
PHYSICAL REVIEW 8 VOLUME 40, NUMBER 8 15 SEPTEMBER 1989-I

Phonoionization of A + states in Si under uniaxial stress:
Inhuence of the valence-band structure
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Scattering of phonons at shallow bound 3 + states in Si can lead to a neutralization of these states
and simultaneously to an increase of mobile charge carriers in the valence band, which causes an in-

crease of the electrical conductivity. We investigate the coupling of phonons to A+ states in Si and
calculate the phonon-induced conductivity in dependence of the phonon energy. The calculations
are based on a Kubo-Mori formalism. Uniaxial stress decouples degenerate valence bands and

causes a mixing of spin-orbit-split valence bands leading to a change of the valence-band structure
and to striking effects on the phonoconductivity. These effects described in the theory have been
observed experimentally.

I. INTRODUCTION

Shallow impurities in semiconductors at low tempera-
tures can bind a second carrier to form H -like states.
Then phonon scattering at these states can create mobile
charge carriers through excitation. This induces a
change in the electrical conductivity which can be used as
detecting mechanism. An estimate of the binding ener-
gies of D states of donors and A + states of acceptors
can be obtained from thresholds in far-infrared (FIR)
photoconductivity and phonon spectroscopy. Both ex-
periments lead to the same threshold energies, e.g. , in the
case of B+ or P in Si and thereby prove that the neu-
tralization by phonons is mainly a one-phonon pro-
cess'

Since the wavelengths of the phonons which interact
most strongly with the defect states are comparable to
the extent of these states the coupling of phonons to D
and A + centers, and thus the phonon-induced conduc-
tivity strongly depends on the energy of the phonons. In
addition, the wave vector of the state of the mobile
charge carrier and the corresponding effective mass have
a great inAuence on the phonoconductivity. This can be
demonstrated by applying uniaxial stress which, especial-
ly in the case of A + states, leads to great inhuence on the
phonoconductivity.

In this paper we study the scattering of phonons at A +

states in Si. By means of phonon spectroscopy the bind-
ing energies of A + states in Si have been found to be
about 1.8 meV for B+, Al+, and Ga+, and 5.9 meV for
In+. The neutralization of these states by phonons leads
to an increased electrical conductivity, which is called
phonoconductivity, in contrast to the photoconductivity
where the mobile charge carriers are created by optical
methods. In Sec. II A the wave functions for A + centers
in Si based on the effective-mass approximation are dis-
cussed. Further on, the Hamiltonian for the electron-
phonon interactions is derived. In Secs. II 8—II E we in-
vestigate the inAuence of uniaxial stress on the phonocon-

ductivity. It turns out that externally applied stress leads
to a splitting of the A+ state as well as of the valence-
band states. Additionally, we show the stress-dependent
mixing and coupling of the valence bands and their
influence on the electrical conductivity. In Sec. II F ma-
trix elements are calculated describing the dependence of
the electron-phonon interaction on the phonon energy.
Then, in Sec. IIG we develop a microscopic single-
particle theory which allows us to calculate the phonon-
induced electrical conductivity starting from the Kubo
formula and applying the Mori formalism. Finally, in
Sec. III the results are presented and compared with ex-
perimental measurements.

II. THEORY

The top of the valence band in Si is at the center of the
Brillouin zone (at the I point) and has sixfold degenera-
cy, resulting from a threefold orbital (L = I) and a two-
fold spin degeneracy (S =

—,'). Spin-orbit interaction par-
tially splits these degeneracies, leading to a higher-lying
quadruplet (J = —',) and a lower-lying doublet (J =

—,,') state.
This structure is reAected in the bound states of shallow-
acceptor impurities, which in an effective-mass approxi-
mation can be represented by wave packets made up
largely of the six Bloch waves chosen from the top of the
valence band with appropriate envelope functions
describing the localization of the defect. The envelope
functions are equivalents to the hydrogenic eigenfunc-
tions and can be calculated by solving the set of effective-
mass equations. For this the envelope functions are ex-
panded in spherical harmonics characterized by the
quantum numbers I and m. The effective-mass equations
have inversion symmetry, and therefore either even-/ or
odd-I terms contribute to the solution only. Since the
ground-state wave functions are mainly s-like (i =0), the
even-l expansion is chosen. In the following we consider
the l =0 (s-like) and l =2 (d-like) contributions only.

The A + state is fourfold degenerate due to the
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tetrahedral symmetry of the surrounding crystal. We
neglect correlation effects of the two holes bound by the
acceptor. This is justified since the hole-hole coupling
would lead to a multiplet structure, which, however, has
not yet been found in measurements of the A + binding
energies in Si. Therefore, as the wave function for the
second hole we can adopt the form of the wave function
of the acceptor —ground-state quartet (J =

—,'), specified by

This function has been determined by Suzuki, Okazaki,
and Hasegawa, within the framework of the effective-
mass approximation. Including s- and d-like envelope
parts, they used a variational procedure to calculate the

MJ
explicit structure of the wave functions 0' of the
acceptor —ground-state quartet. Each wave function can
be represented as a linear combination of six orthogonal

MJ
component vectors 4;, whereby one of these includes
only s-like terms, and the remaining five have only d-like
character. Thus the wave function can be written as

A. Stress-induced energy splitting

For stress along a threefold- or fourfold-symmetry axis,
the 2+ quartet splits into two doublets, MJ=+ —,

' and
+—,', with an energy separation A. In the case of a cubic
system with uniaxial stress X along the [001] direction,
the elastic-strain components are

e =e =SizX,
e„=SiiX, (2.3)

direction of the external stress as the axis of quantization.
Thus, for uniaxial stress along [001],a corresponds to x,
y, and z of Eq. (2.2). In the case of [111]stress, a refers
to the axes of a coordinate system with the z' axes (a=3)
along the [111]direction. The x' and y' axes are chosen
along the [110] and [112], respectively. L„, L, and L,
must then be decomposed along the new coordinate
axes.

5

e '= gee, ', (2.1) exy exz eyz

i=0

where in a first step of the variational procedure the
coefficients C, have been determined, and then in a
second one the corresponding effective Bohr radii de-
scribe the extent of the wave function. We approximate
the wave function of the second hole by the single-
particle function of Suzuki et al. with effective Bohr radii
of about 1.5 times the values of the neutral-acceptor

MJstates. The expression for the wave function N; is de-
rived for the axis of quantization along [001]. Fjeldly
et a/. worked out the corresponding expression for the
axis of quantization along [111].

The strain Hamiltonian describing the coupling of pho-
nons to the 3 + state and the splitting of the ground-state
quartet by external stress can be derived from symmetry
considerations:

HI =Dd(e +e +e„)+2D„[(L —
,'L )e +c.p. ]—

and for the [111]stress direction, they read

e, =e =e„=—,'(S»+2S,2)X,

exy exz ezy 3 S44X
(2.4)

6=—', D„"(S„—S,2)X,

and for stress along [111],

6=—2D„".S44X .

(2.5)

(2.6)

D„and D„. are the 3 +-state deformation-potential con-
stants depending on the coefficients C; of the wave func-
tion (2.1).

where S&&, S&2, and S44 are the cubic-compliance con-
stants.

The separation 6 of the two Kramers doublets for
stress along [001] is

+D„[(L„L +L L )e, +c.p. ], (2.2) B. Valence-band structure in the presence of strain

where I. is the a component of the angular-momentum
operator L (L =1). a=x, y, or z refers to the fourfold-
symmetry axes. Dd, D„, and D„. are the valence-band
deformation-potential constants. c.p. denotes cyclic per-
mutation of the indices x, y, and z. e & are the conven-
tional strain components. The coupling of the totally
symmetric part of the elastic distortion is neglected, since
it yields only a constant energy shift without splitting of
the ground state. D„and D„define the valence-band
splitting for uniaxial stress along the [001] and [111]
directions, respectively.

The strain Hamiltonian (2.2) describes the splitting of
the energy in the 3 + state quartet caused by static strain
and the coupling of the A + state to phonons. In both
cases the Harniltonian operates on the A + wave function
(2.1). The calculations can now be carried out by
representing Hl as a 6X6 matrix within the same basis

M~
we used to build up 4 . It is convenient to choose the

In the absence of stress the interaction between the de-
generate valence bands at k =0 disturbs the energy sur-
faces and leads to quartic terms in the wave-vector ex-
pansion. These warped surfaces are described in terms of
inverse-mass band parameters. 2, 8, and X. ' Uniaxial
stress lifts the cubic symmetry of the crystal and removes
the degeneracy at k =0. For stress along the [001] and
[111] directions the decoupled states are degenerate
Kramers's doublets identified by the quantum number
+MJ. In the case that the applied stress is strong enough
to decouple the two bands with J=—,

' completely, their
energy surfaces are ellipsoidal. '

Without strain the energy surfaces for the J =
—,
' band

are

gk 2+[g 2k 4+ C2(k 2k 2+ k 2k 2+ k 2k 2) )1/2 (2 7)

where C again is an inverse band parameter depending on
X and 8.' The plus and minus signs in (2.7) refer to
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heavy and light holes, respectively. The J=
—,
' band has

spherical energy surfaces given by
E)g2(k) = [ A —

—,'N (1—2e'/A)]ki

+[3+ N(1 2E /A ]kll s /2 (2.16)
E(k)= 3k —A, (2.8)

with the energy lowering A=0.044 eV caused by spin-
orbit interaction.

For stress along [001] the eigenvalues of the Hamiltoni-
an describing the valence-band states are to lowest order
in k,

ancl

E„,(k)=(A+ ,'B)k2i-+(A —B)k'„+s/2

Eii2(k) =( 2 ,'B)k—i—+(2 +B)k
ii

—E/2,

(2.9)

(2.10)

where

k2 k 2+k 2 and k2 k2
x y II z (2.11)

E», (k) =( 2 + ,'N)k,'+( 3-—,'N)k'„+E'/2 (2.12)

c is the energy separation between the two Kramers's
doublets and is obtained from (2.5) by replacing D„" by
D„. Thus, the energy surfaces near k =0 become ellip-
soids with axis of symmetry along the stress direction.
For stress along [111]the eigenvalues to lowest order of k
are

D. Effects of fourth-order terms

Second-order perturbation theory leads to a correction
of the energy surfaces discussed in the preceding two sub-
sections that is given by fourth-order terms in the three
variables k, k, and k, . These terms are important when
the applied stress is not strong enough to decouple the
upper two valence bands completely. In this case their
nonparabolic structure becomes significant. The second-
order perturbation-energy correction for the band with
J =3 and MJ=21 1s glvenby

(2.17)

For the case of applied stress along [001], U and V are

U= —Nk, (k, +ik )
1

3
(2.18)

ancl

for stress along the [111]direction, while Eqs. (2.9) and
(2.12) remain unchanged. In low order the inverse
eft'ective mass of the states with MJ =+—,

' depends linearly
on the stress.

k2 k2+k2 and k2 k2
1 2 II

(2.14)

The splitting E' can be obtained from Eq. (2.6) by replac-
ing D„by D„.. Again the energy surfaces are ellip-
SOHis.

C. Linear mass shift due to valence-band mixing

E,y2(k)=( Q —
—,'N)ki+( 3 + ,'N)k[~ —8'/2, —(2.13)

where

V= B(k„—k )+ Nk ky .
3

For stress along [111],U and V are given by

U= — (8 —N/3)(k ik )—1

v'6 1 2

+ —(28 +N/3)k3(k, +ik2)
1

3

and

(2.19)

(2.20)

+ [2 +8 (1—2s/A)]k~i —E/2

for stress along [001],and

(2.15)

The existence of the degeneracy with J =
—,
' in the case

of X =0 is a consequence of the spherical isotropy of the
spin-orbit interaction. This isotropy is violated by uni-
axial stress, resulting in a splitting of the terms and a
mixing of the eigenstates of J =

—,
' with J=—,'. Since MJ is

still a good quantum number under uniaxial stress, the
mixing takes place only between the two doublets with
MJ +

2
The degree of mixing depends on the relative

strength of the strain energy c. or c' to the spin-orbit sepa-
ration A. If one calculates the energy bands by omitting
the off-diagonal elements of the Hamiltonian for the
valence-band states, the energy surfaces described in the
preceding subsection are obtained. When including the
o6'-diagonal elements, and thus taking into account the
admixture of the spin-orbit-split-off state (J =

—,'), Eqs.
(2.10) and (2.13) are modified and read

E, i2(k) = [3 —
—,'8 (1—2E/A)]ki

—(8/2+N/3)(k, +ik2)
3

—( —')' (8 N/3)k3(k) —ik2), — (2.21)

K. Phonon matrix elements

For the description of the dynamics of the system, the
coupling of the A+ state to acoustic phonons has to be
considered instead of the coupling to static deformations
discussed in Sec. IIA. The elastic constants e &

can be
expressed by the displacement vectors u of the atoms by

Bu Bup
e p

—— + (a,P=x,y, z) . (2.22)

The displacement u can be expanded in terms of the vi-

where the coordinates (1,2,3) are chosen so that 3 is
parallel to the stress axis [111]. 1 and 2 are along the
[112] and [110] axes, respectively. This second-order
correction for the energy always leads to an increased
erat'ective mass and is directly proportional to the applied
uniaxial stress.
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brational modes of the crystal. This leads to
1f2 i=O

u(r)= g
q, p QA,

e &[exp(iq r)b z

+exp( i—q r)bz~&] .
+D„g Pg 'C f'.

i=0
(2.28)

f0=(1+r,q )

and the d-like part

f2=r2q (1+r2q )

(2.25)

(2.26)

r, and r2 are the effective Bohr radii for the s™and d-like
parts, respectively. These form factors reflect the strong
dependence of the electron-phonon interaction on the
phonon energy since the wave lengths of the phonons
that are important for the scattering process are compa-
rable to the effective Bohr radii.

As a result, the matrix elements M can then be written
as sums of products between the amplitude factors C; and
the form factors f0 and f2,

(2.23)

6qp and b & are the annihilation and creation operators
for the phonon with wave vector q in the branch A, , co„& is
the angular frequency, and eq& is the polarization vector
of the phonon. M is the wass of the crystal. Here the
long-wavelength approximation for the phonon disper-
sion is used,

co,,=c,, lql . (2.24)

The matrix elements describing the phonon-induced cou-
pling between the stress-split doublets of the A + state
and the valence-band states are obtained by substituting
the expansion in normal modes for the strain components
(2.22) and (2.23) into the strain Hamiltonian (2.2). We
use the wave function as discussed in Sec. II for the 3+
state and Bloch waves in the same representation for the
valence-band states. The axis of quantization is chosen
along the direction of uniaxial stress.

The matrix elements contain integrals over the space
variables that consist of products between the various s-
and d-like angular parts of the 2 + state (Ref. 7), their ra-
dial parts, a phase factor e'&' from the expansion of the
strain components into normal modes, and a factor e'"'
from the Bloch function of the valence-band state. These
integ rais are rather complicated, but assuming that
lkl « lql the integrations can be performed analytically.
As a result, one is left with only two form factors, which
appear in different linear combinations in the matrix ele-
ments for the various transitions between the states of the
A + quartet and the upper valence bands. The s-like part
of the A + state gives a form factor f0 which reads

The a; and P; are complex numbers and f '= fo for i =0
and f '=f2 for i WO lM. J ) is the valence-band state and

lM~ ) =l'0 ) is the 2+ wave function (2.1) with J=—'„
respectively. We have calculated the explicit expressions
for the coupling constants for two cases of configurations
with different stress and phonon-propagation directions:
(i) uniaxial stress along [001] with qll[100], and (ii) stress
along [111]with qll[110]. In order to obtain analytic ex-
pressions, a quasi-isotropic model for the elastic proper-
ties of the crystal has been adopted. This results in sim-
ple expressions for the polarization vectors e & for the
three acoustical modes.

F. Phonoconductivity

cr„=V lim J e "R„(P,t)dt (2.29)
c,~O . 0

where V is the volume of the system, p=(k~ T) ', and
the correlation function R (p, t) is defined as

R„.(P, t) =j (J.( —i%A )J„(t))dl, . (2.30)
0

( ) denotes Tr[p. ] with

e t1H yTr( /3H)——
(2.31)

The Hamiltonian H consists of three parts:

Phonons with energy greater than the binding energy
of an A + state can neutralize this state and create mobile
charge carriers, which causes an increase of the electrical
conductivity. We use the Kubo formula to derive an ex-
pression for the phonon-induced change of conductivity
by means of Mori's formalism. Within this formalism,
the model can easily be extended in order to describe
concentration- and temperature-dependent effects. Al-
though we do not discuss these dependencies in this con-
text, we want to give here already a short description of
the more general theory.

We want to remark, however, that the calculations as
well as the mentioned generalizations can also be done in
the framework of conventional transport theory. "' As
pointed out by Lax, " in the weak-coupling limit the
Kubo formalism leads to the same results as the usual
transport theory.

The components of the conductivity tensor in the
zero-frequency limit are given by

v ~ = ( MJ I ~I I MJ )
J

f1CO gq

q g 2Mc~

MJ MJThe coupling constants C„& are given by

(2.27)

H =HI, +H h+HI . (2.32)

H& is the Hamiltonian of the 3 + and valence-band states
of the holes,

H~ = g E(k)aka&+E" g aj aj, (2.33)
k J

where ak, ak and aj, aj are the creation and annihilation
operators for a hole with wave vector k in the valence
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band and for a hole on an acceptor at site j, respectively.
E(k) defines the energy surfaces and —Z" is the binding
energy of the A+ states.

The Hamiltonian of the phonons is written as

H(h = g %coque(bqqbqq+ —,
' ),

q, A,

(2.34)

and HI is the Hamiltonian (2.2) written in second quanti-
zation containing the matrix elements (2.27). In the
second quantization the operator of the electric current
reads

J =eh' ka(, a), mh '(k),
k

(2.35)

iLA =(iA) '[A, H]j . (2.37)

We multiply Eq. (2.36) from the right-hand side with
(1—P)J(0), use the following definition of the projection
operator P,

(2.38)

with

where m), (k) is the mass of a hole in the valence band
with wave vector k.

To proceed further, we have to determine the time
dependence of the correlation function R„(13,t). For
simplicity, we assume that the system is isotropic, so that
the electric field in an arbitrary direction leads to a
current in the same direction. Thus, the problem is re-
duced to one dynamical variable J.

To derive an equation of motion for the correlation
function R (P, t), we use as starting point the disentan-
gling theorem, ' written as

ei(1—P)Lt iLt+ f d iL(t —~)( iPL) ((1 P)L7—
0

(2.36)

with the Liouville operator I. defined as

(2.44)

we obtain the following equation of motion for the corre-
lation function S(t):

S(t)= —f d~C '(JlLe" ' LJ)S(t —~) .
0

(2.45)

I.& and L, h are the Liouville operators of the holes and
the phonons, respectively. Equation (2.47) has the solu-
tion

S(t)=8 (2.48)

where the inverse relaxation time z is given by

= f dr C (LJle " t'" LJ)
0

(2.49)

The determination of expression (2.29) is reduced to the
calculation of the relaxation time ~. The relaxation time
~ is a temperature-dependent quantity. This is a more
drastic restriction than in usual transport theory, where
the relaxation time is energy dependent.

From the comparison of Eqs. (2.30) and (2.43), we get
an equation of motion for the correlation function R (/3, t)
that can be integrated and inserted in Eq. (2.29). Then
we end up with the following expression for the electrical
conductivity:

Assuming that 4 decays on a time scale so small that
S(t —r) is essentially constant on the same scale, we can
perform the Markovian approximation in the equation of
motion for S(t), which yields

S(t)= —f dr C '(LJle'' 'LJ )S(t) . (2.46)
0

Additionally, since small interactions between the holes
and the phonons are assumed, the Born approximation
can be applied. Then Eq. (2.46) is reduced to

S(t)= —f d~C '(LJle " '" LJ)S(t) .
0

(2.47)

(2.39) o (P) = V 'Pr(P)C (P) . (2.50)

and take into account the property' The operator of the electric current commutes with H&.
Additionally, the commutator of an operator of the hole
system with an operator of the phonon system is zero.
From these properties it follows

( JliLJ ) =0 (2.40)

(L„+L „)lJ)=0. (2.51)

of the current operator. Thus, we obtain

J(t)= —f dr@ (r)J(t —w)+e'( ) '(1 P)J(t), —
0

where N* is the complex conjugate of

C&=C '(Le' ' ' '(1 P)LJlJ) . —

(2.41)

(2.42)

As an approximation for the case of weak hole-phonon
coupling, we perform the scalar product (2.43) only with
regard to po and Ho. Thereby the density operator is fac-
torized into

This equation describes the time evolution of the opera-
tor J. We use the following definition of the scalar prod-
uct:

p=po phpph

with the density operators PI, and pph of the uncoupled
holes and phonons, respectively, and

lAa) =P 'f dX(e-'"A*e '"a &-
0

(2.43) Ho=Hh+H„h . (2.53)

Inserting (2.41) in the scalar product describing the corre-
lation function for the correlation between J(0) and J(t),

Inserting Eqs. (2.51) and (2.52) into (2.49) and (2.39), we
obtain
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'(P)=C '(P) f dr(LIJ~e LiJ)

C(P)=(J(O) J(0)), (2.55)

we end up with

C(P)=e A' Vm m 3

X f dk k (1+eP '"') '(1+e ~ '"')
0

C(P)=e fi m& g kk'Tr[p, a&a&ak. ak ] .
kk'

(2.56)

Taking into account that E (k) is symmetric in k, going
over from summation to integration, and using the densi-
ty of states

D (k) =2V(2ir) (2.57)

where Lo is the Liouville operator of Ho. Thus, r (p) is
of second order and C(p) of zeroth order in HI. Further
on, we have used the hermiticity of I.o in the scalar prod-
uct with respect to po and Ho. The calculation of the
conductivity is reduced by Eq. (2.50) to the calculation of
the relaxation time r(p) and the quantity C(p). Using
the commutator relations for Bose and Fermi operators,
together with Eqs. (2.35), (2.52), and (2.31), the expression
(2.55) for C(P) yields

C(p) 4Ve2m 5/2~ —2m —2g —3J/[3(pC )5/2]

with

J=f dyy' cosh y
0

=2' '(1 —2' ')&(—')g( —')

(2.59)

(2.60)

in the case of zero stress.
For each MJ the form of E(k) has been assumed to be

E(k)=C2fi'k'/2m +C4A' k~/4m2 . (2.61)

With these results and with the commutator appearing in
Eq. (2.54), which is of the form

(2.58)

The integral can be solved by transforming k to
y =pE(k)/2. We get

[H, J]=
T

ACOqp

q g 2Mc~X
1/2

MJ MJV A

ehkm& &qP &qPaQ aj (2.62)

an expression for the relaxation time ~ can be derived. Going over from summation to integration and using a Debye
model for the phonons, we end up with a relaxation time w of the form

r '(P)= V e fix. C '(P)(m& l3) g f dq q ~M „~ (e ' 1) '(1+—e~ )

X f "dk k'(1+e-&""')-'S(~~ +E"—E(k)),
0 qA, (2.63)

with

F. = —Eo +5/2
+3

for MJ = '+,
2

(2.64)

Eo is the binding energy of the 3 + state without stress.
With this we arrive at the following expression for the conductivity o (p):

o (P) — f dq q o (E „)(e '" —1) (2.65)

The temperature-dependent expression for the conductivity o (p) is obtained from the energy-dependent expression
o.(E~„)with

E h=h~ g, (2.66)

by integration over the phonon distribution in equilibrium. The phonoconductivity o(E h) is defined in Eq. (2.65),
which gives

with

o(E )— —2 P (C J I )2

MVMA~
"

2MC
J S J

X[1+exp(PE")] '[1+exp[ P(E h+E )]I 'k„(IIC2fi —k„/m+C4A k„lm ~) (2.67)
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k„=(2m B [
—Cz+ [Cz+4C„(E „+E"+e/2)]' I (2C&) ')' (2.68)

for MJ =
—,', and

k„=[2m% C2 '(E„t,+E"—s/2)]', C~=0 (2.69)

for MJ
The effective mass of the hole in a valence-band state

~Mz ) is a function of the k vector of this state,

mh 1=1 232EMgk)/ak2
J

(2.70)

III. RESULTS

Taking the k correction for the energy surface of the
valence band and the valence-band mixing into account,
our theoretical model is able to describe qualitatively the
behavior of the experimental observations. ' To measure
the phonoconductivity, thin Al junctions, used as tunable
phonon generators, are evaporated on one side of the
crystal sample. For the measurement of the phonon-
induced conductivity, Al contacts are evaporated on the
opposite face, which can be illuminated with light for
generating a sufficiently large number of carriers, neces-
sary for the production of A+ states. ' In contrast to
FIR-photoconductivity results, ' the behavior of the pho-

The distribution functions in Eq. (2.67) describe the pos-
sibility of exciting a hole from the 3+ state into the
valence band, taking the occupation of the valence-band
states and the 3+ states into account. The inhuence of
applied uniaxial stress enters the expression for the pho-
noconductivity through its dependence on the structure
of the energy surfaces of the valence band, E Pk). In

J
addition, due to the mixing of the valence-band states
with MJ =+—,', expressions (2.28) are also stress depen-

dent, which is determined by the alternation of the
coefficients a; and P; with stress.

noconductivity response is much more complicated, due
to the reduced electron-phonon coupling for short-
wavelength phonons.

Figures 1 and 2 show the comparison between the ex-
perimental measurements of Gross et al. ' and our
theoretical calculations in the case of In+ in Si. The pho-
noconductivity is plotted as a function of the phonon en-

ergy. The calculations have been carried out for various
values of uniaxial stress along the [001]direction with the
k correction for the energy surface and the valence-band
mixing discussed above. The deformation-potential con-
stant of In+ in Si is smaller than the deformation-
potential constant of the valence band. Thus the thresh-
old energy shifts to smaller values under uniaxial stress,
and the form factors fo and f2 lead to an increased
response signal. The k" correction for the energy surface
in the case of 328 bars in Fig. 1 causes the stronger de-
crease of the conductivity with increasing phonon energy,
compared to the case of zero stress. Uniaxial stresses of
707 and 1191 bars are strong enough to decouple the
valence bands completely. In these two cases no
inhuence of the quartic terms in the wave-vector expan-
sion of the energy surfaces can be seen. It was already
pointed out by Suzuki et al. that in the case of acceptors
in Si the ionization energy calculated by their variational
wave function gives, in fact, the correct overall behavior
of the experimental tendency, but differs quantitatively
by more than 20% from the measured energy values.
Therefore, and in order to improve the agreement be-
tween the experimental and theoretical results, we have
6tted our phonoconductivity response signal by varying
the coefficient Co of the A+ wave function. Co describes
the s-like parts of the wave function and is the dominant
coefficient. To ensure the normalization of the wave
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FIG. 1. Phonoconductivity response signal of In in Si for
uniaxial stress along [001]. Comparison between experiment
(solid line) and theory (dashed line). a, 0 bars; b, 328 bars.
(r& =20 A, r2=13 A, D„=2.0 eV, D„=3.2 eV.)

FIG. 2. Phonoconductivity response signal of In in Si for
uniaxial stress along [001]. Comparison between experiment
(solid line) and theory (dashed line). c, 707 bars; d, 1191 bars.
(r, =20A, r, =13 A, D„=2.0eV, D„=3.2 eV. )
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FIG. 3. Phonoconductivity response signal of 8+ in Si for
uniaxial stress along [111]. Comparison between experiment
(solid line) and theory (dashed line). a, 0 bars; b, 411 bars.
(r& =25 A r2=16 A, D„=2.0eV, D„=3.2 eV. )
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FIG. 4. Phonoconductivity response signal of B+ in Si for
uniaxial stress along [111]. Comparison between experiment
(solid line) and theory (dashed line). c, 637 bars; d, 800 bars.
(r& =25 A, r2=16 A, D„=2.0 eV, D„=3.2 eV.)

function, we have changed the value of C2, the amount of
which is the greatest of the coefficients describing the d-
like parts of the wave function. The best agreement was
found for a value of Co that is 20% below the value
determined within the effective-mass approach by the
variational calculation of Suzuki et al. With this fitting
procedure, we obtain the same behavior of the response
signal as in the experimental observations of Gross
et al. ' The structure in the experimental phonoconduc-
tivity signal at phonon energies below the binding energy
and the slower decrease of the experimental signal at high
phonon energies is due to the fact that the spectrum of
the tunnel junction contains not only a monochromatic
peak at the phonon energy eU —26G, where U is the
voltage at the tunnel junction and 2AG the energy gap of
the junction, but also a precursor at the phonon energy
eU and an approximately continuous contribution at the
phonon energies below eU —26G. '

The phonoconductivity of B+ in Si with the k correc-
tion and the valence-band mixing is compared with the
observed signals in Figs. 3 and 4. Here the direction of
uniaxial stress is taken along [111]. The decrease of the
phonoconductivity signal with low stress is caused by the
k correction and the splitting of the B+ and the
valence-band states with applied stress. This changes the
occupation of the B+ states and shifts a part of the tran-
sition to higher energies with decreased form factors.
The sharp line appearing when the stress is increased is
caused by two effects. First, with the onset of decoupling
of the valence bands, the effective mass of the mobile
charge carrier is reduced and leads to an increased con-
ductivity. Second, the k correction has the opposite
effect. It increases the effective mass at higher phonon
energies and suppresses the conductivity signal. With
higher values of applied stress, the signal is shifted to
higher energies. This is a consequence of the different
deformation-potential constants of the valence band and

the 3 + state. When the stress is strong enough to
decouple the valence bands completely, the k correction
can be neglected. This leads to a signal as in the case of
800 bars in Fig. 4. Again, with the same coefficients C;
for the wave function as in the case of In+ we obtain
good qualitative agreement with the measurements of
Gross et al. ' As in the case of In+, the structure of the
experimental signal at phonon energies below the binding
energy of the 3 + state and the slow decrease of the ex-
perimental signal at high phonon energies is due to the
spectrum of the tunnel junction.

The phonoconductivity response signal is very sensitive
to the power of k in expression (2.67). Since the second-
order correction of the energy surface. (2.17) is only valid
in the region near k =0, one does not know the correct
shape of the valence band for larger values of the wave
vector k. A small correction of the wave-vector expan-
sion of the energy surface can have striking effects on the
phonoconductivity. This can be seen in Figs. 3 and 4,
where the k correction is important in order to explain
the experimental observations.

To summarize, we have shown that the phonoioniza-
tion of 2 + states in Si has a strong dependence on the
phonon energy due to the reduced electron-phonon cou-
pling of short-wavelength phonons. Further, our calcula-
tions demonstrate that stress tuning of the valence-band
structure (decoupling of degenerate bands and valence-
band mixing) has striking eff'ects on the phonoconductivi-
ty response signal, as is also observed experimentally.

ACKNOWLEDGMENTS

We gratefully acknowledge valuable discussions with
P. Gross and K. Lassmann and we would like especially
to thank P. Gross, who has placed his measurements at
our disposal. We want to thank the Deutsche
Forschungsgemeinschaft (DFG) for financial support.



PHONOIONIZATION OF A+ STATES IN Si UNDER. . . 5543

~W. Burger and K. Lassmann, Phys. Rev. Lett. 53, 2035 {1984}.
M. Taniguchi and S. Narita, Solid State Commun, 20, 131

(1976).
S. Narita, T. Shinbashi, and M. Kobayashi, J. Phys. Soc. Jpn.

51, 2186 {1982).
4W. Burger and K. Lassmann, Phys. Rev. B 33, 5868 (1986).
5R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
M. Mori, Prog. Theor. Phys. 33, 423 (1965).

7T. Fjeldly, T. Ishiguro, and C. Elbaum, Phys. Rev. B 7, 1392
(1973).

K. Suzuki, M. Okazaki, and H. Hasegawa, J. Phys. Soc. Jpn.
19, 930 (1964).

H. Hasegawa, Phys. Rev. 102, 1029 (1963}.

J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).
M. Lax, Phys. Rev. 109, 1921 {1958).
L. Van Hove, Physica 21, 517 (1955).
R. P. Feynman, Phys. Rev. 84, 108 (1951).

~4B. J. Berne and G. D. Harp, in On the Calculation of Time
Correlation Functions, Vol. 17 of Advances in Chemical Phys-
ics, edited by J. Prigogine and S. A. Rice (Wiley-Interscience,
New York, 1970).

~ P. Gross, M. Gienger, and K. Lassmann, Jpn. J. Appl. Phys.
(Suppl. 3) 26, 673 (1987).
N. Sugimoto, S. Narita, M. Taniguchi, and M. Kobayashi,
Solid State Commun. 30, 395 (1979).

~ W. Burger, Ph.D. thesis, University of Stuttgart, 1986.


