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Electron-phonon relaxation in pure metals and superconductors at very lovt temperatures
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The electron-phonon relaxation processes in pure metals and superconductors are considered at
low temperatures when electrons interact with both longitudinal and transverse phonons. The
screening of the electron-ion interaction is treated in a gauge-invariant form, so that both longitudi-
nal and transverse electromagnetic fields are taken into consideration. The results obtained are ap-
plied to the analysis of the heating efFect of the electron system. The interaction of electrons with
transverse phonons increases the electron-phonon relaxation rate by a factor of = 15 in comparison
with the case when only longitudinal phonons are taken into consideration. The peculiarity of the
screening efFects in a superconductor leads to the conclusion that at low temperatures T &&6 trans-
verse phonons do not participate in the electron-phonon relaxation processes.

INTRODUCTION

In most theoretical treatments of kinetic phenomena in
pure metals and superconductors associated with the
electron-phonon interaction, only longitudinal phonons
are taken into account. As was shown in Ref. 1 this is
justified only under definite conditions, originating from
the peculiarity of screening effects for the longitudinal
and transverse electromagnetic fields which describe the
electron-ion interaction. The conclusion of Ref. 1 is that
the interaction of electrons with thermal transverse pho-
nons is not important for temperatures such that

u,T„T2 (T with T2=u, 'l ', T, = (v~tc u, )'
C

Alps
~ =4me vo, vo=

7T'

where u, is the velocity of transverse sound, vF is the Fer-
mi velocity, pF is the Fermi momentum, and vo is the
electron two-spin density of states at the Fermi surface. I
is the electron mean free path l =vF~, where ~ is the elec-
tron momentum relaxation time due to the elastic
electron-impurity scattering. The inequality T2 & T per-
mits one to consider the metal as clean and to neglect the
electron-impurity scattering.

In the present paper we consider the case T2 & T & T, .
Thus, the electron-impurity scattering is neglected, but
the interaction of electrons with transverse phonons is
essential. In pure metals T, =0. 1 K and T2 is very small
Tz=10 K for the impurity concentration c; =0.0l%%uo.

The results obtained are applied to recent experimental
data for nonlinear effects in metals at very low tempera-
tures ' and to the analysis of relaxation processes in su-
perconductors when T «6, where 6 is the energy gap.
The results are also pertinent to a proposed electron cool-
ing experiment.

NORMAL METAL

We are going to consider the problem of the electron
energy relaxation at low temperatures T & T, when elec-

trons interact with real longitudinal and transverse pho-
nons. Note that for T )T, electrons interact only with
real (thermal) longitudinal phonons. For the effective
electron-electron interaction due to exchange of virtual
phonons (see Ref. 5), also only longitudinal phonons are
important.

We use the Keldysh-diagram technique for nonequili-
brium processes in which the electron and phonon
Green's functions, along with the electron and phonon
self-energies, are represented by matrices

0 G
GR Gc

yC yR

yA 0

0
DR
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Dc

IIR

When solving the problem of energy relaxation, elec-
tron Green's functions are

6 (p, E)=(e—g +i0) ', gz=(p —pz)/2m,

6 (p, e)=S(e)[G"(p,e) —G (p, e)],
S(E)=2n(e) —1=—tanh(e/2T),

(4)

where n (e) can be interpreted as the electron energy dis-
tribution function, and T is the electron temperature.
The electron-phonon collision integral equals

I &h(p, E)= —i{2 (p, s) —S(e)[X (p, e) —X (p, e))I

dn(e) 1 dp Im[G (p, E)]I, h(p, s) .
dt rrvo (2~)3

(e-ph denotes electron-phonon). According to Ref. 7 the
electron energy relaxation time ~, is defined by the fol-
lowing kinetic equation:

1 5 dn(s)
5n(s) dt
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Following Refs. 1 and 8, we treat the electron-phonon
interaction as the interaction between electrons and ions
by means of the intermediate electromagnetic field. The
interaction between the electrons and the electromagnetic
field is described by the Hamiltonian

P„„(q,co)= —2i f f (a")

XK,.'[G(p+q, E+co)],.i

XKik[G(p, E)]i,;+ 5„, ,mc'" ' (13)

H r= X & q'q p q
p q (WO)

2p+ g+& & A. , C.+.. C..
p q (%0)

1
X X q q' p+q+q's ps2mc p q q~ (+0)

where y, A are the Fourier components of the scalar
and vector potentials, C&, is the creation operator for an
electron with momentum p and spin s, c is the velocity of
light, and the absolute value of the electron charge is ab-
sorbed in the definition of the electromagnetic potentials
(e-y denotes electron-photon).

The electron-photon vertices corresponding to the
Hamiltonian (7) are

Poo(q, co)= —vo 1+i
2qvF

7Th)VPVF
Pi, (q, co)= i-

4qc

(14)

To describe the coupling between electrons and longi-
tudinal and transverse phonons on the basis of a single
approach, we introduce the Hamiltonian for interaction
of ions with the electromagnetic field:

H;,„r= f dr p;,„(r)y(r) ——j;,„(r) A(r)1 ~

C
(15)

where n, is the electron density. Summation is implied
by the pairs of repeated indices.

For ql »1,

a'= —1, a'= p++, a"=1 1

mc 2 '
2mc

where the charge density and current density are given by
the equations

Voo(q, co) = 4me

q 4vre Poo(q—, co)
(9)

From here on, the index 0 will refer to vertices describ-
ing interactions with scalar potentials, while 1 will denote
interactions with vector potentials.

The electromagnetic field Green's function V„ in the
Coulomb gauge (divA=O) is diagonal. If screening is
taken into consideration, V„„is given by

p;,„(r)=Z g 5(r —R ), j;,„= g MR5(r —R ) .
a CX

Here Z is the valence, M is the mass, R is the posi-
tion, and R is the velocity of the ion. In carrying out the
expansion near the equilibrium position of the ion in the
lattice R 0, we retain only linear terms AR =R —R 0
and hR . We then express AR and hR in terms of pho-
non creation and annihilation operators b z, b & (A, is the
index of a phonon branch):

[Vi)(q, co)] „=Vi, (q, co)T „,
4me c

2 2 2 2 R
co —c q

—4me c P»(q, co)

(10) e eiq. r

AR= 0

(2MNco~&)'

e&co&&e'
'

AR= —i T
(17)

where e is the electron charge and m, n stand for the
Cartesian coordinates x,y, z. If the vector q is directed
along the z axis, we have

qmqn
Tmn ~mn

q

where

0 + 1 +4,2.=bq2. +b q2 Nq2.
=

bq2 —b ,). . ——
As a result we obtain the phonon-photon interaction
Hamiltonian

1 1
)ij +ij~ +ij 5ij~ +ij ~ (~x )ij~2 ~2 (12)

P„„is the polarization operator (Fig. 1) with the vertices
a", where a, = —1 and a'=(2p +q )/2mc.

Vertices corresponding to the electron-boson interac-
tion have tensor structure Q;, where the upper index is
for bosons, the lower for electrons:

~ph-r = X(Qq2. 4'q2.q, +Qq2. 4q2. Aq»

where

(ez q)ZN, ezco zZN

(2M¹o 2)' c(2MNco )'

(19)

(20)

where o. is the usual 2X2 Pauli matrix.
Thus for P„„we have

The vertices Q" are written in (20) for absorption of a
phonon; vertices for emission are Q"=IQ"I*, where

means the complex conjugate. In the Keldysh-
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diagram technique vertices Q" acquire the factor 1 —5kl,
where k, l are the boson indices. In order to include the
two kinds of operators P and P', we introduce the matrix
Green's function for phonons,

D (q, A, , t)= i—('T, (P "~(t)P &(0))), p, v=0, 1 (21)

where P "z(t) is the operator in the Heisenberg represen-
tation and V; denotes time ordering. As will be shown
below, we will require only the functions D00 and D&i for
which we have the following Fourier representation:

presence of three co-dependent boson propagators leads to
a complicated structure of the collision integral. In
describing the nonequilibrium case when electrons and
the lattice have difFerent temperatures, we will consider
the electron Careen's function G to depend on the elec-
tron temperature T and the boson functions V and D
to depend on the temperature of the lattice 0:

D„„(q,co) =[2Xo(co)+1][D„„(q,co) —D„"„(q,co)],

Dpp(q, co) = D—ii(q, co) =(co co—q+iO)

(—co+ co~~+iO) (22)
V„„(q,co) =[2No(co)+1][V„„(q,co) —V„"„(q,co)] .

(24)
The electron self'-energy, which corresponds to the

electron-phonon interaction, is shown in Fig. 1. The As a result we get the following kinetic equation:

Bn (e) 1 fdpf dqf dco 7Im[G "(p, e)]lm[G "(p+q, a+co)]1

Bt ctvp (2n. )

XImI(a") [V (q, co)] „(Q")„D (q, co)(Q")k[V„„(q,co)]«(a"),IRo(e, co), (25)

where m, n, k, I are the Cartesian indices and

Ro(c, , co) = [2Xo(co)+ 1][S(E+co)—S(E)]
—S(E+co)S(E)+1 . (26)

cln(s)
Bt

&Pi 16 ui1+
8(PFui ) m. u,

X f dzz [Ro(s,z) —Ro(E, —z)],
0

2

2

iPpp(q, co)i ))1,
q

(27)

is always valid for q «v (and so Vpp = —v '), the condi-
tion of strong screening for transverse electromagnetic
fields,

7M c
ipse (

co —c q
(28)

depends on the characteristic values of q and co. Per-
forming the co integral in (25), and being interested in the
electron-phonon interaction, we take into account only
the poles of the function D„„(q,co) and hence
co= +m ~- T, O, which means that only thermal phonons
are important. It is easy to see that the condition of
strong screening of transverse electromagnetic field is val-
id for T «T, and

Note that the nondiagonal propagator
(a") ( V») „(Q")„D„,(Q ')„(V»)«(a'), gives zero
after the angular integration. The analytical structures of
V00 and V» are difFerent. %'hile for V00 the condition of
strong screening,

PFUF

3

Vp

2MNut
(30)

where pt is the dirnensionless constant which character-
izes the interaction between electrons and longitudinal
phonons. For T=O and c=O,

+e-ph

7m/(3)pI T

(pFui )

16 ut

u~

4

(31)

where g(x ) is the zeta function, g(3 ) = 1.2.
Usually ut & u, and hence the interaction of electrons

with transverse phonons is very important for the elec-
tron energy relaxation at low temperatures T & T, . For a
cubic lattice ui =v'3u„and w, ~h increases by a factor of
=15 in comparison with the case when only longitudinal
phonons are taken into account. Note that under the
condition of strong screening of the transverse elec-
tromagnetic field, i.e., for T & T&, the velocity of light
does not enter the expression for w, „h, while for T, & T
(weak screening) the contribution to ~, „'h from transverse
phonons is negligible.

The phonon-electron relaxation may be considered by
means of the phonon-electron collision integral

4qc
Vf, (q, co) = i—

~O~q~ UF
(29) I~h, (q, co, A, ) = i {II„„(q,co)—

Thus for one longitudinal and two transverse phonon
modes we have

—[2No(co)+ I ]

X [II„„(q,co) —II„"~(q,co)] I . (32)
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The phonon self-energy is shown in Fig. 1, where we
extract one electron loop in which the electron Green's
functions G depend on the electron temperature T. The
functions V depend on the lattice temperature C). Hoo

I

corresponds to longitudinal phonons, and II» to trans-
verse phonons. As a result, we get the following kinetic
equations:

'I i,
—,(q, co z)= —2f dp f dq f dc, (a") [V (q, co 2)] (0") (0")k[Vp~(q co&2)]kl(a")i

(2m )

XRe[G (p, e)G (p+q, E+co~2)]Ro(co~i, e), (33)

and so obtain the phonon relaxation times, which coin-
cide with Pippard's results:

+e-v y

'7T K

6 mc

2

T lnn
T

+mph-e

BN(coq2„)

Bt

dolph-e

7TZm 1

6M qUF,
+tph-e

1 5
oN(coq2, )

4Zm
QUF

(34) T3&T &T4, T3=—1 c
7 UFK7

2

'2

T4
KUF

2

(38)

The heat How from electrons to phonons for 0 & T
& T, may be expressed in two equivalent forms:

1 ( —')g( —')
i/3 ' ' mc

(EFr)( T7 )' T,

Bn(e) BN(co 2)P= —f derv(E) = g f dq co zBt (2 ) Bt

(35)

4
16

+t
2'+2 1 (5)g(5)( T' —O') . (36)

where v(e) is the electron density of states, vo=v(0).
Carrying out calculation, we find

T& T3 . (39)

For the same concentration of impurities as before
c;=0.01%, we have T3=0.01 K and T4=10 K. So
from (31), (38), and (39) we have r, ,~(r, „I, for
T3&T &T] and for T &T3. Thus, in this regime the
concept of the electron temperature is valid. Note that at
such low temperatures in pure enough metals ~, ,&

is
more important than the energy relaxation time due to

For small heating T —0«0 we represent P in the form

I
+e-ph

( (T —P') 2

I C, = Tvo,
3+e-ph

180$(5) 1 2. 5

7~ P3) e-ph +e-ph

(37)
a4

Q4

aX

Q4

where C, is the electronic specific heat. Equation (35)
may be expressed in the form of the energy balance equa-
tion C, /~, ~i,

—-C~I, /~~& „which is useful for estimates;
Cph is the phonon specific heat.

The description of the nonequilibrium electron system
by means of the Fermi distribution function with an
effective temperature T is justified only if the relaxation
in the electron system is faster than the relaxation be-
tween electrons and the lattice ~, , & v., h, where ~, , is
the electron-electron relaxation time. As was shown in
Ref. 5, the main mechanism of electron-electron relaxa-
tion in pure metals at low temperatures is the interaction
of electrons with transverse vector photons (e-U y is
electron —vector-photon and e-s y is electron —scalar-
photon),

e-ph

a4

Q4 Q4

FIG. 1. The electromagnetic field Green's function is V».
P» is the photon polarization operator. X, ph (X ]c $ 0 p], p ) is
the electron self-energy corresponding to the electron-phonon
interaction. II» is the phonon self-energy.
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+e-sy

the electron —scalar-photon interaction with small energy
transfer, ' '" given by

1 3&3(2V2—l)mg(3/2) (Tr)'/ T 1

32 where

—
g &, —el+6,&„

(g —g, —iO)(g +g, +iO)

(40)
g, =(E —b, )'/ sgn(s), sI ) b, . (42)

SUPERCONDUCTOR

The electron Green's function in a clean superconduc-
tor in the Nambu representation has the form

Vertex a carries a factor o', and vertex a ' carries 1.
The kinetic equation which describes the energy relax-

ation in a superconductor is

Bn(s)
Bt 2m vo

Tr f dp Im[G (p, e)][X (p, E)—S(e)[X (P, E)—X (p, e)]J .
(2rr )

(43)

After some transformation, this takes the form

—'Trg f dp fdqf dcv Im[G "(p,E)](&") Im[G "(p+q, E+cv)](8")&
Bt mvo c (2n. )

X 1m[[V„„(q,cv)] „(g")„D (q, co)(Q ")k[V„„(q,co)]kl IR(c,, co), (44)

where & =a &„,a '=a '1, R (s,co):—RT(e, co), and we let
T=O. Functions V„"„(q,cv) in a superconductor are
defined by the same expressions (9) and (10), with the po-
larization operators

P„„(qco)= i Tr f—dp f de & "K,'0 k(p, E)
1

(2~)

Xa I"K„,C„(p,E)+ 5„, .
mc

(45)

The function Re Voo is practically the same in the su-
perconducting and normal states; hence the condition of
strong screening (27) is still valid. For this reason the ki-
netic phenomena associated with longitudinal phonons
may be described by the effective vertex g i=a Voog,
Ig, ~ I'=@~co,l /v, . Transforming the collision integral for
longitudinal phonons from the electronic representation
to the quasiparticle representation, we get the following
expressions for the scattering and recombination relaxa-
tion times:

1

r~(e, T)

1

r~(E, T)

+ —b,f dq qIgq f dco, [N(cv)+n(E+cv)]lm[D (cv, q)],
2rr vF o & E[(e+cv) —b ]'/

+6f dq q gq I f dcv, [N(cv)+n(cv —E)]Im[D (co, q)] .
2 o q ~c, [( )2 g2]1/2

(46)

(47)

In our case T & T& « 6, and for c=6 we get

2T
'"

I (-', )j(-', ),
1 g(b„, T) 4(p~g( )~

(48)

1

r~(b, , T)
213,

'

7T PF9I

2

(2~6T)' exp( —b, /T) . (49)

Expressions (48) and (49) coincide with the results of Ref. 12.
For transverse phonons the situation is different. After some algebra we have

2

P„(q,cv)= i—
16UF

2f dE[S(E)—S(E+cv)]—, 2, /z(e2 g2)1/2[( + )2 g2]1/2

Q2
+e(co—2b, )f de[S(E —co) —S(e)]

(E2 g2)1/2[( s)2 g2]1/2
(50)
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where e(x) is the Heaviside function. The first term in
(50) describes the scattering processes of quasiparticles
and the second refers to recombination processes. For
the scattering processes typical value of co is T. For such
co and for T«h,

3/2 2
V0 VF

P„(q,co) = i- b, exp( b. /T—) .
4gVF C

(51)

The small exponential factor implies that it is impossi-
ble to satisfy the condition of strong screening of the
transverse electromagnetic fields for the scattering pro-
cesses. For the recombination processes, frequencies
satisfying cu —2h) T are important, and because T «6
we get cu)) T, . Hence the condition of strong screening
cannot be satisfied. Thus, the contribution to the
electron-phonon collision integral from transverse pho-
nons is negligible in comparison with longitudinal pho-
nons.

SUMMARY

Equations (31) and (36) provide a description of the
heating or cooling of the electron system in a pure metal
at low temperatures T2 & T & T, . The heating of the
electrons at temperatures 25 —320 mK was investigated in
Ref. 2, and the inelastic electron-phonon relaxation time
~,=a 'T, a=9X10 sec ' K was obtained. The
thickness of the Cu films d =1000 A and the resistance
ratio R (273)/R (1)=3.75 imply an electron mean free
path l =1500 A. For this data T, =T2=100 mK, and
the expression (36) which is strictly speaking valid for

T2 & T & T, fits the experimental data rather well. For
T & T2 the metal should be considered as dirty and for
this case' '

+e-ph

m pi (pFl)T 3 ui1+—
(pFui ) 2

5

(52)

Using the electron-phonon collision integral derived in
Ref. 14,

dn (e)
dt

5
pi~ 3 ui

5~u 2 u,

X f "drub'[Ro(c, , co) —Ro(E, —co)]
0

(53)

and formula (35), we get the following expression for the
energy Bow:

5
32m P~ 3
315 (u)' 2 u,

(T —8 ). (54)
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In a dirty metal the electron-phonon relaxation time
becomes longer by a factor (qTl) ', where qT=T/u is
the thermal-phonon wave vector, in comparison with a
clean metal at the same temperature.
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