
PHYSICAL REVIEW B VOLUME 40, NUMBER 8 15 SEPTEMBER 1989-I

Binding energies of excited shallow acceptor states in GaAs/Ga& „Al„Asquantum wells

Alfredo Pasquarello and Lucio Claudio Andreani*
Institut de Physique Theorique, Ecole Polytechnique I'ederale de Lausanne,

PHB-Ecu biens, CH-1015 Lausanne, Sui tzerland
and Scuola Normale Superiore, I-56100 Pisa, Italy

Ryszard Buczko
Institute of Physics, Polish Academy ofSciences, PL 02 66-8 W-arsaw, Poland

and Scuola Normale Superiore, I-56100 Pisa, Italy
(Received 5 May 1989)

Binding energies of shallow acceptor states in GaAs/Ga& Al As quantum wells are calculated
as a function of the well width. The complex valence-band structure is taken into account in a
four-band effective-mass theory. The acceptor envelope function is expanded in valence envelope
functions in the two-dimensional k space. In this way, the boundary conditions are satisfied by con-
struction. The effect of different dielectric constants in well and barrier materials is taken into ac-
count by considering infinite series of image charges. This method of calculation is appropriate for
all positions of the acceptor centers, both inside the well and in the barrier, and is particularly suit-
ed to evaluate binding energies of excited states. Examples of charge-density distributions of
ground and excited states are presented for different positions of the acceptor centers. A first-order
perturbation calculation is used to obtain the binding energy of the ground state for on-center ac-
ceptors. Theoretical predictions of the transition energies from ground to excited states are found
to be in good agreement with available experimental data obtained from far-infrared absorption
measurements.

I. INTRODUCTION

Owing to continuous developments and improvements
of crystal-growth techniques, such as molecular-beam ep-
itaxy (MBE), nowadays it is possible to obtain high-
quality heterostructures composed of alternating semi-
conductor layers. Because of the possibility of varying
within large bounds the width, the composition, and the
doping concentration of the layers, the study of such
structures has attracted considerable interest from an ex-
perimental as well as from a theoretical point of view.
Moreover, the possibility of varying artificially the physi-
cal properties is a major advantage for applications in
electronic devices. The width of the layers can be varied
from several angstroms to several hundred angstroms and
can be controlled on an atomic scale, yielding abrupt in-
terfaces between different semiconductors. The
background-impurity concentration is low, and intrinsic
phenomena dominate the luminescence spectra; extrinsic
properties, attributed to the carbon acceptor, have, how-
ever, been observed in nominally undoped samples.
Further development of the growth techniques have al-
lowed intentional and selective doping: ' it is therefore
possible to study how the extrinsic properties vary when
the doping profile in the layers is changed.

The most widely studied heterostructure is the
GaAs/Ga, Al As superlattice. In this system the band
gap, which increases with the aluminum concentration x,
changes from one layer to another. The electrons in the
conduction band as well as the holes in the valence band
are mainly confined in the GaAs layers, because the

band-gap discontinuity is distributed between the con-
duction band (65%) and the valence band (35%). When
the barriers are sufficiently thick that coupling between
different wells can be neglected, one deals with a single
quantum well. This is the case studied in this paper. We
adopt the effective-mass approach, which has successfully
been applied to this system, ' ' the effect of the band-
gap discontinuity being taken into account by introduc-
ing square-well potentials for the electrons as well as for
the holes. This approach gives a quantitative explanation
of intrinsic properties, such as binding energies and oscil-
lator strengths of excitons. '

Extrinsic properties, such as hole-donor, electron-
acceptor, donor-acceptor, and acceptor- and donor-
bound exciton transitions, have recently attracted more
attention. ' The extrinsic properties strongly depend
on the position of the impurity inside the well. The finite
width of the doping profiles and the Auctuations of the
quantum-well width, especially in the case of narrow
wells, broaden the features associated with the observed
transitions. In order to measure signals due to transitions
related to impurities, higher doping concentrations are
needed in the quantum well with respect to the bulk. The
interaction which occurs between the impurity centers is
another major cause of broadening. In spite of these
difficulties, not only have features associated with impuri-
ty ground states been observed, ' ' but also transitions
involving excited impurity states. '

The envelope-function approach, used in the bulk to
calculate energy levels of shallow impurities, can be
extended to quantum-well systems. For the case of
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donors, whose energy levels are near the conduction
band, the effective-mass Hamiltonian is that of a
Coulomb point charge in a square-well potential. Bas-
tard has calculated binding energies assuming infinitely
high barriers. Subsequently, others have performed
more realistic calculations allowing the wave function to
penetrate into the barriers. In this case, since effective
masses in well and barrier materials are different, ap-
propriate boundary conditions must be used to match the
envelope functions at the interfaces. '

The problem of calculating the energy levels of a shal-
low acceptor is more complicated than for the case of a
donor, for two main reasons. First, the uppermost
valence band is fourfold degenerate at the I point, giving
rise to heavy- and light-hole levels. In a quantum well,
these levels mix at finite values of the in-plane vector k:
this mixing occurs at a scale of wave vectors of the order
of the reciprocal of the acceptor radius, ' ' and hence
the effect of valence-band mixing must be taken into ac-
count. Second, since the acceptor binding energy is
larger than the separation between subbands at k=0, an
accurate representation of acceptor states must include
Coulomb coupling between different subbands.

The effective Bohr radius of the acceptor ground state
( =20 A) is much smaller than the eff'ective donor radius,
because the heavy-hole mass is much larger than the
conduction-band effective mass. Central-cell effects can
therefore significantly influence the binding energy of the
ground state. In a quantum well, we expect these effects
to increase because of confinement.

Masselink et al. ' have calculated s-type acceptor
states taking the complex valence-band structure into ac-
count. The authors have used a basis in r space limited
to s and d anisotropic Gaussian functions. Central-cell
effects are accounted for by adding an extremely localized
potential.

In this paper we present a variational calculation of the
binding energies of shallow acceptor states in the
effective-mass approximation, based on the quantum-well
band structure. The method is analogous to approaches
used for the determination of exciton binding energies
through an expansion in k space of the wave function.
We have taken into account the complex valence-band
structure in the axial approximation, which neglects non-
axial cubic terms. The effect of different band parameters
and dielectric constants in the two materials has been in-
cluded, respectively, by considering appropriate four-
component boundary conditions' and series of infinite
image charges. This method of calculation in k space is
particularly suited for excited acceptor states, which are
extended in r space. The binding energies of the I 6 and
I 7 ground states are less accurately obtained, because of
the finite variational expansion set. For large quantum
wells, in order to obtain transition energies between
ground and excited states, we estimate the shift and the
splitting of the ground state by first-order perturbation
theory on the bulk impurity states.

The remaining part of this paper is organized as fol-
lows. In Sec. II we present the theoretical approach and
relate the symmetry properties of the effective-mass
Hamiltonian to the symmetry properties of the underly-

ing crystal structure. In Sec. III we present results for
binding energies and density distributions of acceptor
states for different well widths and impurity positions. In
Sec. IV we compare our results to available experimental
data. Transition energies are evaluated by estimating the
binding energy of the two ground states in first-order per-
turbation theory. The main conclusions are summarized
in Sec. V.

II. THEORY
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where y &, y2, and y3 are the Luttinger parameters
describing the I 8 valence band. Inside the quantum well

( lzl ~ L/2) these parameters correspond to those of the
well material, and, in the barrier, to those of the barrier
material. In Eq. (2) small k-linear terms, originating
from the lack of inversion symmetry of the zinc-blende
lattice, have been neglected. Hq is a square-well po-
tential:
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—V for

l
z
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where V is the valence-band discontinuity and L the well
width. H'(zo) is the potential of a point charge in a sys-
tem of three dielectrics separated by two infinite planes.
In order to satisfy the Maxwell boundary conditions, the
potential must contain an infinite series of image charges.
If lzo l

~ L /2, the potential for a point charge is

We consider a single quantum well, grown in the [001]
direction, which we take along the quantization axis z.
The acceptor Hamiltonian is a 4X4 matrix operator

Hkin+Hqw+Hi( )

where H"'" represents the kinetic energy of the holes,
Hq" the confinement potential due to the valence-band
discontinuity, and H (zo) the potential of an impurity
center at z =zp. The kinetic-energy term H"'", quadratic
in k= —iV, describes the dispersion of the I z valence
band, and is given by the Luttinger-Kohn Hamiltonian
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where e and e' are the dielectric constants, respectively, of the bulk and of the barrier material, $=2e'/(e'+e),
R(z„—)=[p +(z —z„—) ]', and z„—=+nL +( —1)"zo. For an impurity center located in the barriers, we consider the
case zo ~L/2, and obtain
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where g'=2e/(e'+e) and z„=(—1)"(nL +zo). With our
method of solution it is possible to take into account the
infinite series of image charges.

The acceptor Hamiltonian H acts on a four-component
envelope function F=(F ~,F'~,F '~, F ~ ), and the
electronic wave function is given by g(r)=+, 'F~ —,'s)
where the spin index s runs over the set I 3, —,', —

—,', ——,'I
and where

~

—',s ) are the I s Bloch functions. At the bar-
riers the envelope function F must satisfy appropriate
current-conserving boundary conditions. '

We expand the acceptor envelope function F in the
basis of valence envelope functions U„'k(z)e' ~, which are
eigenstates of the Hamiltonian H '"+Hq", not contain-
ing the impurity potential. We obtain

F'(p, 8,z) =g J dk G„(k)U„'k(z)e'"I',

where p = (p, 0) is the in-plane coordinate and k = ( k, a ) is
the Bloch vector of the subb'ands, which reAects the
translational invariance in the x-y plane.

The valence envelope functions v„'k(z) are found by a
method of solution which is an extension of the particle-
in-a-box problem of quantum mechanics: the effective-
mass equation is solved in each bulk material and the
solutions are matched with appropriate boundary condi-
tions at the interfaces. ' This gives simple analytical
wave functions for the valence envelope functions. The
components of each envelope function turn out to be tri-
gonometric functions inside the well and decreasing ex-
ponentials outside.

With the above-described choice of the vale:t. ~; en-
velope functions, the calculation of all matrix elements of

the impurity potential is considerably simplified. Anoth-
er major advantage of expansion (7) is that the acceptor
envelope function satisfies, by construction, the current-
conserving boundary conditions. In this way the effect of
the different band parameters in well and barrier materi-
als is taken into account. In expansion (7), n runs over all
the discrete subbands in the quantum well. We suppose
that the quantum well is deep enough to neglect the con-
tribution of continuum states. It should be stressed that,
in general, an acceptor state cannot be referred to a par-
ticular subband, i.e., expansion (7) over the subbands n is
essential. This is due to the fact that the binding energy
is larger than the separation between subbands, and
should be compared with the case of excitons, where the
binding energy is much smaller and Coulomb coupling
between subbands is a correction. Assigning an accep-
tor to a particular subband is possible only for highly ex-
cited states, which have a much smaller binding energy.

In our calculations we neglect the first term of M in
Eq. (3d), which depends on the diff'erence between yz and

p 3 in this way we obtain a Hamiltonian that is invariant
under rotations around the z axis (axial approximation). '

If we consider the acceptor Hamiltonian of Baldereschi
and Lipari, this approximation consists of keeping not
only the full spherical Hamiltonian, but also the axially
invariant cubic operator To defined in Ref. 26. This
latter term is effective in first-order perturbation theory
and is taken fully into account in our approximation.
The neglected terms T 4 and T4 are only effective in
second-order perturbation theory and their effect is small
when the splitting between the quantum-well acceptor
states is much greater than the shift due to the cubic con-
tribution to the Hamiltonian.
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Because of axial symmetry, the z component of the to-
tal angular momentum is a good quantum number: we
denote it m. Since m, for each spin component, is the
sum of the angular momentum of the envelope function
and of the corresponding Bloch function, it follows that
the acceptor envelope function has the form

F' (p, 8,z)=e' ' f' (p, z).

It is important to observe that the phase factor e' ' is
different for each spin component: the quantity l =m —s
can be interpreted as an orbital angular momentum for
the corresponding spin component of the envelope func-
tion. A similar situation occurs for the exciton prob-
lem. ' ' ' We remark that nonaxial terms couple states
with b, m =+4, as can be seen from Eq. (2). Because of
time-reversal symmetry, for each state with angular
momentum m, there is a degenerate state with an oppo-
site value of m. We shall call m angular momentum, be-
cause the electronic wave function P =g,F'

~
23 s )

transforms under the rotation symmetry operators of Tz
as a wave function of definite z component of angular
momentum m.

The angular dependence of the acceptor envelope func-
tion can be extracted from Eq. (7) by observing that, in

the axial approximation, the valence envelope function
has the following dependence on the angle a of k:

U„(ka)(z)=e U„(k0)(z)

If we choose G„(k)=e' g„(k)and perform the angular
integral, we obtain an explicit form for the envelope func-
tion with definite angular momentum m,

eigenstate of angular momentum —m. For zo =0 the full
Hamiltonian is invariant under specular reAection. Thus
in this case also the acceptor states can be classified as
gerade (g) and ungerade (u) and only the valence en-
velope functions of the corresponding symmetry need to
be considered in expansion (7). By time-reversal symme-
try each acceptor state [m, u] will be degenerate with a
state [—m, g].

The acceptor states of the matrix operator H, for
zo =0, also have definite parity (which we shall denote by
a plus or a minus sign) under space inversion I,

(12)

not to be confused with o.. The inversion I commutes
with the time-reversal operator and therefore each Kra-
mers doublet [m, u; —m, g] has definite parity under I.

In order to understand the symmetry of the acceptor
envelope eigenfunctions according to the underlying crys-
tal symmetry group, we study the compatibility relations
between the representations of the symmetry group of the
axially invariant Hamiltonian and those of the actual
symmetry group. These relations can be obtained by
analyzing the transformation properties of the full elec-
tronic wave function. For a T& crystal point group, the
electronic wave function contains I 8 valence Bloch func-
tions and transforms according to a representation of T&.
For zo =0, because of the quantum well, the symmetry is
reduced from bulk Tz to Dz&, which allows only two
two-dimensional representations I 6 and I 7. If zo%0, the
symmetry group reduces to Cz, and all eigenstates trans-

Fs { 8 z) —2 (&)m
—s ie(m —s)ii

X g f dk kgn (k)Un(k o)(z)J~ &(kp) (10)

where J, are Bessel functions. Equation (10) shows

that a spin component with orbital angular momentum
l =no —s behaves like p' for small p.

The valence envelope functions v„'(ko) (z) can be chosen
to be real. In the numerical calculations care must be
taken to choose the sign in a continuous way when k is
varied. Thus g„(k)is a continuous function of k.

It is important to remark that the subband Hamiltoni-
an H"'"+Hq is invariant under specular reAection with
respect to the x-y plane. The reAection operator o. is

given, apart from an overall phase, by

oF'(p, 8,z)=( —1)' 'i F'(p, 8, —z) .

Axial symmetry
zo =0

Bulk Tg Bulk Og

[(—', +4k)u, —
( ~&+4k)g]+

[(—'+4k)u, —
( —'+4k)g]

[(—~
+4k)u, —

(
—

~
+4k)g)+

[(——'+4k)u, —
(
—3+4k)g]

TABLE I. Relation between the symmetry of the eigenstates
of the effective-mass Hamiltonian and the symmetry of the elec-
tronic states for an impurity in a quantum well built of Tz and
Oz crystal materials. The case with the impurity at the center
of the quantum well (zo =0) as well as the off-center case (zo&0)
are considered.

The subbands can thus be classified as even (gerade) or
odd (ungerade) with respect to this operator. It has been
shown that gerade and ungerade valence envelope func-
tions are degenerate by time-reversal symmetry. ' For
zo+0, o and H'(zo) do not commute and the valence en-

velope functions with both parities with respect to o. have
to be considered in the expansion. The angular momen-
tum m is still a good quantum number and, by time-
reversal symmetry, each eigenstate is degenerate with an

[( —,'+4k), —{—', +4k)]
[{—'+4k), —( —'+4k)]

k =0,+1,+2,

zo&0
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form like I 5. For comparison, we have also analyzed the
case of an 0& crystal symmetry group. The results are
summarized in Table I.

We must now solve the eigenvalue equation HF=EF.
Substituting expansion (7) for F and using the orthonor-
mality relation between valence envelope functions,

g f dr[u„',z (z)]*u„'z(z)e'"

= (2~) 6„„5(k—k'), (13)

we obtain for an acceptor state of angular momentum m
the following integral equation for g„(k):

(2m) [E„(k) E]g—„(k)+gf dk' k' f d(ha)(nk~H'(zo) n'k')e ' g„,(k')=0,
n'

where E„(k)gives the subband dispersion, ha=a —a', and

(n k~ H'(zo)~n'k') = f dz f dpH'(zo)e""' "'~ g[u„'1,(z)]*u„'1,.(z)e"
S

(14)

(15)

For the case H'(zo) =e /[eR (zo)] the integral in the in-
plane coordinate can be carried out analytically using

I

ha, we solve (14) by expanding g„(k)into nonorthogonal
hydrogenic wave functions. h&(k) of different radii 1/aI.

i(k' —k).p

[ 2+ ( )2]1/2dp g„(k) =g A„(hl(k),
l

(17)

where 6k=[k +(k') —2kk'cos(a —a')]' . The
valence envelope functions are linear combinations of tri-
gonornetric functions. ' Thus, the z integral can also be
performed analytically. The result depends on z0 only
via exponential factors: hence, the sum over image
charges reduces to a geometric series. It is a distinct vir-
tue of the present theory that the matrix elements (15) of
the Coulomb potentials are calculated analytically, also
including the effect of different band parameters and
dielectric constants in well and barrier materials.

Since the integral equation (14) for g„(k)is real, as can
be seen by analyzing the dependence of expression (15) on

where

0!l
hI (k) =

( z+ k 2)3z2 (18)

gH„(„,I A„I =EON„(
„ I A„( (19)

n 'l'

where

n'l'

The A, l are real variational parameters, while the e& are
chosen to cover the relevant physical range. We finally
obtain a generalized eigenvalue problem for the
coe%cients A„l,

H I„.I, =o„„.f dk kE( )k&h(k)h&( )k+ f dk k f dk'k' f dna(nk~H'(zo)~n'k')e ' h&(k)hl (k')
0 277 0 0

(20)

and III. RESULTS

N„I„.I.=6„„f dk khI (k)hI(k) .
0

(21)

The real eigenvalue problem (19) can be solved by numer-
ical methods that simultaneously diagonalize the ma-
trices H and N of Eqs. (20) and (21), yielding the
coe%cients A„l as the corresponding eigenvectors. In
this way we can find the acceptor ground state as well as
the excited states. Different eigenvalue problems are
solved for different values of m (and, for zo =0, for
different parities with respect to cr). The integrand in the
second term of Eq. (20) is singular at k=k', although the
integral itself is finite. The integral is evaluated by add-
ing and subtracting a function that removes the diver-
gence, but which can be integrated analytically. The
remaining three-dimensional integral has a smooth
dependence on k, k', and Aa, and is evaluated numerical-
ly with the Gaussian method.

We consider GaAs/Ga& Al As quantum wells with
varying well width I.. In numerical calculations, the
dielectric constants and Luttinger parameters are taken
to be

e= 12.56,

for GaAs, and

y) =6.85, y2=2. 10, y3 =2.90

E' =9.80 p &

=3.45 &2 =0.68 p3 = 1 ~ 29

for A1As. Parameters for Gai „AlAs are obtained by
linear interpolation. The band-gap difference is given by
EEg 1247 Xx mcV and wc assume an offse Iatio of
AE, /AE =0.35, so that V =0.35 X 1247 Xx meV.

In Fig. 1 we present, for an impurity located at z0=0,
the energy levels for the ground and first-excited states
for aluminum concentration x =0.4. The well width

0
ranges from 25 to 200 A. We have used a shorthand no-
tation identifying [mu, —mg] —by ~m~(+). The acceptor
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energy levels are given as binding energies with respect to
the first heavy-hole subband (HH1). From Fig. 1 we no-
tice that, for some excited states, the energies with
respect to HH1 decrease with decreasing well width.
This effect can be understood because these excited states
can mainly be associated with higher subbands, whose en-
ergy separation with HH1 increases with decreasing well
width.

The number of subbands we keep in expansion (7) de-
pends on the width of the quantum weH and on the
height of the barriers. We always retain all the bound
subbands. We notice that not all the subbands, which are
bound at k =0, can be taken into account, as some of
them enter the continuum at a finite k value. ' The fact
that the number of basis subbands is different for different
well widths is the reason for some bumps in Fig. 1. The
neglect of the subband continuum greatly affects the
binding energies of the two [—', u, ——', g]+ (1 6) and

[——,'u, —,'g]+ (I 7) ground states, which are underestimat-
ed by about 6 meV at 200 A. The binding energies of
higher excited states of different symmetry are, however,

FIG. 1. Energy levels for on-center acceptors in

GaAs/Gap 6Alp4As quantum wells as a function of the well

width. Acceptor energies are given as binding energies with

respect to the first heavy-hole subband. The dashed curves
represent the acceptor energy for states with the symmetry of
the two ground states. The solid lines correspond to states of
different symmetry and are more accurate. The absolute value

of the angular momentum m and the parity with respect to in-

version indicate the symmetry of the acceptor states.

The reason for the different influences of the subband
continuum on ground and excited states can be under-
stood by considering the value of the binding energy. In
the limit of wide wells, the binding energy of the ground
state is about 30 meV, while the binding energies of the
excited states are about 15 meV or less. Large binding
energies correspond to small typical radii and, therefore,
a larger region of the Brillouin zone is needed to describe
the wave function. The z quantization of the subbands is
the quantum-well analog of the bulk dispersion as a func-
tion of k, . Thus, when the needed k region increases,
more subbands must be taken into account. In order to
reach convergence also for the binding energies of the
ground states, we should include quantum-well wave
functions of the continuum in our variational set. This
could be done by discretizing the continuum in a large
box: the method, however, would become computation-
ally cumbersome.

e remark that the binding energies of the excited
' states with the same symmetry of the ground states are

less accurate than the other excited states, because the
orthogonality condition relates them to an unsatisfactory
ground state. In the axial approximation the excited
states of different symmetries are obtained by a separate
calculation and are not influenced by the accuracy in the
determination of the ground state. In fact, binding ener-
gies of excited states are obtained with an accuracy simi-
lar to that of the exciton calculation, as can be expected
from the fact that exciton binding energies are of the
same order of magnitude. As this method does not pro-
vide accurate results for the ground states, we have not
considered central-cell effects, nor effects of spatially
dependent screening.

The effect of the dielectric mismatch is essentially
given by the expectation value of the potential of the first
image charges on the acceptor wave function. This
effect increases the binding energy, since, for e' & e, the
first image charges have the same sign as the impurity
charge. The correction to the binding energy of the first
excited state is about 10% for a well width of 50 A and
decreases to about 4% for a well of 150 A. The effect
does not change significantly when the impurity position
is shifted towards the barriers, as the charge density of
the wave function remains mainly inside the well.

In order to check the validity of the axial approxima-
tion, we have performed a calculation of the bulk accep-
tor levels with an axially invariant Hamiltonian and with
the complete cubic Hamiltonian. The bulk acceptor
Hamiltonian has been solved as described in Ref. 41. In
Table II we present the results. For comparison, we have
included the results obtained with the spherical Hamil-
tonian of Baldereschi and Lipari. From Table II we
deduce that the axial approximation accounts for most of
the cubic effect. In the quantum well this approximation
should work even better, as states of different z com-
ponent of angular momentum are not only split by cubic
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TABLE II. Binding energies of ground and excited states for the GaAs bulk acceptor Hamiltonian
in the spherical approximation, in the axial approximation, and with the full cubic contribution. We
have used y& =6.85, @2=2.10, ye=2. 90, and @=12.53.

Spherical approx.
Symmetry E t,'meV)

Axial approx.
Symmetry E (meV)

Cubic Hamiltonian
Symmetry E (meV)

2Pg /2

27.43

11.76

[ 1 I +]+
28.41
28.22

12.44
12.29

Fs

Is

28.94

12.77

2Sg /2 8.13 8.51

8.44
ls

2Ps /2 6.89 7.82

7.51
6.06

Is 8.01

5.89

5.31 5.69
5.60

5.86

3Ds/2 5.14 5.74
5.58
4.75

Is 5.93

4.72

terms, but also by the barrier potential. Table II shows
that the axial approximation remains valid even in the
large-well limit, when the effect of the barrier potential is
negligible. In particular, in the case of the spherical
2P5&2 state, it is interesting to notice how the axial ap-
proximation reproduces the splitting between the I 8 and
I 7 states of the full cubic Hamiltonian, whereas these
states turn out to be degenerate in the spherical approxi-
mation.

We plot in Fig. 2 the binding energies of the ground
and excited states for on-edge acceptors (zo=L/2) as a
function of the well *width L. Now the states are
classified only by the z component of angular momentum
m. Since the binding energies are smaller compared to
those of the on-center case, our method is expected here
to give more accurate results also for the ground states.

We present in Fig. 3 the acceptor spectrum as a func-
tion of the impurity position along the z axis for a 100-A
GaAs/Gao 6Alo ~As quantum well. The binding energies
reach a maximum for on-center acceptors, and decrease
as the acceptor is moved away from the well center. At
zo =100 A, well inside the barrier, the binding energy of
the ground state is still about 8 meV. The density of ac-
ceptors with a given binding energy is proportional to the
reciprocal of the slope of the binding energy with respect
to the position, and is important because of the finite
width of the acceptor doping profile. From Fig. 3 we see
that, in the case of a uniformly doped (100 A/100 A) su-
perlattice, most acceptors have binding energies which
are near those for an on-center acceptor or those ob-
tained for an acceptor at the center of the barrier. For
the parameters of Fig. 3, there is no peak in the density of
states due to on-edge acceptors.

In Fig. 3 the curves which correspond to states with

3/2,

30—
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20—
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1/2

50 100
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FIG. 2. Energy levels for on-edge acceptors in
GaAs/Gao6Alo~As quantum wells as a function of the well
width. Acceptor energies are given as binding energies with
respect to the first heavy-hole subband. The symmetry of the
acceptor states is indicated by the absolute value of m.
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states are exchanged. This effect illustrates the anticross-
ings, which had been noted in Fig. 3.

We have also calculated the binding energies for quan-
tum wells with an aluminum concentration x =0.3, for
on-center as well as for on-edge acceptors. For the excit-
ed states the binding energies differ from those with
x =0.4 by less than the estimated numerical error.

Masselink et al. ' have calculated acceptor binding en-
ergies by expanding the wave function in r space. These
authors only calculated binding energies of s-type states,
which correspond to the states with the symmetry of the
two ground states. In the large-well limit the method of
Masselink et al. yields binding energies which are higher
than ours and which correctly. reproduce the bulk limit.
However, when the width of the quantum well is smaller
than =50 A, their results for the ground states are lower
than ours. Since our variational results represent a lower
bound for the binding energy, the neglect of the subband
continuum in the expansion set cannot explain the
discrepancy. The reason for the discrepancy might be
due to the fact that their expansion is limited to
symmetry-adapted s and d orbitals, which in the bulk
limit describe the wave function accurately, but which
could be insufhcient in the case of narrow wells, when the
symmetry is strongly altered. Another possible explana-
tion lies in the approximate method used in Ref. 31 to
take into account the effect of different band parameters
and dielectric constants in well and barrier materials.

Both these effects are even more important for excited
states, which are more extended in r space and "feel" the
barrier potential also at larger well widths. We find that
the binding energy of the heavy-hole 2s state [—,'u, ——', g]+
(I 6) increases for decreasing well width, whereas Massel-
ink et al. ' find an opposite trend; the same is true for
the binding energy of the light-hole 2s state [——,'u, —,'g)+
(I 7) with respect to the first light-hole subband.

IV. TRANSITION ENERGIES BETWEEN GROUND
AND EXCITED ACCEPTOR STATES

temperature of 4.2 K. In order to understand the ob-
served transitions, it is important to know the splitting of
the ground state as compared to k~ T=0.36 meV. More-
over, to estimate transition energies from ground to excit-
ed states, we also need the binding energies of the ground
states, which are not accurate enough in our calculation.
For large quantum wells, the shift and the splitting of the
ground state can be evaluated treating the confinement
potential in first-order perturbation theory, as the

0

effective Bohr radius of the ground state is about 20 A.
The wave functions of the fourfold-degenerate 1S3/2
ground state are calculated in the spherical approxima-
tion, taking into account l =0 as well as l =2 angular or-
bitals. If f&(r) and fI, (r) are the radial asymptotic func-
tions as defined in Ref. 43, the average shift S and the
splitting 6 are found to be

S = —Vf v [f&(v)+f& (r)](1 L/2r)—dr,
L/2 22

6 = V J r [fl, (r) —
f& (r)](L/2r)[1 —(L/2r) ]dr,

L/2

where Vis the barrier height as defined in (4). For the ac-
ceptor binding energy in the bulk, we use the value of
28.5 meV as measured by Reeder et al. The binding en-
ergies are found by considering the energy position of the
first heavy-hole subband. We notice that the barrier po-
tential H shifts the acceptor levels, as well as the sub-
bands, in the same direction. The shift of the acceptor
ground states is, however, much smaller since the wave
function is localized. The results obtained for the binding
energy are given in Fig. 5. The limit of validity of the
perturbation result is reached when the binding energy
no longer increases for decreasing well width. We notice
that this limit is reached at larger well widths for the
light-hole ground state than for the heavy-hole ground
state, because the former is more extended in the z direc-
tion.

In Table III we compare our theoretical results for the
transition energies from the ground state to excited states

In order to compare our theoretical results with in-
frared absorption experiments, it is useful to analyze the
selection rules first. If the polarization of the electromag-
netic radiation is parallel to the quantization axis, transi-
tions are allowed between states of different Td symme-

try: I 6
—+I 7 or I 7

—+I 6. In the case of in-plane polariza-
tion, all transitions are allowed. The same selection rules
are found for a bulk Td crystal with an applied uniaxial
stress along a (100) direction. It is, however, useful to
consider the allowed transitions between eigenstates of
the axially invariant effective-mass Hamiltonian, as these
generally have a greater oscillator strength. Now, z po-
larization does not change the z component of the angu-
lar momentum m, and allows transitions between states
with opposite parity under reAection o. and inversion I.
In the case of xy polarization, transitions are allowed be-
tween states with angular momenta differing by +1, of
the same parity with respect to cr, but of opposite parity
with respect to I.

Reeder et al. have performed a far-infrared absorp-
tion experiment on Be center-doped quantum wells at a

32

2

30

29—
150 200

L(A)
250

FICi. 5. Acceptor energies of the ground states with respect
to the first heavy-hole subband-. The shifts with respect to the
bulk level of 28.5 meV (Ref. 8) are calculated in first-order per-
turbation theory in the spherical approximation.
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TABLE III. Calculated transition energies from the heavy-
hole [2u, —2g]+ ground state (indicated by gl, ) and from the
light-hole [ —iu, 2g]+ ground state (indicated by gI) are com-
pared for two quantum-well widths with the data from the ab-
sorption experiment of Reeder et a(. (Ref. 8). We have taken an
aluminum concentration of x =0.3. The reported transitions
are allowed for xy polarization in the axial approximation. The
excited states are numbered following decreasing binding ener-
gies. Transition energies are in meV.

Transition
150 A

Theor. Expt.
200 A

Theor. Expt.

gI 1[——,
' u, —,'g]

gh ~1[—,'u, —
—,'g]

.gh ~ 1[ 2 u~ —,g]
17.3
22.3

18.6

24.5

16.4
17.1
17.5 17.4
21.8

22.3
gh~2[2u, —
gi~2[ 2 u»

g(~2[ ~ u,

gI ~3[
2 u»

gh ~3[
p u~

24.7

26.0 26.2

22.7
22.3
24.3
24.6
25.0 24.2

with experimental data obtained by Reeder et al. In
this experiment the electromagnetic radiation is polarized
in the layer plane. We have not made a comparison with
the data relative to the 100-A sample because the first-
order perturbation result is not accurate for such a small
well width. For a quantum well of 150 A the splitting of
the ground state is much larger than kz T, and we assume
that the observed absorption peaks are due to transitions
from the populated ground state to higher excited states.
The energies at which the absorption peaks occur should
therefore be compared with theoretical results that corre-
spond to allowed transitions from the [—', u, ——', g]+
ground state. For a quantum well of 200 A the splitting
between the two lowest states is about 0.5 meV, which is
only slightly larger than kz T. In Table III, for this well
width, we have also considered the transitions from the
[—

—,'u, —,'g]+ ground state, although the corresponding
absorption peaks should be weaker.

Starting from the ground state of [—', u, —
—,'g]+ symme-

try, for xy polarization, the axial approximation allows
only transitions to states with [—,

' u, —
—,'g] or

[—,'u, —
—,'g] symmetry. Because of the cubic symmetry,

transitions to states with other symmetries, such as
[——', u, —', g], are also allowed, but the associated strength
is expected to be much smaller.

The lowest absorption peak corresponds to the transi-
tion to the first [—,'u, —

—,'g] state. In the bulk limit this
state is degenerate with the first [——', u, —', g] state and
forms the bulk 2P3&2[I s] state. In the bulk this transi-
tion is identified as the 6 line. For this transition we
found decreasing transition energies for increasing well
width. The decrease is smaller than the estimated numer-
ical error. We believe it is due to the finite variational
set, which is based on the bound subbands, and which,
therefore, depends on the well width. The transition

from the light-hole ground state to the first [——', u, —', g ]
state should be observable if both ground states were pop-
ulated.

The second observed peak is broad and corresponds to
transitions to the first [—,'u, —

—,'] state and to the second

[—,'u, —
—,'g] state. In the bulk limit these states go over

into the 2P5&z[l s], and the relative transition corre-
sponds to the D line. The third transition observed in the
absorption experiment can be interpreted as the transi-
tion to the third [—,

' u, —
—,'g ] state.

The second [ —
—,'u, —,'g] state corresponds to the bulk

2P5&2[l 7] state. In the bulk the main contribution to the
C line comes from the corresponding transition from the
ground state, but, in the quantum well, the transitions
from the heavy-hole ground state to states with

[—
—,'u, —,'g] symmetry are forbidden in the axial approxi-

mation. The transition from the light-hole ground state
to the second [——,'u, —,'g] state, which, in fact, corre-
sponds to the bulk C line, is allowed and should be ob-
servable at higher temperatures, when the light-hole
ground state is more populated.

In conclusion, a11 observed peaks can be understood as
transitions from the heavy-hole ground state. In this in-
terpretation our calculated transition energies agree
within 1.5 meV with the experimental data.

V. CONCLUSIONS

We have calculated binding energies of excited shallow
acceptor states in GaAs/Ga& Al As quantum wells.
The valence-band structure has been taken into account
by adopting a four-band effective-mass theory. The ac-
ceptor envelope function has been expanded into a basis
of valence envelope functions of the bound quantum-well
subbands. This method is particularly suited to find
binding energies of excited states; it is less accurate for
the acceptor ground state, which is more sensitive to the
subband continuum. The acceptor envelope functions
satisfy current-conserving boundary conditions by con-
struction. The effect of different dielectric constants in
the two materials has been taken into account by consid-
ering infinite series of image charges. Calculations have
been performed in the axial approximation, which only
neglects small nonaxial cubic terms in the Hamiltonian.

We have presented energy spectra of acceptor excited
states as a function of the impurity position. Acceptor
positions inside as well as outside the quantum well have
been considered. We have shown that, when the impuri-
ty moves into the barrier, the charge-density distribution
associated to an acceptor state remains mainly located in-
side the well and its center moves back to the well center
as the impurity is moved further in the barrier.

Finally, calculated transition energies have been corn-
pared with results from far-infrared absorption experi-
ments. By considering the bulk limit and by comparing
the energies of the corresponding allowed transitions as
the well width decreases, we have interpreted the accep-
tor absorption spectrum in GaAs/Ga& „AlAs quantum
wells.
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