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Valence-subband structures of GaAs/Al„Ga, „As quantum wires:
The effect of split-off bands
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Urbana, Illinois 61801
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The valence-subband dispersion for GaAs quantum wires in Al, Ga& „As host material is calcu-
lated in a coupled-band effective-mass model in which the split-off bands are included. We derive
the symmetry-adapted basis functions valid at all k for quantum wires of square and rectangular
cross sections. Coupling to the split-off bands is seen to leave the uppermost valence subband large-
ly unaffected near the zone center while the other subbands are more markedly affected. This is in
contrast to the case of quantum wells where only the light-hole subbands are coupled to the split-off
subbands at the zone center.

INTRODUCTION

In the recent past improved techniques in microfabri-
cation have led to the development of several new ul-
trasmall semiconducting structures. ' In turn, predic-
tions of high carrier mobilities in quasi-one-dimensional
structures, or quantum wires (QWR's), have provided an
impetus for further developments in fabrication. Several
such calculations ' predict enhanced carrier mobilities
for certain QWR designs thus opening possibilities of new
applications in devices.

Recently papers have appeared in the literature
dealing with the conduction-subband dispersion in
GaAs/Al Ga, „As QWR's. Using a pseudopotential
scheme it was found' ' that for thick QWR's
() 100X 100 A ) the infinite-well model is valid for the
lowest energy level. In this model, the x and y depen-
dence of the wave function are independent. For thinner
wires, all levels are affected by coupling between the two
directions perpendicular to the QWR. The valence-
subband dispersion has also been calculated, focusing on
its dependence on QWR cross-sectional size, ' in the
infinite-depth potential-well limit, ' and as a function of
crossed electric and magnetic fields perpendicular to the
QWR axis. ' Excitonic properties associated with the
lowest conduction and the uppermost valence subbands
have also been calculated. ' All of these calculations be-
gin with the Luttinger-Kohn Hamiltonian neglecting
the split-off bands and using a spherical approximation '

in which y2 and y3 are set equal to an average value. Re-
cently though, optical transitions involving the split-off
bands in GaAs/Al Ga& As superlattices have been ob-
served in photoluminescence-excitation spectroscopy
and in electroreAectance experiments. Thus it is of in-
terest to investigate how the split-off subbands affect the
upper valence subbands for the QWR by coupling the
bulk I 7 split-off bands to the bulk I'8 bands. For the

CHOICE OF BASIS

We consider a QWR in the efFective-mass approxima-
tion. The QWR we treat has a rectangular cross section
with sides of length 8" and W and has its axis in the
[001] (henceforth z) direction. The Kane Hamiltonian
with spin-orbit coupling is adapted to include the effects
of the hole confinement,

Hk 0
H 0 H

I 0
+H„+v(x, y)

where

QWR the coupling at the zone center is more complicat-
ed than for the quantum well (QWL). It is shown in this
paper that inclusion of the split-off bands in the, calcula-
tion leads to effects in the dispersion of the valence sub-
bands, while giving approximately the same result as the
infinite spin-orbit splitting model for the uppermost sub-
band.

In this study we calculate the valence-subband disper-
sion for a GaAs QWR embedded in Al Ga, As barrier
material. We employ a coupled-band efFective-mass
equation which, unlike published results, ' ' includes
the two bulk I 7 split-off bands as well as the four bulk I 8

bands which we solve by the Rayleigh-Ritz variational
principle. Thus the treatment is additionally applicable
to systems with small spin-orbit splitting. Also our treat-
ment does not make use of the spherical or axial approxi-
mations. The material parameters of GaAs are used
throughout. Since we treat only small Al concentrations,
we expect this to be a good approximation. We use a
phenomenological two-dimensional square-well potential
to model the hole confinement.
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further simplified in that the Hamiltonian reduces to two
pairs of 6 X 6 blocks and two pairs of 3 X 3 blocks, the
latter giving the split-oft bands.

The product under consideration is (I ~&I'2$I 3%I 4I &)(I &%I 5)cgjl &, where the first factor is for the en-
velope functions, the second factor for the p-like orbitals,
and the last factor for the spin- —,

' spinors. This product
gives bases of I 6, I 6 ', I 7, and I 7

' symmetries.
The I 6 and I 6

' subbands are Kramers degenerate as
are the I 7 and I 7

' subbands. Since the I 7 basis is
easily obtained from the I'6 basis by a simple change of
symbols, we shall only consider the I 6 basis. Using the
notation and tables of Ref. 27, we obtain the following
I 6 basis states:

Although the square cross section QWR is a special case
of the rectangular cross section and may not be realized
in practice, there are two reasons for treating the QWR
of square cross section. The first is that by doing so, cer-
tain features of the subband dispersion may be attributed
to the reduced dimensionality of the system. The second
reason is computational; the higher the symmetry of the
system, the greater the degree to which the Hamiltonian
block diagonalizes. We solve the eigenvalue problem for
the QWR of square cross section by truncating the sum-
mations over i and j at 7 in Eqs. (A4) and (AS) of the Ap-
pendix and choosing the P s to maximize (in the electron
picture) the uppermost hole subband energy at each k. In
the calculation for the QWR of rectangular cross section,
the summations over i and j are truncated at 5. The
Raleigh-Ritz variational principle gives a lower bound
(again in the electron picture) for the uppermost subband.
The deeper subbands are thus less accurate than the up-
permost subband.

In Fig. 1 is plotted the valence-subband dispersion for
a GaAs/Alo zGao sAs QWR of square cross section with
ides of length 8 = 8 = 8'=100 A using the I uttinger

parameters y&=6. 85, y2=2. 1, and y3=2. 9. The ener-
gies are displayed in the electron picture; they are the
negative of those obtained from the Hamiltonian H. The
solid curves are for 6=340 meV and the dashed curves
for 6= ~. In Fig. 2 is the valence-subband dispersion of

0
a rectangular cross section QWR with W =75 A and

Wy 100 A Otherwise, the parameters are the same as

0 0

S
i Z

0
0
0

S,
2

x' —y'
2

0

x = 0.2 W„= 75k W& ——100$

where the components of the six-dimensional column
vectors are ~X) t, ~Y) f, ~Z) l', ~X) $, ~

Y) J, , ~Z) 1, . The
I 7 basis states are obtained by interchanging R +-+xy,
S ~x y and x~y.

We now consider a QWR of rectangular cross section
so that we now allow for W„AW . With the change in
cross section from square to rectangular, the symmetry is
reduced to C2, . The basis states are now of I 5 symme-
try. The Cz, basis states are the previously described C4„
basis states of I &~ symmetry of expression (3) together
with the basis states of I 7 symmetry. The details of the
numerical computations for the matrix elements of the
Hamiltonian are given in the Appendix.

The previous group theoretical treatment is valid at all
k. For the QWL (Ref. 28) the point-group symmetry is
severely reduced at arbitrary k compared with at the
zone center.

0
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COMPUTATIONS AND RESULTS

We calculate the valence-subband dispersion for
QWR's of both square and rectangular cross sections.

FIG. 2. Valence-subband dispersion in the [001]direction for
a GaAs/Alo 2Gao &As QWR of rectangular cross section with

0 0
sides of lengths 8'„=75 A and 8'~ = 100 A. Solid curves are for
6=340 meV, dashed curves for 5= ~. All subbands are I 5.
The zero of energy is taken at the bottom of the potential well.
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those used to obtain Fig. 1. The plots account for some
of the features observed in published results of QWR
valence-subband structure. The crossings between sub-
bands of I 6 and I 7 symmetries in Fig. 1 (QWR of square
cross section) are not present in Fig. 2 (QWR of rectangu-
lar cross section). The upper few subbands of Fig. 1 are
qualitatively similar to those of the figures of Ref. 17
where superimposition of the plots from that reference
reveals crossing subbands. The QWR treated in Ref. 17
is of circular cross section. Hence, the subbands calculat-
ed in that work can be labeled as I 6 and I 7 in the C4,
point group and accidental degeneracies can and in fact
do occur. Figure 2 is most fruitfully compared with Fig.
2(a) of Ref. 16 in which the valence subbands for QWR's
of rectangular cross section are treated. [We do not plot
the valence subbands for a QWR with W„=50 A and
W~ = 100 A as in Fig. 2(a) of Ref. 16 since the further the
cross section deviates from square the more difticult it is
to optimize the I3, 's in order to assure accuracy. ] The
point group is now C2„all the subbands are I 5, and the
accidental degeneracies, such as those seen in Fig. 1, are
lifted. Thus, in Figs. 1 and 2 of this study and in the
plots of Ref. 16, we see that the subband repulsion, for
example between the upper two subbands, increases as
the QWR cross section becomes more oblong. The sub-
band dispersion progresses from pure QWR-like to
QWL-like.

In order to estimate the accuracy of the results ob-
tained by truncating the summations over i and j at 7, we
calculate the zone-center hole energies truncating the
summations at 11. The results for the material parame-
ters used to obtain Fig. 1 are tabulated in Table I(a). The
zone-center energies were found to be 0.4%%uo higher for
the uppermost subband ranging to 3% higher for the
lowest subband shown in Fig. 1.

It is of interest to compare the effect of the inclusion of
the split-off bands in QWR's and QWL's as many authors
have neglected them. Nevertheless, in a paper by Eppen-
ga, Schuurmans, and Colak, the split-off subbands are
included in a multiband effective-mass calculation of the
subband dispersion in GaAs/Al„Ga&, As QWL's. It is
shown that at the zone center, heavy-hole (HH) subbands
are uncoupled while light-hole (LH) subbands are cou-
pled to the split-off subbands. This is to be expected as
the 6X6 Luttinger-Kohn Hamiltonian including spin-
orbit splitting couples light-hole QWL subbands to the
split-off subbands at the zone center whereas the heavy-
hole subbands are not coupled to the split-off subbands at
k=0.

In order to carry out this comparison, we calculate the
valence-subband structure for a QWL for both b, =340
meV and 6= ~. We use the Hamiltonian of expression
(1) with k, = —iA'(i) /Bz ) and the basis

0 0 0 0 0
0
0 0

0
0

0 0 0 Z 0
0 0 0

0
0
0
0

0 0 0 0 0

The variational wave function is written as a sum of
Gaussians,

00
p 2

(r~e5t") =z g w„g c„(i)e
n =1,2, 6

5 oo
p+ g w„g c„(i)e

n =3

where w„ is a column vector with a 1 in the nth place and

TABLE I. The zone-center energies for the material parameters of Figs. 1 and 3 for 5=340 meV
and 6= (x) . Energies are in me V. Fractional energy difference in percent q is defined as

0
100(E~ „E~ 34O)/EQ —34—o, (a) is for a QWR with W„=R'~=100 A. The summations over i and j
are truncated at 11. (b) is for a QWL with W =100 A. The summations over i are truncated at 15.

(a)
subband Eb.=340 meV

—16.9
—27.0
—28.0
—37.8
—49.2

—17.1
—28.1
—28.5
—38.4
—50.8

subband

6
7
8

9
10

Eb, =340 meV

—52.6
—52.8
—65.6
—68.2
—74.7

—55.6
—55 ~ 3
—66.4
—72.4
—80.4

subband

HH1
LH1
HH2
HH3
LH2
HH4
HH5

(b)
Eg =340

—6.9
—19.9
—27.7
—59.7
—70.9
—96.3
—98.3

—6.9
—20.4
—27.7
—59.7
—73.9
—96.3
—98.3
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zone center, the heavy-hole subbands are independent of
the spin-orbit splitting. For both QWR's and QWL's,
this effect is most pronounced in small structures.

A refinement of this calculation would be to account
for the material parameter mismatch at the edge of the
QWR potential well. This would allow a careful investi-
gation of the split-off subbands for cases where the alumi-
num concentration x is sufFiciently large so the weB depth
is greater than the spin-orbit splitting. For the cases of
small x treated in this study, 6) Vo and the split-off sub-
bands lie in the bulk I 8-derived continuum.

Note added in proof. The following article came to our
attention after our paper was submitted: Xia Jianbai and
Huang Kun, Chin. J. Semicond. 8, 563 (1987) [Chin.
Phys. 8, 1062 (1988)]. In this work, the valence-band
structures of semiconductor quantum wires were calcu-
lated in the Luttinger-Kohn effective-mass theory, ex-
cluding the split-off bands.

f+( x—)=+f+(x) and g+( —x)=~g+(x). The Hamil-
tonian matrix in the basis given in expression (3) can be
written as

where the g„'s are envelope functions which take the fol-
lowing form.

f+(x)g (y),

for g4, g5,

f+ (x)g+ (y),

for g6,
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We would like to thank G. Einevoll, A. Cancio, and H.
Chu for fruitful discussions. This work was supported by
the OKce of Naval Research (ONR) under Contract No.
N00014-89-J-1157. The use of the computing facilities of
the University of Illinois Materials Research Laboratory
under National Science Foundation (NSF) Grant No.
NSF-DMR-86-12860 is acknowledged.

f (x}g (y» f-&g--
and for g9,

f+(x)g+(y» f+«+ .

APPENDIX: CALCULATION OF MATRIX ELEMENTS
The nonvanishing entries in the upper right triangle of H
contain the following operators h„„'

In the Appendix we give some of the details of the
computation of the matrix elements. We first focus atten-
tion on the QWR of square cross section.

The envelope functions in the basis states of I 6 sym-
metry in expression (3) which transform like R, S„
x —y, xy, x, and y have the following explicit forms.

For R,

f+ (x)g+ (y)+g+ (x)f+ (y),
for S„

f (x)g (y) —g (x)f (y), f &g

for x

f+ (x)g+ (y) g+ (x)f+ (y), f+&g+—

for xy,

f (x)g (y)+g (x)f (y),
for x,

f (x)g+ (y),

1
h36= — —g, (1+cr),

2

1
h3]] = —g„,(1+o ),

2

1
h39 = —g, (1+cr ),3'

h44=(l+o )—,'(T„+V)(1+cr),

(1+o ),3h45 =

h, ] =T„—T ycr+ —,'(V+o Vcr),

h]p h]3 h23 bi/3

h, 7 =ri, (1 cr ), —

h ~~
= T y + T„cr+ —,

' ( V+ o Vcr ),
h24=riy, (1+o },
h 33

=T„+—,
'

( V +o Vcr ),
1

h3~ = — —ri, (1+o.),pz

(A2)

and for y,

f+ (x)g (y),
where f+ and g+ are functions which satisfy

h~~ =
—,'(T„+T }——(1+o )+—,'(1+o ) V(1+cr),P3' 3

h56 = T y(1+o ),
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h, 9
= —h6s =

—,'(T„—T )(1 —cr ),

—,'( T„„+
&yy

)+—(1+o )+—,'(1+o ) V(1+cr ),

h77 =(1—o )—,'(T„—V)(1—o ),
a&ah„= (1—o),

hss= T'(T~~+Tyy) (1 o )+ ~(1 cr)V(1 cr)

hs9=T (1 cr—),

h99= 2 (T + Tyy )+ (1+o')+—(1+cr ) V(1+o')

where

T„„=Ak„+B(k,+k„A, ),
T„,=Ck„k„ for pAv,

gp~ l Tp~

and o is the reAection operator such that o g(x,y)
=g(y, x).

The remainder of the entries of H are obtained from
H H ' +ot t at g gx~ gv~ gv~
Hamiltonian H is a real symmetric matrix if g1, . . . , g9
are expanded in real functions. The Harniltonian matrix
in the I 7 basis is given by

where the envelope function g„ is related to g„by inter-
changing the + and —subscripts of the functions f+
and g+ in (Al).

The basis states in expression (3) (denoted by Ii &;

i = 1, . . . , 9) form a particularly convenient representa-
tion when 6=0, for in this limit the Harniltonian H
block diagonalizes by a rearrangement of rows and
columns. In the opposite limit, A~ (x), it is more instruc-
tive to consider a basis which diagonalizes H„(where so
denotes spin-orbit). This is achieved by the basis

ll &+12&
I & I &

~214&+15&
v'2 ' ' '

3

&217&+18& 12& —Il &+ 213&

+215 &
—14 & v'218 &

—17 & I
1 &

—12 & + 13 &

3
'

3
' v'3

The order of basis states in Eq. (A3) corresponds, in the
notation of Ref. 20, to the p3/2 p 3/2 f 3/2 p'1/2 ',

01/2 0—1/2 01/2 4'1/2 and P —1/2
(3/2) (3/2) (1/2) (1/2) (1/2)

three basis states arise from coupling to the heavy-hole
bands, the next three from the light-hole bands, and the
last three from the split-off bands. In the limit 6~00,
the latter are uncoupled from the first six states.

For the QWR of rectangular cross section, the Hamil-
tonian can be written in the following block form:

H AH" =

where H, A, and H' are 9X9 matrices. H and H' have
identical forms as the Hamiltonian matrices for the QWR
of square cross section with 1"6 and I 7 symmetries, re-
spectively. The matrix elements of A can be written as

~47=kgs=/4. 69= —A74= —As5= —A96= —,'(I+cT }V(1—o }

and the other symbols have their previously defined
meanings. The upper left 9X9 block reduces to the r61/2

problem for the case W„=8' while the lower right 9X9
block reduces to the I 7 problem. The nonzero entries
in the blocks A and A~ vanish for this case and the C4,
symmetry is restored.

Transformations analogous to those made to obtain
(A3) diagonalize the spin-orbit interaction. The Hamil-
tonian in such a basis is rather complicated though
straightforward to write down. We find that the basis
change is more easily effected after solving the problem
numerically.

In our calculations for QWR's of both cross sections,
we work with the Hamiltonians H, H', and H" and the
envelope functions g„and g„. Explicitly, we expand the
envelope functions entering into the I 6 wave function

00 —px —pg„=y g c„(i,j)e ' ', n =1,2, 3
i,j=1
00

p 2 p 2

c„(i,j)e ' ', n =4, 5
i (j=1

—P,.x 2 —P.V2
$6=xy g c6(i,j )e

i(j=1

g„=xy g c„(i,j)e ' ', n =7, 8
—p,.x —p.V

i (j=l
—p,.x —p.Vc9(i,j)e

i &j=1

(A4)

The envelope functions relevant to I 7 symmetry are ex-
panded as

g„=x g d„(i,j)e
i,j =1

00 —px —pf„=xy g d„(ij )e ' ', n =4, 5

—p,.x —p.Vd, (i,j)e
i (j=1

d„(i,j)e ' ' n =7,8
i (j=1

P x2 P V2

$9=xy g d9(i,j )e
i &j=1

Both the expansions for g„and g„are used for the QWR
of rectangular cross section.

(A5)

where the operators A,„„.in the nonvanishing entries of A
are given by

A, 12=A.21= —A,33=—,'(cr V—Vcr ),
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