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Superoperator theory of high-field transport for an electron-phonon system
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We have developed a quantum-statistical theory of high-field transport based on Tani's theory of
nonlinear response. An exact closed-form expression for a steady-state nonlinear current is ob-
tained in Ohm s-law form, from which a field-dependent dc conductivity is defined. This conduc-
tivity formula is of a form similar to the Kubo formula in the linear-response theory, but is depen-
dent on the field. We present a resolvent superoperator approach for the evaluation of this field-
dependent conductivity (i.e., a field-dependent current-current correlation integral formula) of an
interacting electron-phonon system. The nonlinear effects due to the presence of a high field are
rejected directly in the self-energy superoperator. The field-dependent conductivity is expressed in
terms of a self-energy superoperator and an expression is obtained for this temperature- and field-
dependent quantity. In this approach "collisional broadening" and the "intra-collisional-field
effect" appear quite naturally. These quantum effects are illustrated by the phenomena of the level
broadening due to the relaxation and the accelerating effects.

I. INTRODUCTION

The transport of electrons in very large electric (and
magnetic) fields has recently been one of the subjects of
numerous theoretical and experimental investigations'
due to the remarkable advance in the techniques of crys-
tal growth and device processing which affords a new
type of conduction mechanism in small solid-state struc-
tures, those having a submicrometer dimension. When
the energy absorbed from the field is comparable to the
characteristic phonon energies, the electrons become hot.
Under such extremely nonequilibrium situations, the va-
lidity of the semiclassical Boltzmann equation, on which
most theoretical studies are based, is questionable. Since
high fields alter basically the quantum states of carriers
and their energy spectrum, a complete quantum descrip-
tion requires a theory of model based on quantum-
transport theory, which differs from the Boltzmann type
of model. Many theoretical attempts, both analytical
and numerical, ' have been made toward developing a
high-field —transport theory which would be capable of
including a variety of high-field effects as well as bulk and
interface properties in submicrometer structures.
Through these intense theoretical studies, new phenome-
na of high-field transport are indeed predicted. Among
these, "collisional broadening" (CB) and the "intracol-
lisional field effect" (ICFE), originally predicted by Bark-
er in an effort to derive the steady-state Boltzmann
high-field equation, have perhaps attracted most of the
attention.

In this paper, we shall present a first-principles high-
field quantum-transport theory based on the framework
of Tani's theory of nonlinear response, which could,
in principle, account for a wide variety of high-field prop-
erties such as CB, ICFE, and for magnetophonon effects,
and intervalley scatterings under intense electromagnetic
fields. Based on the method of Tani, the closed-form for-
mal expression for the steady-state current in Ohm's-law
form with a field-dependent dc conductivity will be de-

rived. The purpose of the present paper is to show how
these effects (CB and ICFE) are formulated into the for-
mal expression of the field-dependent dc conductivity
without recourse to a relaxation approach ' used in the
quantum-transport theory when it is applied to an in-
teracting electron-phonon system, and to show a detailed
method of practical calculation of this field-dependent
conductivity.

Our method is based on the resolvent formalism ap-
plied to quantum-statistical theory. Although one has to
work in a superspace of operators, the use of superopera-
tors in the theory of high-field transport does offer a dis-
tinct advantage in the fact that characteristic "gain-loss"
relaxive structure associated with nonvanishing vertex
corrections and the effect of the field within a collision
process are built into formalism in a simple fashion. This
gives "collisional broadening, " which is normally includ-
ed in a phenomenological way, and the spectral density is
dependent on the electric field since CB is induced from
the scattering processes in which the effect of the field
within a collision is taken into account in the present
theory. Therefore, the spectral density contains informa-
tion about the "intracollisional field effect" and other
transport properties of the carriers influenced by the
strong electric (and magnetic) fields as well as by scatter-
ers (phonons). We employ a factorization approximation
for the equilibrium statistical operator [Eq. (2.20)] and
calculate the field-dependent current correlation function
[Eq. (2.16)] using the grand-canonical distribution for the
electrons and the canonical distribution for phonons.
Thus, any collision process between an electron and pho-
nons is assumed to take place in the average field of the
phonons. The effect of such a field is to induce perturbed
single-particle energies and to introduce lifetimes (which
have a dependence of the field) for the electron states.
The lifetime broadening due to interactions and the field
is, for example, responsible for the spectral broadening of
the line shapes and can be studied by examining the real
part of the conductivity tensor. The part of the broaden-
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ing due to ICFE is, in practice, ignored in the low-field
transport theory. We relate the field-dependent conduc-
tivity to a self-energy (or collision) superoperator. Hence
it is important to provide a general expression for the
temperature- and field-dependent self energy. In this pa-
per we show how to do this in a self-consistent manner.
The theory is developed independently of the single-
particle representation, and hence can be applied ir-
respective of the system studied. In particular, it is valid
for systems subject to a constant magnetic field and the
differences due to B arise only at the final stage of calcu-
lation.

This paper is organized as follows. In Sec. II, we first
derive the closed-form expression for the steady-state
current in the Ohm's-law form with a field-dependent dc
conductivity in the framework of Tani's theory of non-
linear response. Based on the expression, the field-
dependent Kubo-type conductivity formula is obtained,
and is applied to the special case of an electron-phonon
system modeled by Hamiltonians given by Eqs.
(2.1)—(2.3), and the general theoretical method of its eval-
uation is outlined. The one-electron field-dependent
resolvent superoperator is given in terms of a simpler
effective one-electron field-dependent resolvent RF . This
depends on the field-dependent self-energy (or collision)
superoperator XF, which is defined at the outset unlike
previous theories ' which are based on the perturbation
expansion of the resolvent superoperators and hence de-
pend heavily on the potential and the field strengths.
Here we see the effects of the fields in the relaxation pro-
cesses (ICFE) are included in XF and so the collisional
(lifetime) broadening (CB) due to the scatterings and the
applied fields are formulated in the theory. In Sec. III,
the general technique for dealing with superoperators is

briefly presented. The general expression for the
temperature- and the field-dependent self-energy is evalu-
ated to lowest order in the electron-phonon interaction.
Using this expression, we shall obtain the field-dependent
conductivity formula for an electron-phonon system. In
the last section, a summary and concluding remarks are
given.

II. FORMAL PRELIMINARIES

A. The model Hamiltonian and the exact
6eld-dependent static conductivity

operators, yq [=C(q)exp(iq r)] is the screened interac-
tion (one-electron) operator, and A, is a dimensionless ex-
pansion parameter which is set equal to 1 later on. It is
noted that potential form C(q) depends on the type of in-
teraction. Here, H„],stands for the phonon Hamiltonian
and co is the frequency of a phonon. The energy opera-
tor h, represents the electron Hamiltonian in the one-
band approximation with an allowance for a magnetic
field B (=V X A).

To derive a closed-form expression for the steady-state
nonlinear current (and hence the nonlinear conductivity
tensor), we consider the case where a uniform static elec-
tri'c field F of arbitrary strength is applied adiabatically
from an initial time t = —Oo. The disturbance of the sys-
tern due to the applied field is then represented by the ad-
ditional Hamiltonian

HF=eR F=g er'" F=ghz" .
I 1

(2.5)

The density matrix p(t) of the disturbed system follows
the equation of motion (Liouville equation):

Bp(t)
i A = [A'+HF(t)]p(t) .

at
(2.6)

Here carets denote the commutator-generating supero-
perators upon acting on ordinary quantum operators
such that

OA—:[O, A]=OR —AO . (2.7)

In common with other approaches, the starting point is
the solution of the Liouville equation (2.6) for the time
evolution of the density matrix. Before we turned on the
field, the system was initially in equilibrium state at a
temperature T [=(kiip) ']:

p( —~ ) =p,q(H)

=exp [P(gN —H )]/Tr I exp [P(gN H) ]I, (—2.8)

where g is the chemical potential and N is the electron-
number operator. At any later time, the time evolution
of the density matrix may be described by

HF(t)=eF R exp(et/fi)=HFexp(ct/fi), 0&a «1,
(2.4)

where —el is the many-electron polarization operator
and H„is given by

We consider an electron-phonon system characterized
by the following time-independent Hamiltonian: P(t)=P q+P'(t), (2.9)

H =y h'"+H,„,
1

(

h'"=h'"+A V'"=h(')+A, ~ ( '"b + '"b )e e

q

H „=g iiicoq( b qb q
+ —,

' ),
q

(2.1)

(2.2)

(2.3)

where h, is the single-particle energy operator,
V=+(y b +qyqbq) is the interaction potential between
an electron and a phonon with momentum q, b and bq
are, respectively, the phonon annihilation and creation

dp'(t)/dt+(i /)i(hH +8~) p(t) = —(i/A)D~p, q
.

It should be noted that we keep the term (i /fi)HFP'(t)
since the electric field is not necessarily small and so Eq.
(2.10) is exact. Noting that dp, /dt =0 and p'( —~ ) =0,
we have for the steady-state density matrix p, at t =0 by
switching adiabatically on the perturbation (2.4) from an
infinite past a solution as

(2.10)

in which p'(t) represents the deviation from equilibrium
ensemble p, q

and is not necessarily small. Equation (2.6)
is thus reduced to
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p, =p, + lim f dt[H+H~(t)]p(t)
l E~0 OQ

] . 0=p,q+ . hm dt exp(et /fi)exp[i(H +HF )t /A]HFP,i%, 0+

The total steady current is then exactly obtained from

( J) =Tr(p, J)
= lim f dt exp( —Et/A') f dP& Tr[p,qJ( —ifiP&~H)J(t H+Hz)]F,

c-0+ 0

(2.11)

(2.12)

since Tr(p, J)=0. Here the symbol Tr denotes a many-body trace. To derive Eq. (2.12), we have used the Kubo identi-
21

p 4

HFP«= —p,q d/3, e xp(P, H )H~exp( P,H )—

=p,q f dP, J( —i', ~H) F
0

with the relation

H~=eR. F= —J-F= — j -F .(&)

l

(2.13)

(2.14)

Here the overhead dot denotes a time derivative. It should be noted that J(t~H) is a total current operator in the
Heisenberg picture:

J( t
~
H ) = exp( iHt /iii )J exp( iHt /fi ), J—=g j'",

l

(2.15)

where j is a single-electron current operator in the one-hand approximation and is defined by the velocity operator mul-
tiplied by the electric charge —e. It should be noted that Eq. (2.12) expresses an autocorrelation function of the field-
dependent current operator J(t ~H+HF ) and the zero-field form of the extended current operator J( i fi13~H ), w—hich is
obtained with substitution for t = ifiI3 in Eq. (2—.15). From Eq. (2.12), the formal expression for the generalized (exact
field-dependent) conductivity tensor o„,(F, ) may b. e defined through (J„)/0=0.„,(F, )F, (r, s =x,y, z) as

cr„,(F, )=Q ' lim f dt exp( Et/A') f—dP, Tr[p, J, ( ikI3, H)J—„(t~H+Hz)] (2.16)0+- 0

where 0 represents the volume. It should be noted that Eq. (2.16) is a functional of an applied field F. The linear con-
ductivity is readily found by taking the Ohmic limit F—+0 in Eq. (2.16) to give the Kubo formula for the static con-
ductivity. Equation (2.16) has an exact inclusion of the field —which has more physical relevance in a nonlinear region
or for large fields, and hence can be applied to the study for high-field quantum-transport problems. Let us introduce
the fictitious Hamiltonian H:H —u J (u is—a c-number vector). The further simplification is effected by utilizing an
identity:

(2.17)d &p,„HJ —ih &H =lim p,„H
0 u~0 BQ&

Substituting Eq. (2.17) into (2.16), the field-dependent conductivity formula (2.16) is reduced to a more compact form:

o „,(F, ) = lim lim
-0+ -0 au

' f dt exp( st/ i)Tirr—[p, (H)J„(t~H+HF)]
0

(2.18)

where p, (H) is given by replacing H by H in Eq. (2.8).
So far we have made no approximation to derive Eqs.
(2.16) and (2.18), which will be used in the study of high-
Geld transport.

B. Evaluation of a.„(I',)
In the following, we will show a detailed method of

practical calculation of the field-dependent conductivity
(2.18) for an electron-phonon system modeled by the
Hamiltonians (2.1)—(2.3). We assume that the phonons
are distributed all the time according to the canonical
distribution law:

I

Pph Pph( ph )

—:exp( PH h
)/Tr'""'[ex—p( PHph )], —(2.19)

and further assume that the following factorization is al-

p,q(H) =pzh(H&h)SP g h' ' —u J (2.20)

In Eq. (2.19), the symbol Tr'i'"' denotes a trace over pho-
non coordinates. This is equivalent to the assumption
that the phonons are part of the heat reservoir for the
electron system and are in contact with another huge
heat reservoir. Therefore the system we consider here is
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one in which phonons are always in thermal equilibrium
with the outer world, so that the phonon (lattice) temper-
ature is being kept constant. This means that the amount
of energy which is transferred to the lattice from the con-
duction electrons is quite small, so that the disturbance to
the lattice through the interaction with the electrons is
negligibly small. Therefore, this assumption is likely to
be valid as long as the system has a low density of elec-
trons, such as in a semiconductor. The approximation
(2.20) and the assumption made for phonon distribution
(2.19) are almost certainly invalid for a metal and for the
extremely high-field regime where the effects of none-
quilibrium heating of the phonon populations take place.

I

In fact, experiments on hot electrons are usually per-
formed under conditions that keep the lattice tempera-
ture practically equal to the original one during the time
of measurement. Hence we will content ourselves with
the ansatz' ' ' made for p, to obtain the approxi-
mate expression for the nonlinear conductivity (which,
however, retains the field dependence exactly).
Refinement of the theory and a pure many-body treat-
ment will be left for future investigation. Substituting
Eq. (2.20) into (2.18), the many-body trace Tr collapses
into tr Tr' "' and the exact field-dependent conductivity
formula (2.18) can be expressed in terms of a single-
electron trace (denoted by tr) as

cr„,(F, )= lim lim 0 ' J dt exp( —ct/A')tr[j„(exp[ —i(foz+AV+H„i,)tlat]f )zi, Ia 0
(2.21)

where ho+ is defined by

hoF =h, +hF =h, +er.F, (2.22)

and the angular brackets ( ) i, denote the averaging over the phonon states, and f is the Fermi-Dirac operator
given as

f—= I exp[/3'(h, +A, V —u j—g)]+II (2.23)

where I3 =—(kii T, ) and r, is the electron temperature. It should be noted that the formula (2.21) is valid providing H
does not include the Coulomb interaction. The integral in Eq. (2.21) can be easily performed and the nonlinear conduc-
tivity can be written as

a„,(F, )= iA lim—[0 'tr(j„f~)],
g~o

where

(2.24)

fz ——lim (i f dt exp( st)exp[ —i—(ho&+A, V+H„i,)t]f )~i,
U~O C) Qs 0

= lim ((h 0+Hp +iAV is) , 'f—)pi,
U~O 0QS

(2.24a)

As can be seen from Eqs. (2.24) and (2.24a), evaluation of o „,(F, ) is reduced to a calculation of the phonon-averaged
(one-electron) quantum-statistical operator fz defined in the Laplace-transformed space, viz. ,

fz= lim ((foz+H „+XV—is) 'f ) i, = lim (Rzf ) 1,
U~O Qs u~o BQs

(2.25)

where the field-resolvent superoperator is defined by

RF ——(hoF+H i, +A, V is)— (2.26)

t

where the effective one-electron field-resolvent supero-
perator R~ and the field-dependent collision (or self-
energy) superoperator Xg are, respectively, defined by

Here the complete transport kinetics of electrons under
the influence of the field is embodied in f~ given by Eq.
(2.25).

Rg—:(fo~+ H pi, +Xg i c)—
r, = —X'( VR, V),„, (2.28)

(2.29)

C. Evaluation ofJ„
In order to evaluate f~, let us consider the following

identity: RF RF RF (XF A, V)R~ (2.30)

where a superscript "D" means dressed. From Eqs.
(2.26) and (2.28) we obtain

af~= lim (,RFf )„1, so that the field-resolvent superoperator R~ can be ex-
pressed in terms of the effective one-electron field-
resolvent superoperator RF by applying the resolvent ex-
pansion method. By successive iterations using Eqs.
(2.29) and (2.30), we can express Rz as an infinite series in

(2.27)
a= lim [(R~f ) 1, + t, (R~ R~ )f ) i,]-a
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terms of RF . Thus, we can write RF as

RF=R~ g [(Xg—
A, V)R~]"

n=0

+O(A, ) . (2.31)

—gRp+VR +g (RFDVR VR —R D( VR Dv) R D)
ph F

Here and hereafter, the = sign means as asymptotic
equality, such that the right-hand side is equal to the
left-hand side in the bulk limit. By making use of this ex-
pression and Eq. (2.29) and noting that any term with an
odd number of Vs is zero in the phonon-averaging pro-
cess since V is nondiagonal in the phonon quantum num-
ber (note that V is a bilinear function of bq and bq [see
Eq. (2.2)]), we obtain XF as

&F= —~ ( VRF) b= —& ( VRF g [(Xg—A, V)Rg]"V)
„

n=0

= —A, '(VRy~V), „A4[(—VRDVRDVRDV)„„(VR—(PR P') „R f') „]+O(A,') (2.32)

We should emphasize here that these series for RF and
X+ are not the conventional perturbation expansions ' '

and that, in general, we expect the convergence to be
quite rapid even for strongly interacting systems. The
reason for this is that the effects of the interaction are in-
cluded in the denominator of RF . This also has the effect
that the term-by-term divergences experienced in the usu-
al perturbation theory are circumvented. The operator
X~ defined by Eq. (2.29) is similar but not identical to the
corresponding operator defined in diagrammatic terms in
the previous theories. ' ' To second order in Eq. (2.32),
these operators are the same but there are differences in
fourth and higher orders. It should be noted that the col-
lision (or self-energy) operator defined by Eq. (2.29) [and
hence Eq. (2.32)] depends on the field. Physically the in-
clusion of the field in the collision operator accounts for
the intracollisional field effect, i.e., the accelerating effect
of the electric field within a collision event. Substituting
Eq. (2.30) into (2.27), Eq. (2.27) can be expressed as

f~=(6 ~O+XF i E) 'M~—, (2.33)
where an operator MF is given by

M —= li [(f) „+((2—
A, V)R f )„1,]

u~0 BQ~

= lim [(f)„„—A, ( VRF f )~i,
O BQ

+x'(( vR, vR, j )
„„

—( ( VRF V) „RFf ) i, )+O(A, )]

(2.33a)
Here we have used Eqs. (2.31) and (2.32). Finally, we
must take account of the initial correlations which arise
originally from the presence of the scattering potential V
in the equilibrium density matrix p,„and hence from f.
For weakly interacting systems, we can determine f by
means of a perturbation expansion. By using the residue
theorem, we can express f as

f= J dz f(z)(h, +Xv —u j—z)
2m'

where f(z) and G, are, respectively, defined by

f(z) = [exp[P'(z —g)]+1I
G, =(h, —u j—z)

(2.34a)

(2.34b)

It should be noted that the nondiagonal terms of nonadi-
abatic nature of the scattering potential arising from f
are contracted after substituting Eq. (2.34) into Eq.
(2.33a), whence only initially correlated terms with an
even number of Vs survive the phonon averaging process
in MF [in Eq. (2.33a)]. We have developed a prescription
of a method for the practical evaluation of the nonlinear
conductivity tensor for an electron-phonon system. We
would like to emphasize that our results are exact in the
bulk limit other than the assumption, which is justified
for the statistical operator p, [Eq. (2.20)]. It should be
stressed that the formulas obtained so far are developed
independently of the single-particle representation (posi-
tion, momentum, Landau, Stark ladder, or other) and can
be applied for a system subjected to a static magnetic
field. The operator equation (2.33) along with Eqs. (2.32)
and (2.33a) forms the basic equation for further treat-
ments of the high-field transport problems. Barker also
obtained a similar expression (2.33) but its internal struc-
ture is different in higher-order terms. So far we have not
mentioned anything about the field strength. If the ap-
plied electric field is suSciently weak, we may further ex-
pand o(F) in terms of the field. With increasing field
strength, the nonlinear characteristics of the response be-
come more important and an expansion in powers of the
field becomes less suitable. Therefore it. is desirable to
derive the formulas available for computing cr(F) which
is valid for all values of the electric field. To evaluate the
nonlinear conductivity tensor (2.33) without expanding in
powers of an electric field, one must choose an appropri-
ate representation for an electron state. We shall use a
representation in which the Hamiltonian hoF (=h,'+hF)
is diagonal. In this representation, let us write tr(j„fF) in
a matrix representation:

Jdz f(z) g G, [ —A VG, ]"

Jdz f(z)[G, A, G, VG, —

+A, G, VG VG, +O(A, )], (2.34)

«(j,f )=&g (& Ij„l&)(& If I~ ), (2.35)

where a single-electron state labeled A, is an eigenfunction
of the Hamiltonian (2.22), satisfying

hoFIA, ) =K~IX, ) . (2.36)
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The E& 's are the eigenvalues of h 0~ and depend on the
field. It should be noted that for this choice of an elec-
tron state for an unperturbed Hamiltonian, the field can
be treated exactly and hence thereby usual perturbation
expansions in powers of the field (which assume a weak
field) are avoided. Our problem is now reduced to the
evaluation of the matrix elements of fF for averaging the
electronic current operator in Eq. (2.35). Multiplying
(faF+ XF i c,—) from the left on Eq. (2.33), we obtain

(fDF +XF i s—)fF =MF, (2.37)

(2.38)

Equation (2.37) [or (2.38)] has a simple interpretation as a
generalized high-field quantum-transport equation for the
phonon-averaged one-electron quantum-statistical opera-
tor fF and it shows clearly where the influence of the
reservoir (phonons) enters. In Eq. (2.38), if XF=0 (no in-
teraction), we observe the divergent nature of (A, , ~ fF ~A, z&

at (Ez Ez i c)—=—0 I, t is t.o be expected as seen in Eq.
1 2

(2.24) that tr(j„fF)represents the infinite current which
must occur in the absence of scattering. Due to the in-
teraction incorporated in XF, ( A, , ~fF ~

k,z & is relaxed to
finite values by scattering processes. It is noticed that the
first term in Eq. (2.38) represents the response of the sys-
tem to the electric field in the absence of collisions. On
the other hand, the second term describes how electrons
are scattered by phonons in the system and are inAuenced
by the field during collisions. As will be shown in the
next section, this collision term exhibits the gain-loss
structure appearing in the quantum Boltzmann collision
integral for an electron-phonon system but is relaxed by
the inclusion of the effect of the field on the collision pro-
cess (ICFE) through XF. We note that those terms [Eqs.
(2.32) and (2.33a)] which depend on the interaction be-
tween electrons and phonons may therefore give rise to
dissipation of energies gained from the field. These terms
play the most essential role in the analysis of transport
phenomena. Solving Eq. (2.38) for (k, ~fF~l, z&, one can,
in principle, evaluate the field-dependent conductivity
tensor which would be valid for an arbitrary strength of
the electric field and the interaction potential.

III. APPROXIMATION PRQCEDURE

where operators X~ and M~ are, respectively, given by
Eqs. (2.32) and (2.33a). The required matrix elements of
fF are thus given by taking the A, „A,z element of Eq.
(2.37):

(Ez —Ei —is)(A, , ~fF~kz&+(Ai XFfF~kz&

phonon coupling. Firstly we approximate R~ of Eq.
(2.28) by neglecting XF, so that

RF =(6QF+8 h
—lE) =RF,

XF= —
A, ( PRF P'&ph=— —XF,

(3.1)

(3.2)

where we have kept only the lowest-order nonvanishing
contribution to XF from its series expansion in Eq. (2.32).
It should be noted that the scattering vertex Xz retains
the field dependence, so that it includes the effect of the
field on collisions (ICFE). To this order of approxima-
tion, the initial correlations vanish and the operator MF
is approximated by

M, =M'=lim Jdz f(z)G,'
a

(3.3)

where f(z) and 6, are given, respectively, by Eqs. (2.34a)
and (2.34b). Using these, the right-hand-side term of Eq.
(2.38) can be easily evaluated as

(Z, ~M ~~, &=
1 2

(3.4)

where e& is the energy eigenvalue of h, satisfying

h, ~k&=cz~k& . (3.5)

The second stage of approximation involves a scheme for
evaluating (X, ~XFfF ~A, z&, which will be outlined in the
following subsection.

A. Evaluation of the collision term

k] +A2
(3.6)

If we introduce a pair of new variables (v, p) replacing the
pair (A, i, k,z) such that

In order to see the structure of the collision term, we
have to evaluate (A, i ~ XFfF ~ Xz & (or, more generally,
(A, , ~XFfF ~k,z&) explicitly. Since the collision operator is
a function of superoperators, to evaluate the matrix ele-
ment of such a function is a complicated matter. The
practical calculation involving superoperators can be fa-
cilitated by using a general technique derived by Resi-
bois. In this method a four-leg structure (which
should be used for calculating the matrix elements of su-
peroperators) is reduced to familiar algebra. Let us speci-
fy the A, A, 2 matrix element of an arbitrary operator A by
a new matrix representation:

The transport equation (2.37) [or (2.38)] along with
Eqs. (2.28), (2.32), and (2.33a) represents the starting
point for setting up tractable transport equations for fF
(or (A. , ~ fF ~A,z & ). An exact solution of transport equation
(2.38) for (A, i~ fF ~Az& is, however, not feasible, since the
collision operator XF is, in general, nondiagonal. In or-
der to proceed further we therefore need an approxima-
tion scheme for the evaluation of (A, , ~XFfF~k,z&. We
consider the simplest situation, assuming weak electron-

v—= (Ai+Az)/2, p= (3.7)

then Eq. (3.6) is expressed by the new notation

(X, ~
A ~Az& =(v+p/2~ 3 ~v

—p/2&—:W„(v) . (3.8)

Let us define a matrix operator (p~0(v) ~p') in v space as-
sociated with superoperator 0 such that

(p~O(v) ~p') =ri" O„„(v)ri" g"O„„(v)q",—(3.9)
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where we have introduced the shift operators g—"which
replaces a function of v by the same function of v+ —,'p:

ri "f(—v)=f(v+pl2) . (3.10)
U'

Notice that an operator O(v) is just another way of writ-
ing the superoperator 0, and a matrix operator
(plO(v)lp') is a matrix with respect to one set of quan-
tum numbers and an operator with respect to the other.
It is then easy to verify that the matrix elements of a
commutator can be expressed in terms of (pl 0(v)lp'):

& ~) IO& l~ &
—= (O& )„(v)= & v+p/2IO& lv —p/2 &

=g(plO(v)lp')A„(v) . (3.11)
Pl

In the present case, from Eqs. (2.36), (3.8), and (3.9), the
I

explicit form of the unperturbed and the perturbed parts
(foF and lP) are given, respectively, by

(PI "0F(v) IP') =«v+p/2 Ev pl—2@@' p-
(p I V( v) I

p' ) = ( v+ p /2 I V
I
v —p /2+ p' )2)"

(v—+pl2 p'—
I
V

I
v p/—2)g

(3.12)

(3.13)
where in Eq. (3.12), 5 denotes the Kronecker symbol. It
should be noted that the unperturbed superoperator foF
is diagonal in the p variable.

Since we know the mathematical device outlined
above, the evaluation of the collision term is straightfor-
ward. Applying the v-p representation to the present
problem, one obtains

&~, lr'FfF I~2& =~'& IITr~~" (p,„v~F'vfF)I2&=—(r'FJF)„(v)

=g (pl& F(v)lp')fF, (v)
P

g((pl V(v)lp')[IioF(v, p')+~„—h is] '(p'I V(v)lp"))„ifF „(v)
P JM

(Nq+1)[(v+P/2lyqlv P12+P )(E ~)2+ E ~~2+Acoq ie)

x & v p/2+p'—lytlv p/2+p"—)fF (v p, /2+p"—/2)

+(v+p12 —p ly Iv+p/ —p')(E + i2+E,+ i2 ~
—%co —is)

x (v+p12 p lyqlv p12)fF (v+p12 p 12)]

+Nq[(v+pl2lyqlv pl2+p )(E p)2+„E—~)2 ficoq i E)

x (v pl2+p'ly—qlv pl2+p" )f—F (v p/2+p, "/2—)

+(v+p/2 —p" ly, lv+p/2 —p')(E, + „E.+ ~2 . +—%co is)—
X(v+pl2 p'lyqlv pl2)fF (v+p12 p,"12)]I—

—a2g g I(N, +1)[&v+p/2ly, lv —p/2+p'&(E„„„+„,—E. „„+A'co,—ic) '

X (v pl2+p' —p"—ly lv —p12)fF (v p12+p' p"—/2)—
+ (v+p/2ly I +vp/2 —p'+p")(E„+)2 E+„~2„—A'o~q —i—s)

X (v+p/2 p' y Iv —pl2)—fF (v+p/2 p'+p, "12)]—

(3.14)

+Nq[& v+p/2lyqlv —p/2+p')(E „&2+„E„»2A' o rq—iE—)

x (v pl2+p' p" ly—qlv pl2)—fF „(v p—l2+p' p"12—)—
+(v+p/2ly Iv+p/2 —p +p )(E +„i2 E+„i2 +fico ie)— —

X &v+p/2 p'lyqlv pl2& fF „(v+pl2 p'—+p"12)j—J, —

where Xq is the Planck distribution for phonons which is given by

Nq =Tr'~"'(p~„bqbq) = [exp(PA'co ) —1] (3.15)

It is noted that expression (3.14) is exact and includes the field dependence within a collision. The collision term (3.14)
is rather complicated. In order to see the mathematical structure more clearly, let us write Eq. (3.14) in the A, represen-
tation:
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& ~il&FfF l~z& =
& il&pfF 12& =& &Fiz, 3g& 3lfF 14& = T;. T—.„,,

3,4

where T;„andT,„,are given, respectively, by

& llyql3 & & 31yql4& &4lfF 12& & llyql'3 & & 31fF14& &41yqt12 &

T;„=A, (N +1)q E3 —E2+Ace —i C

& llytql3 & &3lyql4& &4lfF 12& —
& llyq'13 & & 31fF14& &4ly, l2&

+iY
q

3 2 q
E —E —Ace —i c.

& llyql4& &4lfF 13 & & 3lyqtl2& & llfpl4& &4lyql3& & 3lyql2&T,„,=A,zing (N +1)
q 3,4 E

&

—E3 —i6coq / E,

& llyqtl4& &4lf~l3& & 3lyql2& & llfpl4& &4lyql3 & & 3ly, l

+N
q

1 3 q
E —E +%co —ic

(3.16)

(3.16a)

(3.16b)

It should be note that the lk;& (—:li &) and the F.;
(i =1,2, 3, . . . ), are, respectively, the eigenstates and ei-
genvalues of hoF satisfying Eq. (2.36). For the weak-field
limit (F~O), the collision terms (3.16) reduce to those
obtained by the Green's-function approach [see Eq. (7.40)
of Ref. 27]. Equation (2.38) along with Eqs. (3.4), (3.16a),
and (3.16b) represents a set of matrix equations which
specify the elements of & 1

IfF 12 & for the lowest order in
It is noticed that T;„and T,„,correspond to the gain

(scattering in) and the loss (scattering out) structures of
terms, respectively. The first two terms in T;„physically
represent the terms that account for the rate at which the
electrons gain the energy from the field and arrive at the
state of interest

I
A, & by emitting a phonon of frequency c~

and the wave vector q. On the other hand, the last two
terms in T;„similarly account for the rate at which the
electrons gain the energy from the field and leave the
state IA, & by absorbing a phonon of frequency co& and the
wave vector q. Although the first two and the last two
terms in T,„,have the same physical meaning as men-

I

tioned above, the only differenc is that these terms arise
because of the microscopic collisions in which the elec-
trons gain the energy from the field but leave from the
state IA, & by emitting and absorbing a phonon of frequen-
cy coq and the wave vector q. It should be noted that in
contrast to the treatment of collisional broadening (CB)
discussed for weak fields (where collisions are treated as
point events), Eq. (3.16) includes the field efFect during
collisions (ICFE). Equation (2.38), along with Eqs. (34)
and (3.16), represents the generalized quantum-transport
equation to be solved for & A i lfF lkz&. With only the di-
agonal terms retained, Eq. (3.16) becomes

'll&FfF 12&=&Fiz;iz& llfF12&—:&i z(F, )& 1lfpl2&,

(3.17)

where the complex irreducible self-energy X, z(F, ) is
given by

I & 2ly, l3 & I'
I & 3lytql 1 & I'

X, z(F, )=A, (N +1) +
q 3 E —E —A'm —i c. E —E +A'co —i c.1 3 q 3 2 q

I&2lytql3&I . I&3lyqll &I

E —E +%co —ic E —E —Ac@ —ie1 3 q 3 2 q

(3.17a)

where vertex correction terms involving &i lyzli & have been dropped since they lead to contributions of order no
'

compared to those which are kept (no is the number of unit cells in the crystal). It should be noted that the matrix ele-
ments of the interaction term depend generally on the electric field, and the field dependence on the electronic transition
rates is introduced through the electron states and the energy denominators. Real and imaginary parts in expression
(3.17a) are of basic interest and are related to the quantities measured experimentally. Utilizing Eqs. (2.38) (3.4), and
(3.17a), the steady-state nonlinear conductivity (2.24) is then given by

(Ei) — (sz) I, z(F, )« ~„(F,) =—
& 1 Ij.12 & & 21j, I »

ez [&i Fz —&i z(F, )]'+—I i,(F, )

where I i z(F, ) and b, , z(F, ) can be calculated from Eq. (3.17a):

, )=™I&,z(F, )I

=~& g I(N, +1)[I& 21y, l3 & I'~(Ei —&3 —&~,)+ I & 3ly', I
1 & I'@&z—Ez+ir~, )]

q 3

+Nq[ I & 21 yq 13 & I (i(Ei E3+&~q)+ I & 3
1 yql 1 & I |i(Ep &z &~q) ] I

(3.18)

(3.19a)
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4i 2(F, )—:Re I X, 2(F, ) j

(&q+1) l&2lyql3&l P +l&3lyqll &I

q 3 E] —E3 —ficoq E3 —E2+Am

+&q l&2lyqtll &I P +l&3lyqll &I
3 2 q

(3.19b)

To obtain Eqs. (3.19a) and (3.19b), we have passed to the
limit e —&0+ as is required by Eq. (2.24). The symbols Re
and Im denote, respectively, the real and the imaginary
parts of the quantity which follows are to be taken, and
the symbol P in Eq. (3.19b) denotes Cauchy's principal-
value integral. The expression (3.18) is just the nonlinear
version of the Drude formula for the static conductivity,
which is associated with electronic transition between
states

l
A, , & and

l A2 & in the presence of the electron-
phonon interaction. We see that the field-dependent con-
ductivity (3.18) exhibits a Lorentz-like line shape. The
quantity b, , 2(F, ) plays the role of the line shift, and
I, 2(F, ) plays the role of the half-width. I, 2(F, ) /A' gives
the reciprocal of the relaxation time. It should be noted
that both of these quantities are functions of temperature
and the external electric field. The 5 functions in the
terms for I, 2(F, ) state the conservation of energy in
those processes where an electron is excited from

l
A, i & to

li,2& by gaining energy from the field during collision
events and is then scattered by the electron-phonon in-
teraction to state l

A, 3 & with the emission or absorption of
a phonon. For weak-field limit (F,~0), Eq. (3.18)
reduces to the Drude formula for the static conductivi-
ty ' (linear response to the field), which is given by re-
placing the energies Ei 's and eigenfunctions lA, , &'s in

i

Eq. (3.18) with Eqs. (3.19a) and (3.19b) by corresponding
energies s, 's and eigenfunctions lv; &'s since the eigenval-

1

ue equation ho&lA, , & =Ei lA, , & becomes h, lv; & =a„lv; &

as I,~0.
Although we have formulated the theory for an

electron-phonon system, relaxation due to impurities can
be also included in the theory; in the lowest approxima-
tion, the relaxation effect due to phonons and impurities
are obtained by the sum of relaxations due to the pho-
nons and the impurity scatterings. The formula for the
relaxation due to the impurity scattering can be obtained
for a low-impurity-density case simply by the following
replacement in Eq. (3.19a): N +1~0%; ~ (X; ~ is the
impurity density), Xq «0, co~—+0.

IV. SUMMARY AND CONCLUDING REMARKS

We have developed a quantum-statistical theory of
high-field transport based on Tani's theory of nonlinear
response. A general expression for an exact steady-
state nonlinear current in the Ohm's law form is obtained
and a field-dependent dc conductivity (2.12) is defined.
We have shown a detailed method of evaluation of this
field-dependent conductivity (and hence a steady-state
nonlinear current) for an electron-phonon system, apply-
ing a representation-independent resolvent superoperator
method.

In our formulation, two restrictions have been made:
one is the neglect of electron-electron interactions, and
can be partly included in y through the screened in-
teraction potential; the other is that the lattice is assumed
to be in thermal equilibrium and that the so-called factor-
ization approximation (2.20) is employed for the equilib-
rium statistical operator p, . Therefore, the present
theory can be applied to low-density nondegenerate semi-
conductors when the effects of nonequilibrium heating of
phonon population is negligible.

Adopting these assumptions, the evaluation of the
field-dependent conductivity is then reduced to the prob-
lem of finding the solution of the tractable operator trans-
port equation (2.37) for the phonon-averaged one-
electron statistical operator fF. The statistical operator
f~ [and hence the field-dependent conductivity o „,(F, )]
is determined by a field-dependent one-electron resolvent
RF, which is given in terms of a simpler effective one-
electron resolvent Rg, (2.28). This depends on the self-
energy (or collision) superoperator XF which is defined at
the outset [see (2.29)]. Hence, any collision process be-
tween an electron and phonons is thereby assumed to
take place in the averaged field of phonons. The effect of
such a field is to induce perturbed single-particle energies
and to introduce lifetimes for the electron states by virtu-
al collision processes. In other words, within each
scattering event, an electron will propagate in a per-
turbed state which is controlled by virtual scattering on
the entire scattering medium. We have shown how this
self-energy effect, which takes ICFE into account, is for-
mulated into the theory without recourse to a relaxation
approximation used in the Boltzmann approach. The
self-energy results in, e.g., the lifetime broadening, which
is responsible for the spectral broadening of line shapes.
Therefore, the effects of the interaction, ICFE in each
collision event, and scatterings are studied theoretically
by examining the real part of the conductivity tensor.
We have obtained the expression for the field-dependent
conductivity [(3.18) with (3.19a) and (3.19b)] for the
lowest-order nonvanishing contribution of an electron-
phonon interaction. As can be seen in Eq. (3.18), these
self-energy effects lead to level shift 6 and energy
broadening I of otherwise sharp energy conservation in
the collision process and so the field-dependent conduc-
tivity is of the Lorentz-like line shape. It should be noted
that 6 and I depend on the lattice temperatures as well
as on the field F since the inhuence of the field within a
collision (ICFE) is taken into account. If we take the lim-
it, F~O, to 6 and I, these quantities are reduced to the
usual formulas obtained from Boltzmann-transport
theory (or the linear-transport theory), which assumes
scatterings as the point collisions so that the effect of the
field within a collision (ICFE) is not taken into considera-
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tion in the scattering events. The field-dependent self-
energy effect is conjectured to be crucial in the transport
physics of ultrasmall devices for which the mean free
time between collisions is comparable to the transit time
through the semiconductor. Although the present for-
mulation is based on a simple one-band spin-free model,
the extension of the present theory to a multiband mod-
el can be done straightforwardly, since our formulation
is made in an operator form so that it is valid irrespective

of the system studied. The differences arise only in the
6nal stage of calculation. %e will extend the present
theory to the study of hot-electron problems in future
publications.
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