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A unified framework is suggested for the discussion of anharmonic phonon coupling constants
and anharmanic elastic constants in diamond-structure materials. A summary is given, within this
framework, of those anharmonic constants which have previously been determined experimentally
or theoretically for silicon. New local-density total-energy calculations for X-point phonons in Si
are used to add to this database of known anharmonic constants. It is proposed that empirical mod-

els for interatomic potentials should be constrained to fit this database. A generalized Keating
model which has been fitted in this way, with two- and three-body couplings of third and fourth or-
der, is presented. It can be used to calculate arbitrary anharmonic phonon couplings through
fourth order.

I. INTRODUCTION

Recent years have seen a revival of interest in the de-
velopment of empirical interatomic potentials to describe
structural energies in covalently bonded crystals. Tradi-
tionally, these models have usually been obtained by
fitting to experimental phonon spectra. Examples include
Keating-type models' and the closely related valence-
force-field models, bond-charge models, ' and shell
models. However, these models are only accurate when
the displacements from equilibrium are small enough for
the harmonic approximation to hold. Furthermore, they
are usually ill defined for radical distortions, such as
those involved in defect formation or melting, where the
"nearest neighbors" are not easily identified. Many of
the models proposed recently, on the other hand, are
sufficiently general to handle such cases. ' ' They are
usually fitted to calculated energies for a variety of hy-
pothetical crystal and defect structures, and usually do a
poor job of describing infinitesimal deviations from equi-
librium. For example, phonon frequencies and elastic
constants are often in error by a factor of 2 or more. '

Between the extremes of "infinitesimal" and "radical"
structural changes is an intermediate regime of
"moderate" structural distortions, which lies marginally
beyond the domain of applicability of the harmonic ap-
proximation. This is the anharmonic regime which can
be characterized by third-, fourth-, and higher-order
anharmonic terms in the Taylor expansion of the energy.
While an extensive database has been established to de-
scribe the energies in the harmonic and radical regimes,
the anharmonic regime remains poorly characterized.
Previous attempts to extend some of the harmonic mod-
els into the anharmonic regime' ' have sufFered from
this lack of information, typically containing only one or

a few anharmonic parameters fitted to a correspondingly
small number of experimental results. Eventually it may
be possible to formulate empirical interatomic-potential
models which are able to describe both infinitesimal and
radical structural changes accurately. If so, it seems like-
ly that such models would also provide a good descrip-
tion of the energies in the intermediate anharmonic re-
gime. However, such models are not currently available.

Our purpose here is twofold. First, we summarize
what is known experimentally and theoretically about
this intermediate anharmonic regime for the case of sil-
icon. We also present the results of new local-density
total-energy calculations for X-point phonons, which add
to this database of known anharmonic constants. We ar-
gue that this database should be used as a further con-
straint in developing and fitting model empirical intera-
tomic potentials. Second, we propose a modified
Keating-type model which can describe both the harmon-
ic and anharmonic sectors accurately, up to fourth order
in the anharmonic expansion. This model should prove
extremely useful in the calculation of anharmonic eA'ects

in Si, such as phonon lifetimes and frequency shifts. Of
course, it is not expected to describe radical structural
distortions such as those involving coordination changes.
However, it is hoped that this incremental step beyond
the harmonic regime will contribute to the eventual for-
mulation of a universally applicable model.

In Sec. II we introduce a unified framework for the dis-
cussion of anharmonic elastic constants and zone-center
phonon coupling constants in diamond-structure materi-
als, and review the anharmonic constants which have
previously been determined either experimentally or
theoretically. Section III summarizes the harmonic force
constants for phonons at high-symmetry points in the
Brillouin zone, while in Sec. IV we present the results of
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our new frozen-phonon calculations for phonons at the X
point of the Brillouin zone. In Sec. V, we propose a new
Keating-type force-constant model which has been fitted
to the database of anharmonic coupling constants dis-
cussed above. Finally, Sec. VI contains a summary and
discussion.

'g =6+—E' 2
2 (2.3)

and go over to the Voigt notation e, =e„, e4=2e „
] p Q4 2 Qy etc. Then the total energy per two-

atom unit cell is written in terms of the nine variables

E =E(71„7i2,F3,7)4, 715, 7)e, u, u, u, ) . (2.4)

II. ZQNK-CENTER COUPLING CQNSTANTS

We propose here a unified framework for the discus-
sion of the anharmonic elastic constants and the
Brillouin-zone —center phonon coupling constants in
diamond-structure materials. Actually the elastic con-
stants are also zone-center phonon coupling constants, in
the sense that strains may be considered to be acoustic
phonons in the long-wavelength (zone-center) limit. We
thus focus on the structural degrees of freedom corre-
sponding to long-wavelength acoustic phonons (i.e., uni-
form strains) and long-wavelength optical phonons (i.e.,
rigid relative displacement of the two sublattices, some-
times called "internal strains"). The energy of the crystal
is Taylor expanded in these two quantities, retaining all
terms up to combined fourth order. Specifically, the
coordinates of the atoms in the mth unit cell of the dis-
torted crystal are given by a uniform strain e followed by
a sublattice shift u,

A Taylor expansion is then carried out about g, =0,
0 =0:

CX

E=E'"+E'"+E"'+E"'+ (2.5)

E =EAA+EAO+EOO

EAAA +EAAO +EAOO +EOOO
(3)=

(2.6a)

(2.6b)

EAAAA EAAAO + AAOO AOOO OOOO
(4)—

(2.6c)

Here, E' ' is the harmonic part of the distortion energy
per cell, and E' ' and E' ' are the third- and fourth-order
anharmonic contributions.

It is convenient to separate the contributions at each
order according to the powers of the 7); ("acoustic"
branch) and of the u ("optical" branch) variables

=(1+a)a, —u,
x2 =(1+@)a2 +u, (2.1)

For example, at harmonic order we have

11(gl+ 92+ Q3)+812 9192+ 9193 9293

acting on the equilibrium atom positions

a) =w)+R

a2 =&2+R
(2.2)

+ ,'844(n4+ n—5+716»

EAo =84 (7)4u„+7isuy+7)eu, ),
(2.7)

(2.8)

(2.9)
0

We use the experimental lattice constant a =5.43 A and
take 72 7, =(a /4—)(1,1, 1) for the reference configuration
in Eq. (2.2). Following previous authors, ' ' we use the
Lagrangian strain

Note that 8„ is related to the zone-center optical-
phonon frequency by 2McoLTQ(I )=8, where M is the
Si mass. The terms which appear at third order, in Eq.
(2.6b), are

E~~ = ,'8»1(7)1+7'+—7i3)+,'»12[7)i(7i2+7)—3)+nZ(ni+7i3)+n3(F1+7) ) j

+ 123 919213+28144(91 14+ 9295+ 9396)

+
2 155 [ 91( 95+ 96)+ 92( 94+ 96) + 93( 94+ 95))+8456'94'Vs'Qe

E+AO 8 14 ( 7i 17)4u +7)2/su + 7137/euz ) +845 ( 7]47]su +7)4u 716 + u +57)6 )

+815y I ( 91+ 12)96uz + ( 91+ l3) 95uy + ( f2+ 93) l4

EAoo 2 8 1xx ( 91ux + 92uy + 13uz ) + 84yz( 94uy uz + 95ux uz + 96ux uy )

+ —,'8, [(7i, +7)3)u +(7i, +712)u, +(7]2+7)3)u ],
Eooo B 0 0 0

(2.10)

(2.1 1)

(2.12)

(2.13)

The expressions for the fourth-order terms of Eq. (2.6c)
are given in the Appendix. By convention we include in
each prefactor a factor 1/n t for each variable which ap-
pears to the nth power. Terms which do not appear are

zero by symmetry, as discussed in the Appendix.
It is important to note that the strains above are not

the physical, strains that enter the usual definitions of the
elastic constants, because they are uniform strains which
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do not include any additional relative displacement of the
two sublattices. Let E(rl„rl2, r13, r14, g„r)~) be the energy
minimized with respect to the internal strain variable u at
a given strain g. It can be expanded as

EAA + AAA +EAAAA +
where, for example,

(2.14)

EAA TC11 91+92+ 93)+C12(9172+ 9193+9293)

+ ,' C~(—rl4+g5+res) . (2.15)

The coefficients C that now appear are the physical elas-
tic constants, which are given in terms of the "bare" elas-
tic constants 8 by

C&2 B)2

C4~=B44 —B~ /B

The last can be rewritten

C44 =844+84. I 4.

where

I 4
= —84„/8„

(2.16a)

(2.16b)

(2.16c)

(2.17)

(2.18)

N««hat I,„=—ga/8, where g is the "internal-strain
parameter" introduced by Kleinman, ' and a is the lattice
constant. At third order, C», , C»2, and C,23 are identi-
cal to 8»„8»2, and B&23, respectively, and, using the
above notation,

C]44 —8)44+28)4 I 4 +8] I 4

C)55 =8,55+28$5yI 4x+8 Iyy 4x

C456 8456+ 3845zI 4 +BxyzI 4x

(2.19a)

(2.19b)

(2.19c)

The relation between the physical and bare fourth-order
elastic constants is even more complicated, involving
several of the coefficients from Eqs. (2.11) and (2.12) as
well as I ~„, reflecting in some sense the dependence of g
itself upon strain.

The emphasis here is on the bare coefficients because
they are simpler to treat theoretically. For example, sup-
pose one wants to use total-energy calculations on a series
of strained structures to obtain the elastic constants. To
obtain the bare constants 8 only one calculation is need-
ed per strain tensor considered, while for the physical
constant C several are necessary in order to relax the
structure and eliminate the forces. The use of bare
coefficients is even more important when fitting empirical
interatomic potentials, because such model potentials are
typically given by a sum over terms (e.g. , two body, three
body; first neighbor, second neighbor) with a prefactor
for each term. The bare coefficients are linear functions
of these prefactors, while the . physical, dressed
coefficients are not, and therefore it is much simpler to fit
to the bare coefficients. Thus, it is suggested that the
bare coefficients 8 be obtained from realistic calculations
(e.g. , local-density total-energy calculations) or from ex-

8)
2Bxx ~p

8 iyy q
2Bxx ~p

C4yz r
2Bxx ~p

(2.20a)

(2.20b)

(2.20c)

where internal-strain considerations lead to

periment, and be used as the input for the fitting of
empirical interatomic potentials. That is the approach
taken here.

We now review some previous experimental and
theoretical work which provides values for some of the
coefficients 8 appearing in these equations. Those con-
stants which we consider "known" we collect as a "data-
base" which should be useful for fitting empirical intera-
tomic potentials; this "database" is summarized in the
column labeled "Target" in Table VII in Sec. V. For
consistency, we will express all of these constants in units' lof eV/A, where I is the number of x, y, and z subscripts
of B. Thus, elastic constants (e.g. , B&&&) here have units
of energy, not energy per volume, as is more convention-
al. In general, experimental input is used when it is avail-
able and reliable. Otherwise theoretical input, which
comes from total-energy calculations carried out within
the Hohenberg-Kohn-Sham local-density approximation
(LDA), is used.

The harmonic elastic constants are taken from the
work of McSkimin and Andreatch; they obtain
C] ~

=41 ~ 90 eV, C&2 = 16.23 eV, and C44 =20.07 eV. The
constant 8 „may, with caution, be derived from the
zone-center optical-phonon frequency, giving 8 =55.44
eV (see Sec. III). The internal-strain parameter has been
determined experimentally by Cousins et al. to be
(=0.54+0.04, and theoretically from the LDA calcula-
tions of Nielsen and Martin to be /=0. 53. We have
adopted the latter value. This leads to B~ =19.94 eV/A
and via Eq. (2.16c) to B~~ =27.24 eV.

The third-order anharmonic elastic constants are taken
from ultrasonic propagation measurements of McSkimin
and Andreatch. Because of the complications of
internal-strain relaxation, Eqs. (2.19a)—(2.19c), we only
include in our "known database" the bare constants
8»& =C»& = —206 eV, 8&i2=C&i2 —113 eV, and
8 ]23 C ]23

—16 eV. nielsen and Martin have calculat-
ed C», = —187 eV, C»2 = —120 eV, and C &23

=0 eV,
in good agreement with the experimental values used
here. They also obtain C»» =0 eV and C»,2=800 eV
(which are equal to B»» and B»iz, respectively). As ex-
perimental information on the fourth-order elastic con-
stants appears to be unavailable, these values are adopted
here.

The constants 8
& „,8&, and 84, are related to the

strain derivatives of the zone-center optical-phonon fre-
quencies. Chandrasekhar, Renucci, and Cardona have
measured these Raman shifts, and express their results in
terms of parameters p, q, and r defined in their Appendix
B and related to our parameters via
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(2.21)+4yz B4yz +~4x B~yz

The values they report lead to B, = —80 eV/A,
8, = —106 eV/A, and C„,= —33 eV/A, which we
adopt here. These are in good agreement with the
theoretical values calculated by Nielsen and Martin,
which (after conversion from their s]pp s]]] and y) are

8& „=—90 eV/A, 8& = —105 eV/A, and C4, = —33
0

eV/A . The hydrostatic shift is often expressed in terms
of the dimensionless constant y = —(p +2q)/cop, for
which Chandrasekhar et al. obtain y=0. 89, in reason-
able agreement with other experiment (y=0.98) and
theory ' (y =0.92 and 0.9, respectively). The value for
the bare 8„„—137 eV/A, is obtained from Eq. (2.21).

Finally, the zone-center optical-phonon coupling con-
stants have been obtained from LDA total-energy calcu-
lations of Vanderbilt, Louie, and Cohen. The y, o., and
P of their notation are related to our parameters 8, „

k paint

I
X
X
X
L
L
L
L

Branch(es)

LTO
TA

LAO
TO
TA
LA
LO
TO

Mao
(eVyA')

27.715
2.317

17.442
22.203

1.352
14.804
18.244
24.764

IV. CALCULATIONS OF ANHARMONIC
COUPLINGS FOR X-POINT PHONONS

TABLE I. Harmonic force constants for high-symmetry
points in the Brillouin zone as determined from inelastic-
neutron-scattering data by Boiling (Ref. 29).

8„,=6y, 8 =24a, 8„„=24P, (2.22)

and we obtain the values B,= —290 eV/A,8„„=—1250 eV/A, and 8„„=410eV/A .

III. OTHER HARMONIC COUPLING CONSTANTS

In the preceding section we discussed the zone-center
optical and acoustic harmonic coupling constants B„,
B4, B», B,2, and B44. Before going on to consider other
anharmonic coupling constants, we now brieAy review
the remainder of the harmonic sector, i.e., the couplings
for phonons at k points other than the I point.

Inelastic-neutron-scattering experiments have been
used to determine the phonon dispersion relations for Si
throughout the Brillouin zone. These measured phonon
frequencies are frequently used to derive the harmonic
coupling constants, but this procedure is only valid if
third- and higher-order anharmonic contributions to the
phonon frequencies can be neglected. Estimates for the
zone-center optical phonons in Si indicate that the bare
(harmonic) frequencies ditfer from the renormalized
(physical) frequencies by about l%%uo. Thus, we have pro-
visionally chosen to follow the common practice, and as-
sume that the anharmonic corrections are negligible.
However, it is possible that the anharmonic frequency
shifts may turn out to be proportionally much larger for
other phonons, such as the soft TA phonons at the X
point. It should be possible to calculate these frequency
shifts using the model proposed in Sec. V; work in this
direction is in progress. If some of the anharmonic
corrections do turn out to be important, then it will be
necessary to refine the harmonic coupling constants listed
below.

With the above proviso, we list in Table I the harmonic
coupling constants for phonons at the I, X, and L high-
symmetry points in the Brillouin zone, as obtained from
the neutron data of Dolling. [Recall that the constant
2McoL&o(1 )=8 of Sec. II.] We have found that this is

a large enough sampling of the Brillouin zone for Atting a
force-constant model of the type used in Sec. V.

In order to enlarge the database of known anharmonic
coupling constants for Si, we have carried out frozen-
phonon LDA calculations on the four-atom unit cell
shown in Fig. 1. Note that the coordinate system in Fig.
1 has been rotated by 45 about the z axis relative to the
coordinate system of Sec. II. In this section, x, y, and z
refer to these new coordinates, and the symbol E refers to
an energy per four atom unit -cell. The accessible "zone-
center phonons" of this enlarged cell map either to the I
point or to the X point (2n/a)z of the original Brillouin
zone. Thus, these frozen-phonon calculations allow us to
obtain anharmonic couplings involving both I - and X-
point phonons.

The energy E can be expanded in terms of the displace-
ment vectors u„u2, u3, and u4 of the atoms shown in Fig.
1. However, the three degrees of freedom corresponding
to an overall rigid translation of the cell (the acoustic
branches at I ) do not enter, so it is convenient to write E
in terms of the remaining nine degrees of freedom u, v,
and w defined by

FIG. 1. Geometry of four-atom unit cell used for X-point
phonons.
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U( = U+V+W,

U2= +U+V W ~

(4.1)

TABLE II. Action of the symmetry transformations of the
X-point supercell of Fig. 1 upon the structural variables of Eq.
(4.1).

U3= U V W,

U4= +U V+W

Variable

ux ux ux

C4

uy

(u describes the three optical-phonon branches at I',
while v and w describe the six phonon branches at point
X.) Furthermore, most of the terms in the expansion of E
may be eliminated by the use of symmetry, since E must
be invariant under any symmetry operation of the crystal.
The only symmetry operations which are useful in this
way are those which map the X point along z onto itself;
this excludes some operations, such as threefold rota-
tions, from our considerations. The remaining symmetry
operations are generated by mirror operations M„and
M in the x and y directions, nonsymmorphic inversion I
(e.g., atom 1 —+2, 2~1, 3~4, 4—+3), translation T by the
original primitive lattice vector (e.g. , atom 1~3, 2~4,
3~1, 4~2), and a (nonsymmorphic) 90' rotation C4
about z {e.g., atom 1~2, 2~3, 3~4, 4~1). The trans-
formation properties of the nine quantities defined in Eq.
(4.1) under these symmetry generators are given in Table
II. Any term in the expansion of the energy E must be
invariant under each of these generators. Note that in-
variance under T requires that the X-point variables
{U„,. . . , m, ) must occur an even number of times in any
term, rejecting wave-vector conservation.

A comprehensive search for invariant terms through
fourth anharmonic order results in the following expres-
sions for the expansion of the energy. At harmonic order
we can write

uy

uz

Ux

Uy

Uz

Wx

Wy

Wz

uy

uz

Ux

Uy

Uz

Wy

Wz

uy

uz

vx

Uy

vz

Wx

uz

Ux

Uy

Uz

uy

uz

Ux

Uy—
vz

Wx

Wy

Wz

ux

uz

Wy

Wx—
Wz

Uy

Ux

=Errr +Erxx(3)—

where Er&„=2EQQQ of Eq. (2.13), and

(4.5)

with

+I—,0—,+I
b 0

b (4.6)

to denote a factor u, u, u„u, U, U„m, m, and w„
respectively, and an underline (bar) to denote an even
(odd) linear combination with respect to the interchange
u ~u, u ~m, U ~m, U, ~w, .] The three coeScients
I„,Ibb, and I„are identical to 2McoTo(X), 2McoTA(X),
and 2M'„Ao(X) of Sec. III, respectively. At third order
we obtain the anharmonic terms

E' '=Err+E (4.2)

where Er r is identically equal to 2Eoo of Eq. (2.9) (in-
volving only zone-center optical phonons), and Bbb

=
Uy Mx

2 2

Exx —Iaa Baa+ Ibb Bbb +Icc Bcc

with

2 2Baa= Ux +Wy

(4.3) 0—=U, —m, ,
2 — 2

0 b &yUyUz Qx Mx Wz

(4.7)

Bbb Uy + lDx (4.4) Finally, at fourth order

0„=U21W2

[The subscript notation employs x, y, z, a, b, c, d, e, and f
(4)E =Errrr+Errxx+Exxxx ~

where Errrr =2E&zz of the Appendix,

(4.8)

and

I I XX 2Izzaa z Baa+ 2 zzbb z Bbb +
p zzcc z Bcc +Ixx aa0xx Baa+ xx bb Bxx Bbb

+I„B 0 +I—x 0—„0 +I„—bb 0 Bbb +I——0—„0—,

+Ixyxy +x y Bxy + zxac ~z Bxac + zybc z Bybc (4.9)

EXXXX 2 aaaaBaa+ 2 bb bb0bb +
2 cc cc0cc + aa bb Baa0bb +Iaacc0aaBcc + bb cc0bb Bcc

+Ibb Bbb 0 +Iabde Ux Uy ~x ~y +Icfbe Uz ~z Bbe (4.10)
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The t9's are again defined using the conventions given fol-
lowing Eq. (4.4).

In summary, we see that the additional degrees of free-
dom inherent in the four-atom unit cell allow for the
definition of five new third-order anharmonic constants
(I ... I,&~, I,, , I,—„,an—d I

& ) and 26 new fourth-order
constants.

We have carried out local-density pseudopotential
calculations of forces and total energies in order to deter-
mine three of the third-order constants and five fourth-
order constants. The calculations are carried out using
norm-conserving pseudopotentials ' and Wigner ex-
change correlation with plane waves up to 14 Ry in-
cluded exactly. We considered five frozen-phonon modes
given by (i) u=O, v= w=tz/—&2; (ii) u=w=O, v=tz;
(iii) u=v=O, w=tx; (iv) u=w=O, v=tx; (v) w=O,
—u=v=tz/V2. Modes (i) and (ii) correspond to the
two degenerate longitudinal normal modes at point X,
(iii) and (iv) correspond to the TA and TO normal modes
at point X, respectively, and (v) is a mixed mode having
both I and X character. For each case, we have calculat-
ed forces (more specifically, the quantity BE/Bu ) and to-
tal energies for t =0, +0.04, +0.08, and +0. 12 A using a
set of four k points in the irreducible Brillouin zone.
From Eq. (4.6) above, it is easy to show that the leading
contributions to the quantity BE/Bu, are given by I —t,

I &t, and I—r for modes (ii), (iii), and (iv), respec-
tively. A polynomial fit to the calculated forces then
yields the three third-order couplings to be I —=46.84
eV/A, I,bb= —49. 12 eV/A, and I„,=315.20 eV/A .
In addition, five fourth-order couplings were determined
by extracting the fourth derivative B E/B t from a poly-
nomial fit to the total energies for each of the cases
(i)—(v). From Eqs. (4.9) and (4.10), these fourth derivates
are, respectively, 12I„„, 12E„, 12Kbb, 12K„, and
24E„,where

CC CC CC

+bb Ibb bb + bb bb
(4. 1 1)

K„=—,', I„„+—,'I„„+—,'I„„+—,'I,—,,—, .

The fit of the total-energy results yields I„„=—75.9
eV/A, K„=—97.2 eV/A, E» = 16. 1 eV/A,
K„=66.0 eV/A, and K„=—104.7 eV/A . Clearly it
would be possible to obtain all of the third- and fourth-
order anharmonic coeKcients from a sufficiently sys-
tematic set of frozen-phonon calculations, but for our
purposes the three cubic and five quartic ones obtained
here form a representative sample of adequate size.

V. GENERALIZED KEATING MODEL

Our goal here is to develop an empirical model of the
interatomic forces which can be fitted to the database
developed above. The model should be simple enough to
facilitate the evaluation of third and higher derivatives of
the energy with respect to atomic displacements needed
to calculate anharmonic phonon coupling constants. For
this reason we have chosen a form for the interatomic en-

ergy similar to that of Keating. " However, we have
modified the model so that it more closely resembles a
valence-force-field (VFF) model, specifically the model of
Tubino et al. , whose six (harmonic) force constants do
an excellent job of describing the phonon dispersion rela-
tions throughout the Brillouin zone. We then add
higher-order terms, in order to fit the anharmonic sector
as well.

In the Keating model" the energy of the crystal is ex-
panded in terms of variables which can be written in di-
mensionless form

h;. =x;.x /a&+1 .
(S.l)

(5.2)

With this definition, h," is stationary with respect to bond
length changes at the equilibrium structure. When the
energy of the crystal is expanded in terms of the h, ,

- and
h,", we retain the polynomial simplicity of the Keating
form, but we can more easily make contact with VFF
models which already provide an excellent description of
the harmonic sector.

Specifically, we adopt the form of the six-parameter
VFF model of Tubino et al. , which provides an excellent
fit to the phonon dispersion relations. In our notation,
the energy of the crystal is, for this model,

Here i and j label nearest-neighbor bonds, x, is the "bond
vector" pointing from one atom to its neighbor, and
aK =a/4. (The. term h;1 describes a pair of bonds sharing
an atom; in this case both x, and x point from the shared
atom. ) Both h, , and h; vanish for the equilibrium struc-
ture; the first is a measure of bond stretching, while the
second is a mixed measure of bond-angle bending and
bond stretching. The energy of the crystal is then ex-
panded in a power series in terms of these variables.
Keating has suggested for the harmonic sector a two-
pararneter form' involving coefBcients for h, , and h,
terms, and for the cubic anharmonic sector an additional
three parameters' for h;;, h;, and h, , h; terms. The five
Keating parameters were fitted only to bulk elastic con-
stants, and no convincing justification was given for the
choice of terms retained.

The Keating model has the advantage that the energy
is simply a polynomial in the atomic displacements. For
example, the term h, , in the energy introduces quadratic,
cubic, and quartic, but not higher, terms in the atomic
displacements. This is not typically true of VFF models,
which involve terms like (x; —x; ) and (0;1 —8,.~); the
square roots and inverse trigonometric functions intro-
duce terms at all higher orders in the Taylor expansion of
energy in atomic displacements, and considerably compli-
cate the evaluation of third and fourth derivatives. This
is an important advantage of a Keating-type model when
it comes to evaluating anharmonic phonon coupling con-
stants. However, the Keating model has the disadvan-
tage that the variable h, is not a pure bond-
angle —bending term. We therefore define instead
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E( )= g —,'k„„h;;+ g [—,'kggh; +k„g(h, , +h, )h, +k„„h;,h ]
i &i &j&

+ g kgb(hijh;k+hijhjk+h;khjk )+ g kgg~h;~h;i, .
&i &j &k) &i;j&k)

(5.3)

Here, (i &j ) indicates a sum over all pairs of nearest-neighbor bonds (NNB s) sharing an atom, (i &j & k ) indicates a
sum over triplets of NNB's sharing an atom, and (i;j & k ) represents a sum over chains of three NNB's arranged end
to end, with i sharing one of its atoms with j and the other with k, in a 180' dihedral-angle configuration. The super-
script "[2]"in Eq. (5.3) indicates a set of terms which are quadratic in the variables r and 8 or h;, and h, , but which

may contribute to the third-, fourth-, and higher-order anharmonic energies E' ', E' ', . . . . This expression (5.3) is
identical with the VFF model as far as its contribution to the harmonic Hamiltonian E' ', but dN'ers in its contribution
to the anharmonic sector E' ' and E' '. After appropriate unit conversions and insertions of numerical prefactors, our
parameters k„„,k&6), k, , k„, , k@. , and ke + are identical to the parameters Kz, HA, FzA, Fz, F~., and Fz- of Tubino

00
et aI.'

We now wish to generalize this model to include cubic and quartic terms in h;; and h,". A really systematic generali-
zation including the triplets (i &j & k ) and (i;j & k ) would generate a huge number of terms, whose coefficient would
have to be determined. Instead, we restrict ourselves to terms involving only one NNB or a pair of atom-sharing
NNB s; this corresponds to retaining only nearest-neighbor two-body and three-body interactions in the anharmonic
sector. The parameters k„„,k&&, k„, and k,„.already exhaust all possible quadratic terms in this restricted space of in-

teractions. %'e now systematically include all possible cubic and quartic terms in this space as well:

E( )= g —,'k„„,h;, + g [—,'k„„g(h,, +h j2j)hj+ —,'k„gg(h, , +hjj)h j+ ,'kgggh —j+—,'k„„„(h;,+hjj)h, , hjJ+k„„.gh, ;hjjh,j],
&i &j)

(5.4)

E = g &&krrrrh &&
+ g [ 6 krrrg(h &&

+h . . )hi +
4 krrgg(h &&

+h )h &. + 6 krggg(hei +& )h
&

+ &&kggggh

6 krrrr'( ii +h jj ) ii hjj +
4 krrr'r'h ii h jj +

2 krrr'g( ii + jj )hii hjj ij +
2 krr'gg ii jj h ij ]

(5.5)

It can be seen that this introduces six new cubic parame-
ters and nine new quartic parameters into the model, in
addition to the original six quadratic ones. It is this 21-
parameter model that we propose to fit to the database of
harmonic and anharmonic constants determined in the
earlier sections.

In order to carry out the fitting, it was first necessary
to determine the contribution from each of the 21 terms
in our model potential to each of the 31 constants in our
"database" of known anharmonic coupling constants.
Because the contributions are all linear, the problem

reduces to determining a matrix of proportionality
coefficients, which are given in Tables III—VI. While it is
possible to work out these coefficients by hand, we have
developed an automated procedure for obtaining them,
thereby greatly reducing both the eA'ort involved and the
chances of error.

Specifically, a computer program was written to calcu-
late, for the 21-term model potential, the energy, force,
and stress tensor for a given input geometry. It also cal-
culates the contributions to the energy, force, and stress
due to each of the 21 terms separately (assuming a unit

TABLE III. Matrix of proportionality coefficients relating harmonic properties to second-order pa-
rameters of the generalized Keating model. Units of the coefficients are given in the last column.

Property

LTo(I )

McoTA(X)
McoLAo( X)
McoTo(X)
META(L)
McoLA(L)
Me)„o(L)
Mt@To(L)

&is
&44

84„

17.36
0.00
8.68

17.36
0.00
4 34

13.02
17.36
16.00
16.00
16.00
23.57

30.87
17.36
19.29
1.93
8.68

30.87
0.00

16.40
42.67

—21.33
7.11

—20.95

—34.73
0.00

17.36
—34.73

0.00
17.36
0.00

—34.73
96.00
96.00

—32.00
—47.15

92.61
0.00

23.15
23.15
0.00

23.15
0.00

57.88
0.00
0.00

—42.67
31.43

0.00
0.00

—23.15
0.00

—8.68
0.00
0.00

—8.68
—85.33

42.67
0.00
0.00

61.74
0.00

30.87
0.00
0.00

30.87
0.00

30.87
85.33

—42.67
14.22

—41.91

Units

A
A
A
A
A
A
A
A
none
none
none
A



5664 VANDERBILT, TAOLE, AND NARASIMHAN

TABLE IV. Matrix of proportionality coefficients relating cubic and quartic anharmonic properties
to second-order parameters of the generalized Keating model. Units of the coefficients are given in the
last column.

Property

B112
B
Bxyz

B1

B4y,

zcc

zaa

Bxxxx

Bxxyy
B
B1112
Icc cc

K„
+bb
E„
K„

kr,

0.00
0.00
0.00
0.00

173.65
34.73
69.46

—76.75
—25.58
—25.58
226. 15
75.38
0.00
0.00
9.42

18.85
18.85
18.85
21.20

0.00
0.00
0.00
0.00

246.97
0.00

123.48
—90.96
—45.48
—45.48
1206.15
402.05

0.00
0.00

37.69
35.60
35.60
35.60
75.65

kr,

0.00
0.00
0.00
0.00

—69.46
208.38

—138.92
—51.17

51.17
51.17

1356.92
452.30

0.00
0.00

56.54
37.69
37.69
37.69
80.10

0.00
0.00
0.00
0.00

1018.74
277.84
370.45

—477.56
—136.45
—136.45
3618.44
1206.15

0.00
0.00

75.38
125.64
125.64
125.64
248.14

Units

none
none
none
A
A
A
A
A
A
A
A
A
none
none
A
A
A
A
A

prefactor for each term). One version of the program cal-
culates these energies and forces for a two-atom cell with
a given relative sublattice displacement u and a given La-
grangian strain g, while a second version calculates them
for the four-atom cell of Fig. 1. For the four-atom cell,
the program was subjected to exactly the same set of dis-
placed input geometries as were used in the LDA calcula-
tions of Sec. IV, and the coefFicients of I —,I,&&, I, ,

I««, K«, E», K„,and X„were determined by precise-
ly the same polynomial-fitting procedure (see discussion
in last paragraph of Sec. IV). For the two-atom cell, the
following sets of input geometries were used (only the
nonzero quantities are given): (i) u„= t; (ii)
u =u =u, =t/&3; (iii) g, =t; (iv) rt&=g2=t; (v) 2g&

=2g2=g6=2t; (vi) rt, =r12=r13=t; (vii) 2g, =2g2=2g3
=q~=rt5=rt6=2t For the s.ets (i) and (ii), t ranged from

TABLE V. Matrix of proportionality coefficients relating cubic and quartic anharmonic properties
to third-order parameters of the generalized Keating model. Units of the coefficients are given in the
last column.

Property

B112
B
Bxyz

Blxx

B4y,

zccI—
zbb

I„,
Bxxxx

Bxxyy

B1111
B1112
Icc cc

K„
+bb
K„
It „

krrr

32.00
32.00
32.00

102.33
69.46
69.46
69.46

—51.17
0.00

—102.33
904.61
301.54

0.00
0.00

37.69
75.38
0.00

150.77
84.81

k„„q

0.00
0.00
0.00

818.67
370.45
370.45
277.84

—272.89
0.00

—409.34
12 061.48

4020.49
0.00
0.00

251.28
452.30

0.00
703.59
848.07

k„qq

512.00
0.00

—256.00
0.00

740.90
0.00
0.00

—545.78
0.00
0.00

9649.18
3216.40

0.00
0.00

502.56
804.10
150.77
50.26

879.48

56.89
—28.44

56.89
0.00

164.64
—82.32

0.00
—121.29

0.00
0.00

2144.26
714.75

0.00
0.00

78.18
184.27
25.13

2.79
207.31

krrr'

576.00
576.00
576.00

—614.01
138.92
138.92

—416.76
—102.33

0.00
614.01

1809.22
603.07

0.00
0.00

376.92
452.30

0.00
—301.54

282.69

k„„g

0.00
0.00
0.00

—818.67
740.90
185.23

—277.84
—545.78

0.00
409.34

2412.30
804.10

0.00
0.00

50.26
603.07

0.00
—402.05

490.00

Units

none
none
none
A
A
A
A
A
A
A
A
A
none
none
A
A
A
A
A
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TABLE VI. Matrix of proportionality coefficients relating quartic anharmonic properties to fourth-order parameters of the gen-
eralized Keating model. Units of the coefficients are given in the last column.

Property

Bxxxx

Bxxyy

B1112
Icc cc

K„
Kbb

K„
K„

krrrr

301.54
301.54
64.00
64.00
12.56
25.13
0.00

100.51
28.27

krrre

3216.40
3216.40

0.00
0.00

67.01
134.02

0.00
268.03
234.53

krree

6432.79
2144.26
2048.00

512.00
335.04
603.07

0.00
67.01

628.20

5718.04
0.00

910.22
—113.78

208.47
461.61

0.00
7.45

534.20

953.01
0.00

227.56
—113.78

42.19
80.66
25.13
0.31

89.50

krrrr'

—2412.30
—2412.30

1536.00
1536.00

100.51
201.02

0.00
—804.10
—25.13

krrr'r'

5427.67
603.07

1152.00
1152.00
226.15
150.77

0.00
603.07
320.38

krrr'e

9649.18
—3216.40

0.00
0.00

201.02
804.10

0.00
0.00

954.87

krr ee

6432.79
—2144.26

2048.00
512.00
335.04
536.07

0.00
0.00

586.32

Units

A
A
none
none
A
A
A
A
A

—0. 12 to 0.12 A in increments of 0.02 A, while for sets
(iii) —(vii) t ranged from —0.3 to 0.3 in increments of O.OS.
Polynomial-fitting routines were used to obtain the first
through fourth derivatives of the energy, and the first
through third derivatives of the forces and stresses, with
respect to t, for each set and for each of the 21 terms in
the potential model. (Double-precision arithmetic was
used throughout, and we have checked that the numeri-
cal and polynomial-fitting errors are negligible. ) The re-
lation between these derivatives and the anharmonic con-
stants (the B's) follows from the expressions given by Eqs.
(2.6)—(2.13) and in the Appendix. For example, for case
(i) it follows that BE/Bu, =B t + ,'B,„„t, BE/—Bu

(Here o „.. . , o.
6 is the stress in Voigt notation, e.g. ,

o, =cr „,o4=o, .) In order to obtain similar expressions
reliably for all cases (i) —(vii), we have used the symbolic
manipulation program SMP. The cases (i)—(vii) are
sufficient to determine (redundantly in many cases) all of
the 15 B coefficients. Finally, a third version of the pro-
gram was written to calculate phonon frequencies at arbi-
trary wave vectors at the equilibrium geometry, and was
used to determine the coefficients of the phonon frequen-
cies McoLTo(I ), . . . , McoTo(L). We have checked this
procedure carefully in many ways, e.g., by verifying that
redundant determinations agree and that terms which
should vanish do so, and by calculating some representa-
tive coefficients by hand.

Once the coefficients of Tables III—VI are in hand, it is
straightforward to carry out a linear least-squares-fitting
procedure to determine the 21 parameters that enter into
our model potential. This was done in three stages.
First, the six quadratic parameters (k„„,. . . , k s+) were

determined by fitting to the 12 harmonic constants
[McoLro(I ), . . . , Bi&] using Table III. Second, the six
cubic parameters (k„„„,. . . , k„„s) were determined by
fitting to the nine third-order anharmonic constants
(Biii, . . . , I„) using Table V, after accounting for the
contributions from the four quadratic parameters
(k„„,ksz, k„„., k„s) using Table IV. Finally, the nine quar-
tic parameters (k„„„„,. . . , k„„z&) were determined by
fitting to the nine quartic anharmonic constants
(B„„,. . . , K„) using Table VI, after accounting for the

TABLE VII. Comparison of target values (from Secs. II and
III) and fitted values (from generalized Keating model) of har-
monic and anharmonic properties of Si.

Constant

m~2„TQ(r)
META(X)
~~LAQ(X)
McoTQ(X)

M~LA(L)
Af COLQ( L )

McoT2 (L)

B12
B44
B4

B»2
B12
Bxyz

B1 „
Blyy
B4y,

zcc

Izbb

zaa

Bxxxx

Bxxyy
B
B1112

Icc cc

K„
Kbb

K„
Kzc

Weight

1.22
16.67

1.75
1.04

25.00
1.28
1.08
0.99
2.50
2.50
2.50
2.50
0.25
0.25
0.25
0.10
0.25
0.20
0.50
1.00
1.00
1.00
0.10
0.10
0.10
0.10
0.50
0.50
0.50
0.50
0.50

Target

27.72
2.32

17.44
22.20

1.35
14.80
18.24
24.76
41.90
16.23
27.24
19.94

—206
—113
—16

—290
—80

—106
—137

47
—49
315

—1250
410

0
800

—76
—97

16
66

—105

Fit

27.50
2.38

17.39
21.22

1.30
12.74
17.83
24.47
42.29
15.98
26.99
20.37

—210
—105
—19

—285
6

—112
—153

54
—29
313

—1233
410
132
800

—127
—102

16
66

—96

Units

eV/A
eV/A
eV/A
eV/A
eV/A
eV/A
eV/A
eV/A

eV
eV
eV

eV/A
eV
eV
eV

ev/A
eV/A
eV/A
eV/A
eV/A
eV/A
eV/A
eV/A
eV/A

eV
eV

eV/A
eV/A
eV/A
eV/A
eV/A

contributions from the quadratic and cubic parameters
(k„„,. . . , k„„ti) using Tables IV and V. (The quartic fit is
not perfect because the 9 X 9 matrix of Table VI is actual-
ly rank deficient, with rank of 7.) The weights used in the
linear least-squares fitting are listed in Table VII; those
for the phonon frequencies were obtained from the exper-
imental error estimates, while the others were some-
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what arbitrarily chosen in a manner designed to reAect
the magnitude of the anharmonic constant to be fitted.
For the most part, the fit is rather insensitive to the
choice of these weights (but see below). The resulting
fitted parameters are listed in Table VIII.

The quality of the fit of the harmonic sector is excel-
lent, as can be seen from the first 12 lines of Table VII,
despite the fact that it is highly overdetermined (six pa-
rameters for 12 constants). The fitted parameters (first
six lines of Table VIII) are very close to those obtainable
from Tubino et al. The fits of the cubic and quartic sec-
tors (rest of Table VII) are also generally good, with the
exception of the third-order quantity B&„„which corre-
sponds to a certain strain derivative of the zone-center
optical-phonon frequency. By adjusting the fitting
weights, it is possible to reduce the fitting error for Bi„„
significantly, but only at the expense of introducing
significantly larger errors into the X-point phonon cou-
pling constant I,—.The latter was deemed more impor-

tant for potential applications such as calculation of
optical-phonon lifetimes, for which processes involving
one zone-center optical phonon and two acoustic pho-
nons in the vicinity of the X point are quite typical.
The difFiculty in obtaining a fully satisfactory fit can
presumably be traced to the fact that only nearest-
neighbor two-body and three-body terms are included in
the Keating-model energy. Further-neighbor interac-
tions may be important; these could have their physical
origin in long-range Coulomb forces, in which case a
model which includes such Coulomb forces might
provide a better fit. However, our model has the advan-
tage of simplicity, and the overall quality of the fit in
Table VII is quite good.

VI. SUMMARY AND DISCUSSION

We have developed a fairly extensive database consist-
ing of 31 harmonic and anharmonic elastic and phonon
properties for Si. This database should be useful in devel-
oping and fitting empirical interatomic potential models.
Two classes of models are anticipated: (i) general models
for evaluating total energies and forces, e.g. , for use in
molecular-dynamics simulations, and (ii) models designed
for use in calculating anharmonic phonon interactions.
For case (ii), it is important that the functional form of
the model facilitate the calculation of third and fourth
derivatives of the energy with respect to lattice displace-
ments. We have proposed a 21-parameter Keating-type
model of this kind. Ideally, of course, one hopes that a
model which captures the essential physics should be able
to fit the database of harmonic and anharmonic constants
with a much smaller number of parameters. Models
which include Coulomb forces, e.g. , bond-charge mod-
els, ' would be interesting candidates for investigation in
this respect. However, for the purposes of case (ii) such
models may not turn out to be appropriate, as the analyt-

TABLE VIII. Values of fitted parameters of the generalized
Keating model. All units are in eV.

Parameter

krr

kee
krr

k„e
kee

ee 4fc

krrr

k,„e
k.ee

keee
krrr'

k„re
krrrr

krrre

krree

kreee
keeee
krrrr'

krrr'r'

krrr'e

krr'ee

Value

1.369
0.137
0.030

—0.077
—0.013

0.124
—3.684

0.278
—0.249

0.267
0.035
0.140
2.465

—1.419
1.749

—2.095
0.987

—0.275
0.484
0.698

—1.007
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ic calculation of higher derivatives could be quite
cumbersome.

A natural extension of the present work would be to
other tetrahedrally bonded semiconductors, such as Ge,
C, and GaAs. Unfortunately, the database of known
anharmonic constants is smaller for these materials than
it is for Si. Further experimental work and LDA calcula-
tions could remedy this situation. In the meantime, it is
suggested that the current model could tentatively be ex-
tended to Ge and C by using the quadratic constants of
Tubino et al. for the harmonic sector, and scaling the
cubic and quartic parameters of Si following the scaling
relations noted in Vanderbilt et al. The extension to
polar semiconductors such as GaAs is of considerable im-
portance and poses interesting challenges.

APPENDIX

The terms which appear at fourth order in the Taylor expansion of the energy, Eq. (2.6c), are
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AAAA 24 1111( ll 12+ 13)+ 6 1112[ 71( 12+73)+ 72( 71+773)+773( 71+72)]

+ 4 1122( 7172+ ll 13+72 13)+ p 112371 /273( 71+ 72+ 73)+ 4 1144( /174+ 1275+73 76)

B1155[ 71( 15 76)+72( 74+ 76)+73( 74+775)l

+ 2B1244[ 7174( 72+ 73)+7275( 71+ 73)+73 76( 11+ 12)]

+
2 1266( /17276+ f17375+ f273 74)+B1456( 71+ 12+73) 14 ls 76

+ —, B4444(774+775+776)+ —B4455( 774 775+774776+ 75 16)

AAAO ZB114»( 1174 x + 1275uy + 13 76uz )+ zB llsy[( 71+ 72) 76uz+ ( 11+73)75uy+( 72+73) 74 x ]

+B,24» [771774ux (772+ 773 ) +772775uy ( 771+ 73 ) + l3776uz (771+772) ]

+ 126z( 71 12 16 z+ l17375 y +72 7374 x )+ 156»( /175 76 x + 12 14 16 y+ 7374 ls z )

+B,45z [(77, + 772)774775uz+ (77, + 773 )774776uy + (772+ 773)775776ux ]+ ,'B444» (—774ux+775uy +776uz )

+ 'B44s—[( 74+ le)7lsu +(774+77')776u, +(7ls+716)714u ],
EAAOO —'B11„„(77—1ux+772u +773uz )+ 4B1lyy [77,(uy +u, )+772(u„+u, )+773(u»+ uy )]

+
2
B 12»x [77 1 ( 72 + 77 3 )u x + 772( 77 1 + 773 )uy + 773 ( 77 1 + 772 )uz ]

+ ,' B12z, (7717—72uz + 771773uy + 772773u, ) +B,4yz (77,774uy uz + 77277 su» uz + 773776ux uy )

+B 1 5„,[(771+773)775ux uz + (711+712) 776uxuy + (712+713)774uy uz ]

+ ,'B44„„(77—4u,+775u +776u, )+ ,'B44 [774(—u +u, )+775(u +u, )+716(u„+u )]

+B45„(774775u„u +774776u u +77577eu u )

EAooo =B,xyz ( 77, +772+ 773 )ux u
y u, + 6

B4»xx ( 774u » + 775u@ +776uz )

+2B4„[774u,(uy+u, )+ 7u75(u +u, )+77eu, (u +u )],

(A1)

(A2)

(A3)

(A4)

(A5)

The terms retained above are the only ones allowed by
symmetry. They have been enumerated by systematically
considering all possible terms and symmetrizing them
with respect to a set of generators of the rotational sym-
metries of the crystal. A convenient set of generators is

I M My M M y C3 I . Here M is the nonsymmorPhic
mirror operation which takes x ~—x and interchanges
atoms 1 and 2, so that u ~—

uy7 uz + uz7 +5~ Q5p

and 776 —+ —
776 (with the others, e.g. , u, unchanged), and

M and M, are defined analogously. M is the sym-
morphic mirror operation which takes x+-+y and there-

uy Q f~ Q2, and g4~g, . Finally, C3 is the sym-
morphic 120 rotation which takes x —+y ~z and there-
fore u„~u —+u„g &

—+q2 —+ g3, and g4~ g5 ~q6. For
example, the term u„g4 when symmetrized under C3 be-
comes (u 774+ uy775+u, 776), which is then invariant with
respect to M„, M, M„and M„and is therefore an al-
lowed term. However, the term u„q& when symmetrized
under C3 becomes (u„77, +uy772+ u, 773), which is odd un-
der M, (i.e., it vanishes when symmetrized with respect
to M ), and it is therefore not an allowed term.
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