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The problem of the many-body enhancement of the static spin susceptibility at long wavelengths
and its relation to the quasiparticle effective mass is investigated for a normal electron gas in two-

dimensional space as a function of the electronic density. We start from a discussion of the results
of the simple Hartree-Fock approximation for various interaction potentials and proceed to develop
a complete theory. We find that the effects of the electron-electron interaction are significantly

larger than in the familiar three-dimensional case. Our approach is based on a new self-consistent
scheme which goes beyond the simple random-phase approximation by explicitly allowing for
charge- and spin-Auctuation-induced vertex corrections of the Hubbard type. We show that when

the latter are neglected, the many-body enhancement of the spin susceptibility can be cast in a re-

markably simple and elegant analytic form.

I. INTRODUCTION

The enhancement of the paramagnetic spin susceptibil-
ity ys of an electron gas (EG) due to the electron-electron
interaction is a classic many-body problem. Pioneering
work on the subject goes all the way back to Bloch,
Wigner, and Sampson, and Seitz. ' The challenging aspect
of this problem is the fact that at metallic densities the
concomitant effects of exchange and correlation are both
large but opposite in sign and eventually lead to a value
for g& sensibly larger than the free-electron Pauli value.
Both for the three-dimensional (3D) and the two-
dimensional (2D) case within the Hartree-Fock (HF) ap-
proximation, in which only the exchange contribution is
retained, g& actually diverges for values of the parameter
r„ the average electron distance in Bohr radii, respective-
ly equal to (9n. /4)'~ =6.03 and n /2'~ =2.22. The situa-
tion is further complicated by the appearance of the more
exotic instabilities of the spin-density-wave type. ' At
metallic densities the effect of the correlations is to rid
the spin susceptibility of these instabilities. Ultimately the
correct many-body enhancement results from a delicate
balance of the two contributions.

The value of ys is physically accessible through a num-
ber of different experimental techniques. The situation is
particularly favorable since the effects of the electron-
phonon interaction can in general be safely neglected.
This makes the spin-susceptibility problem an especially
valuable testing ground for many-body theories.

For the case of a 3D EG there are reported data from
conduction-spin-resonance, spin-wave, Knight-shift, and
total-susceptibility measurements. Several theoretical
methods have been employed for the solution of this
problem for the 3D EG. ' In general it is believed that
there exists a reasonably good agreement between theory
and experiment, although Fig. 6 of Ref. 4 may raise some
doubts since the various theories arguably seem to cover
all the conceivable (as well the inconceivable), experimen-
tal results. More specifically there exists a theoretical
"consensus curve" of gz versus r„which not only ap-
pears to be supported by the experimental results, but has

been reproduced within a few percent via a variety of
diverse many-body techniques, ranging from self-
consistent-field approaches, ' microscopic Landau
Fermi-liquid analyses, ' to full fIedged perturbative-
theoretic calculations. ' ' In all cases the amount of ana-
lytic and numerical work necessary to reach the final
answer is considerable.

The major problem with the familiar three-dimensional
metals is that for obvious reasons the density dependence
of the many-body enhancement of g& can only be approx-
imately measured by looking at different materials. This
makes it difficult to clearly discern the sought
phenomenon amid band-structure effects whose relevance
varies from metal to metal.

For the case of a 2D EG the study of the many-body
enhancement of the static paramagnetic spin susceptibili-
ty has a decisive advantage in that currently available
quasi-two-dimensional electronic systems, notably the Si-
inversion-layer structures, are characterized by the rather
interesting possibility of varying the carrier density and
other intrinsic parameters within the same sample. ' This
offers the remarkable possibility of measuring g~ for a
range of density values while keeping constant other
uninteresting (albeit not necessarily irrelevant) factors.

In this case an experimental determination of y& can
be achieved by concomitantly measuring, by magneto-
transport techniques, both the quasiparticle effective
mass "' and the anomalous Lande g factor. ' '

The purpose of the present paper is to provide a theory
of the many-body enhancement of the static paramagnet-
ic spin susceptibility in a normal 2D EG at long wave-
lengths and discuss the density dependence of this re-
markable phenomenon as well as its relation to the quasi-
particle mass renormalization.

A natural starting point for our analysis is provided by
a discussion of the Hartree-Fock theory, which sets the
stage for a more complete and reliable approach. As it
will be shown however, the inclusion of correlation effects
is necessary. Janak was the first to attempt the study of
the effects of screening in his study of the effects of the
electronic interactions on the Lande g factor. ' His
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whose value diverges as C tends to the critical value 2@~.
For C larger than this value g&

' changes sign and de-
creases in magnitude. For z ) 1 the situation is more in-
teresting. For C less than 2p~, g~ ' is a monotonically de-
creasing function of z. When C exceeds this value, howev-
er, yz'

' becomes negative (a sign of incipient ferromag-
netic instability), and displays a singularity for z
=[1—(1—21M21/C) ]

' . This behavior is quialitatively
not dissimilar from the one encountered in the 3D
case first discussed by Wolff. '

We will consider next the case of a screened interaction
potential which we write in the general form

2

( )
27re

q +2(kg
27Te

2 cxq+
rsaa

(7)

where, as mentioned above, r, is the mean electronic sep-
aration measured in units of the Bohr radius az, and is
related to the electronic density via the relation
r, =(7ra21 n) ' . In Eq. (7) a is a positive adjustable pa-
rameter which controls the range of the interaction. In
the long-wavelength limit, using Eqs. (1), (3), and (5), one
can obtain the following simple analytic formula for the
HF susceptibility for this case:

Xp
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where 8(x) is the familiar step function and the effective mass m can be explicitly obtained from Eqs. (2), (5), and (7)
and is given by

2 r cxrS + S

21/2
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A noteworthy feature of Eq. (8) is the manifest possibility of a polarization instability signaled by a diverging spin
response. This situation can be realized when the denominator of Eq. (8) vanishes. This in turn occurs when, for a
given o., r, acquires the following critical value

2 2a 8(a —1) ~ 1 1——tan
(

2 1)1/2 2 (
2 1)1/2

a 8(1—a ) 1 —(1—a )'
ln

(1 ~2)1/2 1+(1 ~2)1/2

A plot of the above expression is displayed in Fig. 2. The
critical value r, increases almost linearly with o..

A specific case of interest is that of Thomas-Fermi
screening, characterized by the condition e = r, /2' . In
this case, at variance with the corresponding 3D situa-
tion, the screening length is independent of the electron
density. As can be readily verified, for this choice of o, ,
the divergence does not occur and the spin susceptibility
is a well-behaved simple monotonic function of r, , which
is displayed in Fig. 3 by the curve labeled TF. Notice that
in this case the many-body enhancement of the spin
response is rather small.

Finally for ca=0 one recovers the HF result for the
Coulomb interaction. In this case, upon making use of
Eqs. (8) and (9), one readily obtains the following expres-
sion for the HF spin susceptibility:

occurs for Coulomb interactions at r,*=~/2'/ =2.22.
This is displayed by the curve labeled HF in Fig. 3. It
should be mentioned at this point, however, that within
HF such an instability is preempted by a sudden transi-
tion to a ferromagnetic ground state. As is readily found,
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Care must be taken in this limit since the ratio m/m*
diverges here logarithmically for vanishing cz, i.e.,

rs a
ln —as 0.—+0,

21/2
(12)

As shown in Eq. (11) above, a differential instability

FIG. 2. Plot of r,* the critical value of the average electronic
separation, given by Eq. (10) in text, vs the screening parameter
a. The curve displays the divergence condition of spin suscepti-
bility in the Hartree-Pock approximation with screened interac-
tion.
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such a phenomenon is characterized by the Bloch condi-
tion r, ~ 3vr2' /16(2'~ —1)=2.01.

As well-known correlations do in general change the
nature of the ground state and make the ferromagnetic
phase energetically unfavorable, it is interesting to men-
tion, however, how such a situation is drastically
modified by the presence of a large quantizing magnetic
field when a number of Landau levels are completely
filled. In this case the energy separation between the
Landau levels will in general lead to a quenching of the
correlations, thereby restoring the (at times perhaps more
interesting) HF scenario.
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FIG. 3. Plot of the many-body susceptibility enhancement

gg /gp vs the density parameter r, . The solid curves labeled G+
8cG G, G+, and RPA correspond to the following three cases:
(i) our full theory, (ii) no spin Auctuations, and (iii) no vertex
corrections, respectively. The dashed curves labeled HF and TF
correspond, respectively, to Hartree-Fock approximation and
Hartree-Pock approximation with Thomas-Fermi screenin .reening.
The meaning of these curves is explained in the text.

III. GENERALIZED HARTREE-POCK THEORY:
THE HAMANN-OVERHAUSER APPROACH

In this section we will derive a simple formula for the
susceptibility based on the dynamically screened ex-

k
c ange approach of Hamann and Overhauser which1c rs

nown to lead to the correct result for the spin problem
in 3Din . Here, and in what follows, we will focus our
analysis on the case of the Coulomb interaction. The gist
of the approach is as follows. One starts with the deriva-
tion of a suitable pseudo-Hamiltonian in which only the
quasiparticle degrees of freedom of the electron gas ap-
pear explicitly. As first discussed in Ref. 3 this can be
achi. eved by introducing an appropriate canonical trans-
formation designed to eliminate, (more appropriately
average out), the collective part of the spectrum of the
system. Such a pseudo-Hamiltonian can be written as

(13)H =~E
qp ~ p

.a
p ap +

p g

Re[Ac�(

q, e —e )]:a a .a a
p p 9 '

p q~ p+q~ p ~ p~'
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where we have used a normal product representation and a ( )
'

ap is a creation (destruction) operator of a uasi ar-~ j

ttcle of momentum p and spin o =+1, and e =p /2m. In E (13)E, h
p

m. n q. , t e quasiparticle energy, is given by

E =e —g n Re[A (q, e —e )]+—P " d (14)
CO 6'p +E'p

q

where the symbol P mandates that the principal value of
the integral must be taken. In Eqs. (13) and (14) Ac(q, co)
is an eff'ective potential which is defined in terms of
yc(q, co), the full momentum- and frequency-dependent
charge response function of the system, as follows:

Ac(q ~) v(q)[1+v(q)yc(q

I

clear from Eqs. (14)—(16), the present approximation is
equivalent to the familiar random-phase approximation
(RPA) 24»

The next step consists of studying the response of the
quasiparticle gas to an externally applied sinusoidal mag-
netic field Hocosq. x. This can be achieved by adding to
Hqp the suitably transformed coupling term H;„, given by

Within the present approximation the function gc(q, co)
can be written as

i„i= 2pB 0 g (S, ):ak+q az . +H. c. ,
k, o

(17)

xo(q ~)
Xc(q, ~)=

1 —v (q)go(q, co)
' (16)

where yo(q, co) is the familiar Lindhard function for a 2D
E~ 23G. It should be emphasized here that the expression
for the quasiparticle energy E of Eq. (14) is appropriateP
or an unpolanzed electron system. Moreover, in Eq. (14)

the second term is the dynamically screened exchange,
whereas the third one represents the appropriate contri-
bution of the corresponding Coulomb hole. As should be

H„„,=e (H +H;„,)e (18)

where the appropriate form of the operator T can be sur-

where H. c. stands for Hermitian conjugate, (S )

=+ TT(ll)
1. Then, to do the equivalent of solving the HF

equation, the total Hamiltonian given by H +H.
qp int

again canonically transformed so as to remove the o6'-

diagonal terms in the single quasiparticle operators. The
transformed Hamiltonian is given by
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mised from the HF analysis to be
T= ,' g—C(k)(S,)~~:az+q/2~aq q/2 ~.. —H. c. . (19)

k, o.

Then, upon requiring that the off-diagonal one-particle
terms vanish, and upon de6ning

u (k) =(Eq+q/2 —Ek q/z)C(k), (2O)

one can see that ys(q, O) is given again by the HF expres-
sion of Eq. (4). In this case, however, u (k) is determined

by the following integral equation:

2 X lAc(k p&~p+q/2 ~k+q/2)+Ac(p k&~k —q/2 ~p —q/2)/+ (p)p —q/2 +p+ q/2

p p+ q/2 p —q/2
(21)

It is easily seen that if Ac(q, co) is replaced by the
screened potential U(q), then one simply recovers the HF
susceptibilities of the previous section.

In the limit of small q we have found that, interestingly
enough, the integral equation (21) for u (p) can be solved
exactly. In this limit the many-body enhancement of the
susceptibility can then be cast in the following elegant
and suggestive form:

+S

Xp
(22)

1 — f2 3(r, )
m

where the functions f2 3(r, ) depend only on the density
parameter r, and the dimensionality of the system. For
the 3D EG case, f3(r, ) is given by the following single
quadrature,

f3(r, )= J dz
I /2

1+(1g~') '".-'z+
1/2 1/22z 1 —z

(23)

For a 2D EG, instead, f2(r, ) can be written in a closed analytic form and is identical to that obtained from Eq. (&) for

the case of Thomas-Fermi screening, i.e.,

r, 2e(r, —2)
g1/2 ( 2/2 1 )1/2 2 ( 2/2 1 )1/2f (r)= ——tan

e(2 —r, ) 1 —(1—r, /2)'/

(1 r /2)
~

1+—(1—r, /2)'
(24)

A plot of both f3(r, ) and f2(r, ) is provided in Fig. 4.
Both these curves are proportional to —r, lnr, in the limit
of small r, . It should be noted that the r, dependence of
fz(r, ) is more pronounced. The resulting values for

0,6

0.5

f, , (r, )

0.2

Js/pp in three dimensions can be readily shown to
reproduce the results of Ref. 3, i.e., the "consensus
curve". A plot of the' susceptibility ratio ys/y~ for the
case of a 20 EG is shown in Fig. 3 by the curve labeled
RPA. This curve was obtained using Eqs. (22) and (23)
and the appropriate value of the effective mass ratio
m*/m as calculated from Eqs. (5) and (14). ' Notice
the large enhancement over the result of the Thomas-
Fermi screened potential. It should be stressed here that
for large r, the many-body corrections are comparatively
significantly larger in two dimensions.

It is interesting to notice here that the perhaps surpris-
ing result of Eq. (24) (i.e., the fact that the RPA result ba-
sically displays the same structure as the Thomas-Fermi
theory) is peculiar to the 2D situation and can be traced
to the fact that in such a case the static Lindhard
response function yo(q, O) is independent of the wave vec-
tor q for q & 2pF

0.0

FICx. 4. Plot offz „Eqs. (20) and (21) in the text, vs the densi-
ty parameter r, Notice that f2(r,. ) is larger than its 3D coun-
terpart and leads to a more pronounced many-body enhance-
ment. Both functions behave as —r, lnr, for small r, .

IV. HUBBARD VERTEX CORRECTIONS

In order to go beyond the dynamically screened ex-
change theory, we discuss here an approximate approach
which allows one to account for the effects of charge- and
spin-fluctuation-induced vertex corrections.

As originally suggested by Hubbard' and later exploit-
ed, and generalized by several other aufhors, ' it is



SPIN SUSCEPTIBILITY IN A TWO-DIMENSIONAL ELECTRON GAS 5437

and

go(q, a) )
Xc(q, ~)=

1 —u (q)[1—6+(q, a))]go(q, co)
'

xo(q»
1+u(q)6 (q, co)yo(q, co)

Xs(q~~) pa

(25)

(26)

Clearly the fields 6+(q, co) and 6 (q, co), respectively,
account for charge- and spin-fluctuation-induced vertex
corrections. In Eqs. (25) and (26) the quantity yo(q, co)

l

possible to include some of the short-range effects of ex-
change and correlation by introducing suitable many-
body local fields G+(q, co) and G (q, co). For the sake of
the present analysis it will suKce to define here these
quantities through their relation to the full momentum-
and frequency-dependent charge and spin susceptibilities
of the system. A complete discussion of such a procedure
can be found in Ref. 26. We have

differs from the usual Lindhard function in that in its
evaluation the expression for the momentum-space (bare)
occupation number n„appropriate to the interacting sys-
tem must, in principle, be used.

The many-body local fields not only enter the response
functions, but can be shown also to modify in a
significant fashion the effective potentials appearing in
the theory. ' For instance, in order to account for
charge-Auctuation-induced vertex corrections, the expres-
sion for Ac of Eq. (15) must be modified as follows:

Ac(q, co)=u(q)[1+u(q)[1 —6+(q, co)] gc(q, co)J. (27)

The physical processes associated with 6 (q, co) neces-
sitate here further discussion. The inclusion of G in the
theory accounts for the effects of spin fluctuations and
leads to extra terms in the quasiparticle energy. For in-
stance, for an unpolarized state, Eq. (14) is in this case
modified to read

I 1m[Ac(q, ~) ] I
+3

I 1m[As(q, ~) ] I

Ez=e& —g n qRe[Ac(q, eu
—e q)+3As(q, e —e )]+—P f des

7T 0 CO Ep+ Ep qq

(28)

where Ac is defined in Eq. (27) and the new effective'po-
tential Az is defined in terms of the full momentum- and
frequency-dependent spin response ys(q, co) as follows:

As(q, co)= —
iMs [u(q)G (q, co)] gs(q, co). (29)

The exact expressions for 6+(q, co) and G (q, co) are
not known in general, so appeal must be made to approx-
imate procedures. A possible way to tackle the problem is
to investigate the exact asymptotic behaviors of these
functions and then, as is customarily done, assume for
them simple analytic formulas designed to interpolate be-
tween the known regimes. We find that suitable formulas
for the 2D EG case are given by

G+( oo )q6+(q)= 2 2 in' (30)
[q'+[p+6+(~ VF]'.)'"

where for the sake of simplicity we have neglected the
frequency dependence of these functions. In Eq. (30) the
quantities 6+( oo ) and P+ are density dependent and are
related to the limiting values of the functions G+(q, co)
and 6 (q, co), respectively, for large and small wave vec-
tors q.

The exact large-wave-vector limits of the many-body
local fields in a 2D EG have been analyzed in Ref. 32.
There it was shown how the appropriate limiting values
of G+(q, co) and 6 (q, co) can be expressed in terms of
g (0), the value at the origin of the pair correlation func-
tion of the system. g(0) is a function of the electronic
density and its theoretical value can be approximately ob-
tained via direct perturbative or numerical ap-
proaches.

The coefficient p+ can be simply obtained from the
compressibility sum rule which relates the static charge
susceptibility, Eq. (25), to E, the total ground-state ener-

gy of the electronic system, a quantity which has been the
object of several detailed investigations and is therefore

I

approximately known. ~ For a more detailed analysis
the reader is referred to Ref. 26.

Finally, once P+ is known P can be determined
through a self-consistent procedure that will be discussed
in detail in the next section.

V. SPIN SUSCEPTIBILITY

Making use of the results of the previous section, we
can now proceed to the evaluation of the many-body
enhancement of the spin susceptibility.

The first possible improvement upon the calculation
contained in Sec. III is the inclusion of the effect of
charge-Auctuation-induced vertex corrections described
by the function G+. The procedure employed to obtain
the susceptibility in this case is identical to that of Sec.
III in which these corrections were neglected. As is
readily found, the susceptibility ratio in this case is still
determined by the effective mass ratio m*/m and the
function u(k) through Eqs. (4) and (21). In this situation,
however, in Eq. (21) and (14) the modified expression for
the effective potential Ac(q, co) of Eq. (27) must be used.
The results of such a calculation are displayed in Fig. 3
by the curve labeled G+. It should be noticed that the
inclusion of the many-body local field G+ leads to a rath-
er large enhancement of ys/yp as compared to the RPA
calculation. An analysis of the effective mass for this case
can be found in Ref. 26.

To carry the susceptibility analysis further, the effects
of the processes associated with the spin-Auctuation-
induced vertex corrections will be considered next. In this
case the procedure employed above lands into diNculty
in view of the fact that spin fluctuations in the electron
gas will couple directly to any externally applied magnet-
ic field, so that an alternative method of deriving the spin
susceptibility must be used. A possible way to proceed is
to make use of the Landau theory of the Fermi liquid.
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Within such a framework the static spin susceptibility gz
can be obtained in terms of the quasiparticle interaction
function as follows:

tion number n as follows:

(33)

m +m f2~dgf
@pe

+ m 0 2m'
(31)

where the antisymmetrized interaction function f, is

given by

f —1(f 1 t f tt) (32)

and f can be obtained from the quasiparticle energy
E

p
via a functional derivative with respect to the occupa-

In order to perform the functional derivative of Eq. (33),
the expression for the quasiparticle energy in a system
with arbitrary polarization must be found. By following
the procedure outlined in Refs. 3 and 26 a generalization
of Eq. (14) to the polarized state can be obtained. The
enhancement of the spin susceptibility is then calculated
by a straightforward application of Eqs. (31) and (33).
The result can be cast in the following form:

Xa m 2~ dP—m f [Ac(k~ —p~, O) —As(kF —p~, O)]
m * 0 (2ir)

+ f dz f du[Q (q, i')Q+(q, iso)P+(z, u )+Q (q, ice) P (z, u )],
~(aopF ) 0 z

(34)

where P is the angle between a fixed vector pF and a vari-
able vector kz, both of which lie on the Fermi surface,
and we have introduced the variables z=q/2pz and
u =corn/qpF. In Eq. (34) the functions Q+ and P+ are
de6ned as follows:

proximate interpolation formula proposed by Jonson,
which was obtained by implementing for the case of a 2D
EG the classic numerical method of Singwi, Tosi, Land,
and Sjolander. Figure 5 displays the appropriate values
of P+ for a 2D EG as a function of the density parameter

and

(35)

[(z —u —1) +(2zu) ]' +(z —u —1)
[(z —u —1) +(2zu ) ]

(37)

1 —G+ (q, cv)
Q+ (q, ~v) =

1 —v(q)yo(q, co)[1—G+(q, ro)]
'

G (q, ro)
Q (q, co) =

1+v(q)yo(q, ni)G (q, co)
'

rs
Furthermore, and most importantly, we have deter-

mined the coefficient 13 via the following self-consistent
procedure. Qnce the value of P+ has been established,
one starts with a trial value for )33 and proceeds to evalu-
ate the corresponding m * and ys/y~, respectively, from
Eqs. (5) and (34). Then, by equating such a value to
ys(q~0, 0), as given by Eq. (26), a new P is then deter-
mined from the relation

It should be pointed out here that in formulating a
complete theory for the spin susceptibility with the in-
clusion of the effects of spin Auctuations, particular care
must be taken to also allow for transverse spin fIuctua-
tions. In deriving the expression of Eq. (34), this has been
done by treating longitudinal and transverse spin Auctua-
tions on the same footing, so that, for the sake of simpli-
city, only one many-body local field (i.e., G ) is used here
to describe the phenomenon.

We have made use of Eqs. (30) and (34) —(37) to evalu-
ate the spin susceptibility. The necessary effective-mass
ratio has also been determined by using Eq. (28) for the
quasiparticle energy. A crucial input of the present
analysis is represented by the many-body local Geld
G+(q, ro) discussed in the previous section. As explained
there, we have made use of the interpolation formulas of
Eq. (30), which, in turn, depend on the choice of the
density-dependent quantities P+ and g (0). We have
chosen for g (0) the theoretical value obtained in Ref. 34.
As far as P+ is concerned, as mentioned above, we have
determined this parameter as a function of the electronic
density from the total ground-state energy E via the
compressibility sum rule. For E we have used the ap-

60
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FIG. 5. Theoretical self-consistent results for the coeKcients
P+ and f3, defined in Eq. (30) in text, vs the density parameter
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y, (q o, o)

+P
1

21/2
S1—

(38)

which is readily obtained from Eq. (26) if one makes use
of the familiar Lindhard function for yo(q, co). This value
for P becomes then the starting input for a new itera-
tion. This procedure is repeated until convergence is
reached. The appropriate self-consistent values for f3+
and P obtained in this way are plotted in Fig. 5 as a
function of the density parameter r, . It is important to
realize that once P+ and P are determined, our theory is
free of arbitrary parameters. A plot of the susceptibility
enhancement for this last case, representing our new full
theory, is finally shown by the solid curve labeled G+ 8r.

6 in Fig. 3.

VI. DISCUSSION AND CONCLUSIONS

We have theoretically investigated the problem of the
many-body enhancement of the paramagnetic spin sus-
ceptibility in a 2D EG. We have studied in detail the im-
plications of the HF theory for the cases of local and
screened interactions, in which case the problem has a
simple analytic solution given by Eqs. (8) and (9) of Sec. I.

We have accounted for correlation effects beyond HF
by a number of methods of increasing sophistication and
physical significance. We have first evaluated the spin-
response ratio gz/yz, by solving exactly in the long-
wavelength limit an integral equation first introduced by
Hamann and Overhauser, and based on a generalization
of the original Wolff HF theory formulation. ' Our re-
sults, notably Eqs. (22)—(24), are extremely simple and al-
low a direct and straightforward calculation of gz. In
fact, once the effective mass is known, in the 3D EG case
we reduce the problem to a single quadrature and easily
recover the established result of the "consensus curve". '

We find that for the case of a 2I3 EG our result has a sim-
ple analytic form and formally coincides with that ob-
tained within the HF approximation making use of the
Thomas-Fermi screened potential, the only difference
stemming from the different value attained by the quasi-
particle effective mass. It is also interesting to notice in
this respect that the result for ys/y~ of Eqs. (22) and (24)
has the same structure of the simple Thomas-Fermi for-
mula of Eq. (8), so that it formally coincides with the re-
sult first obtained by Janak. '

We have analyzed the effect on the susceptibility of
both charge- and spin-fluctuation-induced vertex correc-
tions which we have accounted for by means of the
many-body fields G+ and G, which we have here ap-
proximated by suitable interpolation formulas in the spir-
it of Hubbard.

The results of our study are summarized in Fig. 3,
where the curve labeled 6+ k, 6 represents our new re-
sult for the many-body enhancement of the spin suscepti-

bility in a 2D EG. An important conclusion which can
be drawn from our study is that the final value of yz re-
sults from a subtle balance between various competing
effects and that the simple RPA, ' although providing a
reasonable starting point, does not account for the full
extent of the many-body physics inherent in the
phenomenon at hand. It should also be stressed, howev-
er, that it is not enough to go beyond the RPA just by in-
troducing, as is customary, the symmetric local field G+
while altogether neglecting the effects of the spin Auctua-
tions: in general, such a procedure tends to make things
worse. We have arrived at the conclusion that the con-
comitant effects of both charge- and spin-Auctuations-
induced vertex corrections must be accounted for in a sa-
tisfactory approach.

It must be stressed here that, in general, for large
values of the density parameter r, the many-body correc-
tions are comparatively significantly larger in two dimen-
sions than in three dimensions.

It must also be remarked that the results are sensibly
dependent on the specific values used for g (0) which
enters the many-body fields, as well as the particular ap-
proximate interpolation formulas used for the latter. In
particular, the choice of Eq. (30) as suitable expressions
for 6+ was motivated only by natural requirements of
simplicity and adherence to the spirit of Hubbard s origi-
nal diagrammatic analysis of Ref. 19. In order to check
the ultimate validity of the present theoretical approach,
we have investigated the importance of our specific
choice of Eq. (30) by making use of more complicated, yet
still frequency-independent, reasonable forms of G+. We
have concluded that in spite of possible small changes in
the actual numerical values, the results and conclusions
reported above remain valid, although further rigorous
studies on the importance of the frequency and wave-
vector dependence of the many-body local fields in an
electron gas are still needed.

Finally, although the present work is strictly con-
cerned with the simple electron-gas model, we expect
that a similar qualitative behavior will characterize the
spin susceptibility of electrons and holes in layered elec-
tronic systems and superlattices. In particular, the
present approach can be generalized to the more realistic
case of electrons in quasi-two-dimensional semiconduct-
ing heterostructures and more specifically to inversion
layers. As it turns out, the inclusion of the specific physi-
cal features and parameters related to the structure, such
as the finite-thickness effects, the image potentials, the
various background dielectric constants, the valley de-
generacy, and band mass, is of crucial importance in such
cases. Work on this particularly interesting problem is re-
ported elsewhere.
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