
the number of s and p orbitals. This procedure reduces
the dimension of the matrix by a factor 2.

For computational reasons the supercell method is
applicable only to systems with small numbers of in-
equivalent atoms in a cell (typically about 56 to 88
atoms), which restricts consideration to narrow pairs of
dislocations (hence interactions between localized states
at diferent dislocations cannot be excluded) and rather
simple dislocation-core structure. The spherical-cluster
approach cannot resolve the dispersion of the deep level
bands along the dislocation line since it artificially breaks
the translational symmetry along the dislocations. More-
over, it has a rather limited energy resolution.

In the present paper by using a new mathematic ap-
proach for a large sparse matrix a supercell containing
256 atoms with a pair of alternate unreconstructed 90'
partial dislocations and corresponding stacking faults
were investigated for germanium. Because of the size of
the supercell the interactions between localized states at
diA'erent dislocations can be excluded and the translation-
al symmetry both along the dislocation line and in the
planes perpendicular to the dislocation can be exploited.

l
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where a is a bond-stretching parameter and P a bond-
bending parameter, r, is along the bond between an atom
and its neighbors. Variables with subscript zero denote
ideal crystalline values. A shortcoming of this formula is
that its anharmonicity overestimates the energy of a bond
which is stretched above the harmonic limit. Keating has
proposed a more complicated formula which better de-
scribes crystal anharmonicity:

Louie s Gaussian-type linear combination of atomic or-
bitals (LCAO) were employed, but the d-orbital content
was included without recourse to the Lowdin perturba-
tion theory. Recently this approach was applied to the
90 partial dislocations in Si. '

This paper is organized as follows. In Sec. II we will
describe the approach we employed in forming the
geometry of the supercell containing two alternate 90'
partial dislocations and the method for calculating Ham-
ilton matrix elements and overlap matrix elements be-
tween the rows of atoms along the direction of the dislo-
cation line. The method on how to exploit the transla-
tion symmetry along the dislocation line and in the plane
perpendicular to the dislocation line is also discussed. In
the calculation of recursion coefficients we especially em-
phasize the problem of how to deal with the large
nonorthogonal and sparse overlap matrix. In Sec. III, we
present and discuss the results we obtained and make a
comparison with the previous calculations and experi-
ments.

II. CALCULATIONAL PROCEDURE

A. Formation of the supereell

The structures of dislocation cores are at present more
or less unclear both experimentally and theoretically.
The atomic coordinates for the dislocation structures can
be taken from near-atomic —resolution-computed electron
micrographs. Because the resolution of electron micro-

0

graphs is at best 2 A and the images sensitively depend
on the electron optical parameters and specimen thick-
ness, it is necessary afterwards to carry out an optimiza-
tion procedure to reduce the bond-length and bond-angle
deviations. Theoretically the core structures of disloca-
tions are generated via lattice-model computer simula-
tions proposed by Marklund. ' Marklund used the
valence-force-field potential of Keating to determine
atomic coordinates for both the 30 and 90' partial dislo-
cations.

The simplest valence-force-field potential suggested by
Keating is the one which expresses the elastic energy of
an atom in the lattice according to the formula
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In some cases this formula can cause an infinite expansion in the relaxation process. We therefore adopted the formula
suggested by Koizumi and Ninomiya in their treatment of amorphous Ge:
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Expanded for small
~ r, —ro ~

this is the same as (2.2).
The procedure for generating the geometry of the

periodic repeated supercell is as follows. The first step is
to generate two layers of the lattice pattern for the ideal
germanium crystal perpendicular to the dislocation direc-
tion [110] and then shift part of the pattern along the
direction [112]by a Burgers vector —,'a (1,1, —2), where a
is the lattice constant for Ge. By the isotropic linear elas-
ticity theory the resulting patterns adjusted and then by
using formula (2.3) the atomic positions around the core
of the dislocation (about 90—100 atoms) are determined
by minimization of the total energy of the valence poten-
tial using a optimization algorithm until the total-energy
converges. The dangling-bond atoms at the core of the
dislocation were treated in the virtual neighbor ap-
proach. ' The atomic positions for the here applied su-
perce11 of 256 atoms have been taken from Teichler.

The supercell has a center of symmetry to include two
90 partial dislocations with opposite Burgers vectors.
The periodicity of the supercell lattice is taken into ac-
count by imposing suitable boundary conditions during
the relaxation of the atom row positions within one su-
percell. A strip of intrinsic stacking faults lies in between
the two 90 partial dislocations which are apart from
each other by a distance of about 28 A. The distance is
big enough to decouple the interaction between the two
partial dislocations. The supercell contains 256 atoms
and the interactions of the dislocations in neighboring su-
percells are sufficiently small. The sufficiently large su-
per cell contains no unphysical bonds since by St.
Venant's principle the strain is zero at the supercell
boundaries.

The translational vectors for the supercell are

B. Localized pseudopotential and orbital functions

The electrons in the supercell are described by the
LCAO scheme. Similar to Louie, we use Gaussian-type
pseudopotential and atom-centered Gaussians as the lo-
calized orbitals. The advantage of employing Gaussian
potential and orbitals is that the evaluation of all matrix
elements in real space is analytically tractable.

The crystalline potential for germanium is taken to be
the sum of individual pseudopotentials of the form

2

V(r)= g a, e (2.5)

2 2
e

—ar &2e
—ar

three p-like Gaussian orbitals

(2.6)

Afxe
2 — 2ye, ze (2.7)

and five d-like Gaussian orbitals
2 2

CX1'

xye ", zxe ", yze

(y —z )e ", [(x —y —z )/V3]e
(2.8)

Table I provides a list of the parameters used in this
study.

where the parameters a and b are determined from previ-
ous pseudopotentials which are known to yield good re-
sults both in bulk and surface calculations. Especially in
the surface calculation this potential yields a result which
is similar to the result obtained from a full self-consistent
calculation. Ten Gaussian functions are used for each
atom: two s-like Gaussian orbitals

t, =(55.4 A)i,

t2=(9.2 A)i+(26. 1 A)j,

t3=(4.0 A)k,

(2.4)

where i, j, k are unit vectors along x, y, and z directions.
Figure 1 shows the perspective view of the unreconc-

tructed 90' glide partial dislocation for germanium. The
dislocation line runs in the [110]direction. We can see
the dangling bonds at the core for the dislocation. The
atomic arrangement of our supercell viewed along the
dislocation line, is shown in Fig. 2. The big dots are in
the upper plane and the small dots are in the lower plane;
the distance between the two planes is 2.0 A.

FIG. 1. Perspective view of the unreconstructed 90 glide
partial dislocation. The dislocation line runs in the (110)
direction.
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TABLE I. Potential parameters (the a's are in Ry and the b's
in reciprocal Bohr radius squared) and orbital decay constants
(in reciprocal Bohr radius squared).
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~ ~
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~ ~ ~ ~ Q ~ ~ ~ ~ ~ ~
o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0.17 15.97 0.57 —12.78 0.39 —2.68 0.81

~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ o
~ ~ ~

~ ~ ~
~ Q ~

~ ~ ~ ~ ~ ~ ~ ~ e
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ R,"=R"+(R
~", +&b )k, (2.9)

FIG. 2. The atomic arrangement of the supercell containing
two 90' partial dislocations with opposite Burgers vectors,
viewed along the dislocation direction. The big dots stand for
the 1attice points in the upper plane and the small dots for the
ones in the lower plane.

A11 matrix elements for the Hamiltonian and overlap
are evaluated with the interactions extending to the
fourth nearest neighbors.

C. The translational symmetry

Because the atomic pattern for lattices with dislocation
is periodic along the dislocation line, the Bloch wave
number parallel to the dislocation line is conserved. The
position vector for any atomic row can be expressed as

Pq "(r)=N ' gexp[ik(R
~~

+pb )]pj(r—R~ ),
P

(2.10)

where p is the Gaussian orbital with symmetry j and k is
the wave vector along the z direction ~lb ~ k—~ m lb.

The elements of the overlap matrices between the
Bloch sums for the atomic rows can be written as

where R" and R
~I

respectively, are the coordinates in the
(x,y) plane and z direction and k is the unit vector in the
z direction. We assume that the dislocation line is along
this direction, p is an integer, and b denotes the transla-
tional vector in the z direction b =a /&2 (a is the lattice
constant). The Bloch sum along the dislocation direction
can be written as

S;J'"(k)= (i, m, k Ij, n, k ),
'+exp[ ik Rli

—+& ] «p['k Ii+& ](i,m Ij n)
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where l =q —p and

(i,mIj, n)= J dr p,*(r Rp . )p (r R—") . —

The elements of the Hamiltonian matrices between the Bloch sums of the atomic rows are

H, ,'"(k)=(i,m, kIHjI, n, k),
=N '+exp[ ik(R

~~

+pb )]e—xp[ik(R
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+qb )](i,m IH jI, n ),
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(2.12)

)]+exp(iklb)(i, m IHIj, n ), (2.13)

where l =q —p and

(i, m IHIj, n ) =I dr p,
*(r R~ )Hp. (r R~") —. (2.14)—

In bulk the overlap matrices (2.12) and Hamiltonian
matrices (2.14) are not negligible up to four nearest neigh-
bors. In perfect crystal every atom has 35 neighboring
atoms up to four nearest neighbors including itself and in
our supercell every atom interacts with 17 atoms. In the
case with dislocation as in the case of perfect crystals,
every atomic row interacts with 17 neighboring rows in-
cluding the row itself. The translational syrnrnetry in the
plane perpendicular to the dislocation line has been taken
into account in the following way: the atomic rows near

l

the boundaries of the supercell interact with the atomic
rows outside the supercell. These interactions have been
replaced by the interactions between the atomic rows and
the translational counterparts of the atomic rows outside
the supercell with the same matrix elements. The recur-
sion procedure just as a propagation of "recursion wave:"
the wave starts from the atomic row at the core of the
dislocation propagates radially in the plane perpendicular
to the dislocation line. When the wave hits the boun-
daries of the supercell it enters into the supercell again
from the opposite side of the boundaries, as if the wave
propagates in the plane with the periodicity of the super-
cell, but we can keep the calculation inside the supercell.
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D. Recursioa scheme

The Bloch sum (2.10) for the nonzero k in the one-
dimensional Brillouin zone is complex. Hence the over-
lap matrix elements (2.11) and Hamiltonian matrix ele-
ments (2.13) for nonzero k along the dislocation line are
also complex. For the convenience of the computation
we should change the complex matrices into real ma-
trices. This was achieved by a unitary transformation U:

ho =uoS'uo = 1,
ao =uoH uo ~

J

b, =[(uoH' —aouoS"')(S') '(H'uo —aoS'uo)]'~

u, =(S') '(H'uo —aoS'uo)/b] .

(2.21)

= 1

v'2
U= (2.15}

For the next step we have

a, =u,a u, ,
I

Using the fact that the elements of H(k) and S(k) are
complex conjugate to those of H( —k) and S( —k) we
can combine the matrices for k and —k by the transfor-
mation U. Owing to the time-reversal symmetry, the
DOS for k and —k are identical and the unitary transfor-
mation cannot change the DOS:

H(k}+H( —k) iH(k) iH( —k)—
a'= U'aU=-'

2

bl = [(u,H' —a, u,S' b, u oS—')(S')

X (H'u, —a, S'u, b, S—'uo)]'

u z
= (S') '(H'u& —a &S'u, —b &S'uo) /b2, ,

(2.22)

and proceeding further we can transform the Hamiltoni-
an matrix into a tridiagonal matrix. The local Green's
function corresponding to uo can be expressed as a con-
tinued fraction,

S'= U SU= —'
2

iH(k)+—iH( —k) H(k)+H( —k)

(2.16)

S(k)+S(—k) iS(k) iS( k—)—
iS(k)—+iS ( —k) S(k)+S( —k)

(2.17)

Go(E) =

E —a 1

b

E —a 2

b

(2.23)

~bio& =+~a&uo, (2.18)

where ~a ) denotes the complex Bloch sum (2.10) and uo
is the weight of the starting function in the basis ~a). By
the transformation (2.15) we can change every basis into
real function and hence

~ fo) become a real function. We
denote with uo the column vector of the changed real
starting function.

By using a symmetric three-term recurrence relation

b„+&S'u„+
&

=H'u„—a„S'u„—b„S'u„ (2.19)

For every atomic row we have ten Bloch sums with
different symmetry, in the supercell we have 256 atoms.
After the U transformation, the overlap and Hamiltonian
matrix will be of size 5120X5120.

The bound electron states of dislocation around the
band gap are extracted using the Lanczos recursion ap-
proach for nonorthogonal basis functions which is a
slight generalization of the usual Haydock-Heine-Kelly
scheme.

The starting function can be expressed in the represen-
tation of the nonorthogonal basis ~a ) as

and the local DOS is

no(E)= m'ImGo—(E+iri)~„o . (2.24)

The starting function were constructed from the Bloch
sum of atomic orbitals with symmetry v and wave vector
k along the rows of dangling-bond atoms in the disloca-
tion cores. Starting functions with symmetries s, p, and
sp have been applied, however, it was found that the en-
ergy positions of the bound states are independent of the
starting function character.

The unitary transformed overlap matrix S' is a real
5120X5120 large sparse matrix. In the recursion pro-
cedure we need calculate the quantity (S') 'c, where c is
a real column vector with 5120 components. We cannot
invert the matrix in the usual way, however we calculate
the quantity (S') 'c by solving the equation S'x=c. In
order to minimize the storage requirement a refined quo-
tient tree ordering algorithm was employed. By using
this algorithm at every step of the recursion procedure
when column vector c has changed we need not repeat
the whole procedure, hence the algorithm can also save
very much computer time.

and the S orthonormality relation for the real set of orbit-
als t uo, u ] ~ ~ . . j

III. RESULTS AND DISCUSSION

u S'u„=5

we can calculate the recursion coefFicients

(2.20)
The calculated dispersion curve of the band structure

along the wave vector k parallel to the dislocation line for
Cxe with 90 partial dislocations was shown in Fig. 3. In
the one-dimensional Brillouin zone we have calculated
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k =en. /6b for n =0, 1, . . . , 6. Where b =a/&2, a
=5.658 A is the lattice constant of germanium. The deep
levels in the gap and the resonant states in the band con-
tinuum were extracted using the Lanczos algorithm and a
continued-fraction representation of the local density of
states. Two defect bands were obtained for the 90 partial
dislocation in germanium, and represented in Fig. 3 by
dashed lines. In the center of the one-dimensional Bril-
louin zone the two bands are widely split and are joined
together at the border of the Brillouin zone. The upper
band is a resonant state near the center of the zone and
becomes a bound state at the border of the zone. The
lower band is a bound state over the whole zone.

Figures 4 and 5 illustrate the local density of states for
90 partial dislocation in germanium with the wave vec-
tor equal to m/(2b) . and rrlb, respectively. The starting
orbital is a sp hybrid function at the dangling bonds of
the dislocation core. We have pointed out that the posi-
tion of the defect bands are independent of the symmetric
characters of the starting orbitals. In Figs. 4 and 5 the
local density of states are scaled with the same arbitrary
unit.

In the region of k space near the center of the Brillouin
zone the dislocation states interact strongly with the
bulk band states. At this points in k space the
dislocation-state wave functions are, therefore, not
strongly localized in the core region. Thus the peaks of
the local density of states for the dislocation states are
not very sharp. In the region of k space near the border
of the Brillouin zone where the energies of the dislocation
states are well outside the bulk projected band structure
and are, consequently highly localized at the dislocation
core. The peaks of the calculated density of states for the
dislocation states are very sharp.

Experimentally in germanium ' a partially filled
band is found near the valence edge with the Fermi level,
EF, at Ez+0.09 eV. Cavallini et aI. ' find that this band

0.04

0.0
-15 —10

I

-5

ENERGY(eV)

drops as the deformation temperature increases. del Pen-
ino and Mantovani show that the width of the lower
band is about 0.18 eV in rough agreement with Schaum-
burg and Willmann. Some other experiments show that
there are two bands associated with the dislocations:
one close to the valence edge and the other in the upper
half of the gap. Ossipyan indicated that the lower band
is a donor band and lies at 0.07 eV above the top of the
valence band. The upper band is an acceptor band and
lies at 0.5 eV beneath the bottom of the conduction band.

FIG. 4. The local density of the states with an sp hybrid
starting orbital at the dangling bonds of the dislocation core.
The wave vector k is parallel to the dislocation line and is equal
to m/(2b).

0. 12—

1.0-

-1.0

0.0
K»b / m.

1.0
0.0

—15 —10 -5
FIG. 3. The deep level structure of the unreconstructed 90

partial dislocations as a function of the k parallel to the disloca-
tion line. The shadowed area represents the projections of the
valence and the conduction bands. The dashed lines are the cal-
culated bound (or resonant) electron states at the dangling
bonds of the dislocation core.

ENERGY(eV)

FIG. 5. The local density of the states with an sp hybrid
starting orbital at the dangling bonds of the dislocation core.
The wave vector k is at the border of the one-dimensional Bril-
louin zone and is equal to m. /b.
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The Mott-Hubbard gap between the donor and acceptor
dislocation bands is 0.18 eV.

It has been shown from the experiments on disloca-
tions in real crystals that the length of the regular sec-
tions of the dislocation line is rather small (some tens or
hundreds of interatomic distances). The regular sections
in the dislocations alternate with local defects, such as
jogs, points of intersection with other dislocations, split
sections, etc. In addition some other defects may appear
as impurity atoms, for example, oxygen, located near the
core. That is the reason for which experiments have so
far not succeeded in uniquely ascribing the observed lev-
els to the difterent partials and to clearly decide whether
the levels are associated with the ideal, straight partials
or are due to special points on the dislocation cores.

There are not as many theoretical calculations for ger-
manium ' as for silicon. Veth and Teichler have per-
formed calculations for both unreconstructed and recon-
structed 90 partial dislocations in germanium. Their cal-
culations are based on a semiempirical one-electron
tight-binding scheme with exponential scaling of the ma-
trix elements under deformation. For unreconstructed
90 partial dislocations in germanium they found two de-
fect bands in the lower half of the one-dimensional Bril-
louin zone. The two bands of bound states meet at the
border of the zone. In the case of the reconstructed 90
partial dislocations in germanium these two bands are
widely split and almost completely disappear in the band
continuum.

Present calculations are based on more elaborate
local-basis treatments, especially the interactions with d

orbitals which for the first time have been taken accurate-
ly into account. The interactions with d orbitals are very
sensitive to the changes of the relative positions of atoms.
In the case of dislocations almost every atom is shifted
from its positions in a perfect crystal.

We already pointed out that the low-symmetric recon-
structed cores of partial dislocations without dangling
bonds are energically more probable than the high-
symmetric unreconstructed partial dislocations with
dangling bonds in the core. The comparison of the
present calculation with the results of experiments indi-
cate that it is unlikely that the unreconstructed core
geometry is the true geometry. Thus it would be
significant to see how the two defect bands for unrecon-
structed 90 partial dislocations will shift when a calcula-
tion on reconstructed 90' partials is performed.
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