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Recent generalizations of Buttiker s analysis of the Larmor clock to any region z& z z2 within
an arbitrary one-dimensional barrier lead to two local transmission "times" for an incident electron
of energy E =A k /2m. These are conveniently regarded as the real and (minus) the imaginary
parts of a complex time ~&(k;z&,z2). In this paper the properties of v z-(k;z&, z2) are investigated for
the double-rectangular-barrier potential V(z) = V&6(z)6(a —z)+ V26(z —b)O(d —z). Results are
presented for the dependence of the real and imaginary parts of the Larmor-clock transmission time
on incident energy and barrier and well widths. The local transmission time ~&(k;z&,z2) is real for
symmetric double barriers when the energy of the incident electron is exactly on resonance. Re-
markably, the behavior of the real quantity ~z(k;0, z &&a) for this special case provides further evi-
dence for the importance of the imaginary part of the local Larmor-clock transmission time for the
corresponding (isolated) single barrier V(z) = V&8(z)6(a —z). At resonance, for symmetric double
barriers, (real) local transmission speeds U&(z) can be very much in excess of the speed of light in the
well region for z very close to a quasinode of the Schrodinger stationary-state wave function. It is
proven that U&(z) e for a symmetric double barrier at resonance when the Dirac equation is used
in place of the Schrodinger equation. On the other hand, it is shown that application of the Dirac
equation to a single opaque rectangular barrier does not alter the well-known difficulty that

a/Re[r r{k;O,a)] exceeds c for sufficiently large barrier width a.

I. INTRODUCTION

Over the years there have been many attempts' to
answer the fundamental question "how long does it take
on average for an incident particle of energy E to tunnel
through a potential barrier'?" Most of the approaches for
calculating the tunneling time ~z- lead either to the result
of Bohm' and Wigner or that of Buttiker and Lan-
dauer. " Consequently, there has been considerable
controversy and confusion surrounding this question,
particularly in the last year or two. It appears that reso-
lution of the controversy will require answers to three in-
tertwined questions: (1) Is the tunneling time determined
by the sensitivity of the transmission probability ampli-
tude T=

~
T

~

exp(if'�

) to the incident energy E or to the
average barrier height V, or perhaps some other quanti-
ty? ' (2) Is it the sensitivity of the phase Pz or of the
modulus ~T~ that is most important'? " (3) Is the tun-
neling time a real or a complex quantity?' ' ' ' ' '
Before becoming entangled in these questions it is reason-
able to ask whether the tunneling times that result from
the competing approaches are significantly different from
a practical point of view. Consider an opaque ( ~ T~ &&1)
rectangular barrier of height V&& and width d. The
Bohm-Wigner result, which involves the sensitivity of the
phase to the incident enc:rgy E, is virtually independent of
d and diverges as E ' as E approaches zero, while the
Buttiker-Landauer result, which involves the sensitivity
of the modulus

~
T

~
to the average barrier height V, varies

linearly with d and remains finite as E approaches zero.
For typical metal-insulator-metal junction parameters
( Vo = 10 eV, d = 10 A) the two tunneling times differ by a

factor of 4 for E = Vo /2 corresponding to a typical Fermi
energy Ez of 5 eV. For a semiconductor heterojunction
with Ez && Vo the difference can be even larger.

For a one-dimensional tunneling problem there are ac-
tually three times of interest the dwell time rD(k;O, d)
is the mean time spent by an incident particle of energy
Ek —=irt k /2m in the barrier region 0~ z ~ d regardless of
whether it is ultimately transmitted or rejected; the
transmission or tunneling time rr(k;O, d) is the corre-
sponding mean time if the particle is finally transmitted;
and the reflection time rtt(k;O, d) the mean time if it is
finally rejected. If these precise definitions of the times
rD, rr, and std are to be interpreted literally then, in the
assumed absence of inelastic scattering and absorption,
they must satisfy '
r (k;O, d) =

~
T(k) ~'r, (k;O, d)+ ~R(k) ~'r, (k;O, d),

where (T(k)~ and ~R(k)) are the transmission and
reAection probabilities, respectively. Throughout this pa-
per the potential energy has been taken to be zero outside
the barrier region 0 ~ z & d, so that ( T(k)

~
+ ~R (k)

~

=1.
Furthermore, it has been assumed that the incident beam
of particles approaches the otherwise arbitrary barrier
V(z) from the left, so that exterior to the barrier region
the stationary-state scattering wave function is given by
gk(z)=e'"'+R (k)e '"' for z (0 and T(k)e'"' for z &d.
Strictly speaking, various quantities such as R (k) and
gati(k;O, d) should have the label "L~R" affixed, but
this has been dropped for simplicity; the argument k will
often be dropped as well.
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In a recent paper Leavens and Aers used rigorous re-
sults from the paper by Hauge et al. ' to prove that
Buttiker's expression,

(k;O, d)= J dz lg„(z)l
0

(2)

for the dwell time is correct, despite claims to the con-
trary, and that the phase times for transmission and
reflection of Bohm' and Wigner do not satisfy Eq. (1).
This leaves the Biittiker-Landauer results PT (k;O, d) and

Pz (k;O, d) as serious contenders for the transmission and
reflection times as defined above.

It has recently been shown that Biittiker's analysis' of
the Larmor clock ' to obtain transmission and reflection
times for a rectangular barrier can be readily generalized
not only to an arbitrary barrier, ' but to any region

z1 ~ z ~ Z2 within the barrier. The (generalized)
Buttiker-Landauer result for the mean time spent in the
region z, ~z~z2 by an incident particle of energy Ek
that is ultimately transmitted through the entire barrier
can be written

P~ (k;z„z2)= ITT(k;Z„Z2)l,

where

(3)

v k .~ 8lnT(E, V, b V)
TT k;z„z2 =11r2 aav E, V AV=O

T„T(z„z2)= lim
coL ~0 (s.&,

alnlT(z, v, ~v)l
aav E, V b V=0

r,T(z „Z2 ) = —lim
COL 0

AcoL

2
(s, &,

AT(E, V, b, V)

aav E, V EV=O

according to Re[TT zl z2 ] T T(zl z2) and

Im[TT(z„z2)] = T„T(z„z2). co&
—is the Larmor frequen-

cy. (S & and (S, & are the x and z components of the lo-
cal average spin (S& =g op/p+1T per electron in the
presence of an infinitesimal uniform magnetic field
B=Be(z —z1)6(z2 —z)x within the barrier when the in-

cident beam is fully spin polarized in the y direction

and T(E, V, b, v) is the transmission probability ampli-
tude for the auxiliary barrier,

V(z) —= V(z)+ b, V 8(z —z, )0(z2 —z ),
with 6V independent of z. The complex "time"
TT(k z1 z2) 1s add1t1ve: rT(k 'z1 z3) T(k'z1 z2)
+ 1 T( k z2 z3 ). The real quantity PT ( k;z „z2 ) obvi-
ously does not have this desirable property.

In Ref. 32 the complex "time" rT(k;z„z2) did not ap-
pear naturally as a complex quantity. It was constructed
from the two real "times, "

((S„&1=0, (S» &1=111/2, and (S, &I=0). The nonzero
value of ( S & T arises because the magnetic field changes
the effective barrier potential in the region z, ~z ~z2 by
the Zeeman energy + A'coL /2 for electrons with
S =+111'/2, so that there is, in general, differential
transmission of spin-up (S = +Pi/2) and spin-down
(S„=—111/2) electrons; the nonzero value of (S, & T arises

'from the Larmor precession of the spin in the y-z plane
whenever the electron is in the region zi ~z ~zz. The
corresponding results for reAected electrons are obtained
by replacing T by R in the above.

For an opaque barrier T„T(O,d)= —Im[TT(O, d)] is
much larger than r,T(0,d)=Re[TT(0, d)], so that it is
sensitivity of the modulus ITI to the average barrier
height V=d ' I dz V(z), leaving V(z) —V unchanged,
that makes the dominant contribution to the Buttiker-
Landauer transmission time Pz. (k;O, d). For transmis-
sion above the barrier it is sensitivity of the phase that
eventually dominates. "

In a previous paper the present authors expressed
some reservation regarding the identification of PT"—= TT I

and Pz =
I r11 I

—with the actual transmission and reflection
times as defined precisely (in words) above because they
do not satisfy Eq. (1). In an important paper Sokolovski
and Baskin' used the Feynman path-integral technique
to obtain the complex transmission and reAection times

sB(k 0 d)
.~

d 51nT[V(z)]
d

5V(z)

(8)

sB(k0d)gd51nR[ V(z)]
5V(z)

involving logarithmic functional derivatives of the
transmission and reAection probability amplitudes with
respect to the potential energy. These results are com-
pletely equivalent to rT(k;O, d) and T~(k;O, d), respec-
tively. ' ' Furthermore, the obvious generalization of (8)
to an arbitrary region z& ~ z ~ zz within the barrier by re-
placing 0 by z& and d by z2 leads to equivalent local
transmission and reAection times.

In the analysis of Sokolovski and Baskin the complex
nature of these times arose naturally through the Feyn-
man weight factor exp(iS/1ri), where S is the action.
Moreover, they proved that Eq. (1) is satisfied exactly by
the complex times ~T and ~~ and hence by ~z- and ~R.
Since ~22 is real, Im(l Tl rT+ IR I T~ ) must be identical-
ly equal to zero. For w~ and ~R of the form

wT =—ikey 1nT/BX and ~R
—= iA'0 lnR /BX, with X an

arbitrary real quantity, it is trivial to show that
Im(ITI2TT+ I& I2rg ) ~a(ITI'+I& I2)/aX=O. Hence it
is the real parts of ~T and ~R that determine the proper
choice of X, Sokolovski and Baskin have shown that
X= V is a suitable choice. Hence the first of the three
questions posed above has been answered at least tenta-
tively. It is the sensitivity of the transmission and
reAection probability amplitudes to average barrier
height V, not the incident energy E, that leads to
transmission and reAection times ~T and ~R that are con-
sistent with ~D.
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The last two questions are intimately related. Since the
real parts of rT" and rtt satisfy Eq. (1), one might consider
dismissing the imaginary parts as meaningless and mak-
ing the identification rT=Re(rT)= —iriBQT/t)b, Vlai
and hatt =Re(rit)= —A'Beati/BAVlai, o. This provides an
answer to questions (2) and (3) at one stroke. There is,
however, a major objection to the identification of ~T
with Re(rT ). For an opaque rectangular barrier of height
Vo, Re(rT) is virtually independent of barrier thickness
d. ' Hence, for a sufficiently thick barrier the mean
transmission "speed" uT=d/Re(rz. ) is greater than the
speed of light c. For the parameters k =~=1 A
[ir =—2m(Vo —E)/irt j typical of metal electrodes this
happens for d ~ 260 A, far beyond the practical tunneling
regime [d =O(10 A)]. However, the situation is inuch
worse if one considers the local transmission speed

uT(z) = t)r (O, z)

Bz

Re[rr(O, z)] varies appreciably with z only within a decay
length ~ ' of the z =0 and d interfaces, and its depen-
dence on z is exponentially small [ ~ exp( —2ird )] in the
central portion of an opaque rectangular barrier. Con-
sequently, for k =tr= 1 A ', ur(z =d/2) )c for d )6 A
if Re[r'T(O, z)] is identified with rT(O, z)

It is encouraging that two very difFerent approaches
lead to the same results for the transmission and
reflection times and that these satisfy Eq. (1). The fact
that these times are complex is, of course, disturbing and
further work is clearly required to understand their phys-
ical meaning and significance, if any. Although the real
and imaginary parts are measurable in principle, ' '
Sokolovski and Hanggi' maintain that the complex na-
ture of the Larmor-clock transmission and reflection
times ~T and ~z is "an inherent property of quantal
motion" and that "in general it is unlikely that any physi-
cal meaning can be ascribed to their real and imaginary
parts separately. " It should be noted that the complex
nature of quantum dynamics has been known for a long
time [for example„Feynman and Hibbss4 show that the
correlation function (z(t)z(t')) contains a small pure
imaginary term]. Is it possible to construct from the real
and imaginary parts of ~T a real quantity with physically
reasonable properties that can be identified with a tun-
neling time accessible to experiment? It has already been
argued above that the most obvious choices, namely
rT =Re(rT) and rT= lrz. l

are not acceptable. Neither is
rr =Im(r T ), because it is not consistent with Eq. (1).

The main objective of the work presented in Sec. II is
to take a step back from the above difficult question and
to study the properties of the Larmor-clock transmission
time rz.(k;zi, z2 ) for a nontrivial situation in which it is a
real quantity. The double barrier is ideal for this pur-
pose. For a symmetric double barrier at resonance
[E =E„'"'=A' k„'"' /2m* with n the number of quasi-
nodes of the wave function %„i„i(z) in the well region],

the transmission probability is unity and, hence,

V„+2V

0 z a
W

FIG. 1. Potential-energy profile used in the calculation of the
local Larmor-clock transmission time ~T(0,z) for the DRB
V(z) = V& e(z)e(a —z)+ V28(z —b)e(d —z). An infinitesimal
transverse magnetic field B=Bx is confined to the region [O,z]
indicated by arrows, raising (lowering) the effective barrier for
down- (up-) spin electrons locally by 6V= ficol /2.

=0
.E'"' ~ ~v=0

for all zl and z2. This is, in general, not true for an un-
symmetric double barrier at resonance because l Tl & 1.

The behavior of rT(k;z„zi) can be quite complicated
' very near resonance and hence it is important to be pre-

cisely on resonance. Furthermore, there are severe nu-
merical difficulties associated with carrying out the par-
tial derivatives with respect to hV when E is very close
to an extremely sharp resonance. Therefore, in order
to be able to carry out all calculations analytically
only the double rectangular barrier (DRB) V(z)= V, 8(z)8(a —z)+ V28(z b)8—(d —z) is considered.
Since

l
T(E„'"')

l

= 1 the Larmor-clock transmission time
rT(k„'"';zi,zz) is equal to the dwell time rD(k„'"',zi, z2),
providing a useful check.

Figure 1 shows the auxiliary barrier V(z) employed in
the calculation of the local Larmor-clock transmission
time rT(k;0, z & a) for the first barrier.

Focusing on the first barrier, it is assumed that at reso-
nance, where all the incident particles are transmitted,
there are two dominant types of important Feynman tra-
jectories. The first type of trajectory describes a parti-
cle tunneling completely through the first barrier into the
well, a type which is conjectured to be very similar to the
dominant type of trajectory for a particle that is transmit-
ted through the corresponding (isolated) single rectangu-
lar barrier. The second type of trajectory describes the
many excursions of the particle temporarily trapped in
the well region back into the first barrier. This type is, of
course, not of importance for the corresponding single
barrier. It is conjectured that near the edge of the first
barrier furthest from the well (i.e., for 0 & z «a) the con-
tribution to rT(O, z) from the first type of trajectory dom-
inates and is intimately related to rr(O, z) at precisely the
same energy in the absence of the second barrier, provid-
ed that the direct trajectories for the SRB and the first
barrier of the DRB are, in fact, similar. In that case
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comparison of the real quantity rT(0, z «a) for the sym-
metric DRB at resonance with the real and imaginary
parts of rT(0, z «a) for the isolated (first) barrier should
give an indication of their relative importance. Such
comparisons appear to support the claim that the imagi-
nary part (i.e., Biittiker's r„T=—PT ) dominates for an

opaque single barrier.
For the symmetric DRB at resonance the (real) local

transmission speed UT(z):—[Bur(O, z)/Bz] ' can exceed
the speed of light c when z is very close to a local
minimum (i.e., a quasinode) of ~Pk(z)~ in the well region.
Such cases are reexamined using the Dirac equation in
place of the Schrodinger equation.

For completeness, Sec. III is devoted to the o6'-

resonance behavior of the real and imaginary parts of ~T
as a function of incident energy, barrier widths, and well
widths. It is also shown how to construct Larmor-clock
transmission and reAection times for suitable wave pack-
ets. In Sec. IV the Larmor-clock result for the mean time
spent by a rejected particle of energy E in the region
z, ~ z ~ z2 on the far side of a single rectangular barrier
(SRB) is calculated and provides either a failure of the
Larmor-clock approach or an interesting example of
quantum nonlocality. The results are summarized briefly
in Sec. V.

II. SYMMETRIC DOUBLE RECTANGULAR
BARRIERS AT RESONANCE

At resonance, the transmission probability ~T~ for a
symmetric double barrier is unity and therefore station-
ary with respect to any infinitesimal perturbation of
the barrier, including that used in the calculation of the
local Larrnor-clock transmission time, namely
b, V(z)=b, VB(z —zi )8(z2 —z) with 0&z& &z2 &d.
Hence for this special case, Im[ r (Tz „z )2]

=A'(8 1 n~T
~
I

Bb.V)~~i, 0 is zero and the local Larmor-clock trans-
mission time is a real quantity. This special case is im-
portant for two reasons: (1) the behavior of the Larmor-
clock transmission time can be studied for a nontrivial
situation involving tunneling without the complication of
it being a complex quantity; (2) comparison of rT(O, z) for
small z with the real and imaginary parts of the complex
transmission time for the corresponding (isolated) single-
barrier problem may actually shed light on that compli-
cation.

Analytical expressions for the local Larmor-clock
transmission times for the barrier and well regions are
given in the Appendix. Except for the calculations with
the Dirac equation (see below), barrier parameters rough-
ly typical of GaAs/Al Ga& As/GaAs heterostructures
are used including, for simplicity, a z-independent
effective mass no*=0.067m where m is the free-electrori
mass.

Figure 2 shows the local Larmor-clock transmission
times rz(0, 0 z &a) and rT(b &z d, d) as a function of
z for the first and second barrier regions of the DRB,
V(z)= V&6(z)6(a —z)+ V&8(z b)6(d ——z), with Vi
= V2=0. 16 eV di =a d2=d —b =100 A, m =50 A,
and E =E„' '=0.067 69 eV (E„' ' was actually determined

3.0
O
CO

C) 20—

M

~ - 10—
N

C)
I-

t-

V,=V,=O.

d,=d,=100
w=50A

E=E

0.0
0.0 20.0 40.0 60.0

z; d-z (A)

I

80.0 '|00.0

FIG. 2. Local Larmor-clock transmission times at resonance,
rr(O, z)=Re[sr(O, z)] with O&z &a and rr(z, d)=Re[sr(z, d)]
with b ~z ~ d, for the first and second barriers, respectively, of
the symmetric DRB with V&

= V2 =0.16 eV, d
&

=d2 = 100 A,0
w =50 A, and m *=0.067m. The incident energy is E
=E,' '=0.06769 eV.

to many more significant figures, but compatibility to this
accuracy with the results of others obviously depends, for
example, on the exact values used for such constants as A;
hence only enough figures are quoted to identify the reso-
nance). The two times coincide for this symmetrical situ-
ation when the farmer is plotted as a function of z and
the latter as a function of d —z. At resonance an incident
particle spends a very long time in the well region
a &z &b and the behavior of ~T(O, z) and rT(z, d) shown
in the figure rejects the very many small tunneling excur-
sions of the trapped particle into the barrier regions be-
fore its eventual escape through the second barrier.

In terms of Feynman paths, one might expect impor-
tant contributions to the mean time spent in the first bar-
rier from two very difFerent types of trajectories: (1)
those in which the incident particle tunnels completely
through the first barrier into the well region, and (2)
those in which the particle oscillating back and forth in
the well repeatedly tunnels back into the first barrier.
Despite the small average penetration depth (2ii) ', for
the latter type of trajectory, it completely dominates in
Fig. 2 because of the very large average number of oscil-
lations before escape. In order to see the contribution to
rT(O, z) from the former type of trajectory, it is necessary
to take advantage of the expected exponential fallo6'with
a —z of the latter type and to focus on that part of the
first barrier furthest from the well, i.e., 0~z ((a. Intui-
tively, one might expect that rT(0, 0&z «a) would be
closely related to the same quantity for the (isolated) sin-
gle barrier, V(z) = V&6(z)6(a —z), at precisely the same
incident energy. However, the Larrnor-clock transmis-
sion time rT(z„zz) for the single barrier is a complex
quantity or, alternatively, ' some combination of the two
real times ~xT and rzT e g (r T+r T) . Th imaginary
part has been the subject of much controversy: there are
those who maintain that it should be discarded and those
who argue that it is the dominant component " in the
"deep" tunneling regime ~a ))1. Comparison of the real
quantity rT(0, 0&z «a) for the symmetric DRB,
V(z) = V[6(z)8(a —z)+8(z —b)8(b +a —z)], at reso-
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nance with the real and imaginary parts of
rT(0, 0&z «a) for the SRB, P(z)= Ve(z)e(a —z), at
the same incident energy offers a unique opportunity to
shed some light on this controversial issue. Such a com-

rison is made in Fig. 3 for both the Larmor transmis-
sion time and inverse speed using the parameters of Fig.
[note the 3-orders-of-magnitude change of scale between
Fi s. 2 and 3(a)]. It is clear that as z becomes very small,1gs. a

Vthe real transmission time rT(O, z) for the symmetric
DRB at resonance approaches (minus) the imaginary part
of vT(O, z) for the corresponding SRB much more closely
than it does either the real part, i.e., ~,z., or the modulus,
i.e., HT (not shown). It is also important to note that
r T(O, z) and vT '(z) for the DRB lie above —Im[rT(O, z)]
and —Im[uT '(z)], respectively, for the corresponding
SRB. This is in keeping with the above conjecture of
contributions from two very di6'erent types of trajectory
for the double barrier, one of which is absent for the sin-
gle barrier. For completeness, it is important to consider
a situation in which Re[uT (z =0)] is considerably larger
than —1m[v&. '(z =0)]. From the analytic expression for
~r(z, ,z2) given in Ref. 32 for a SRB, it follows that
—Im[u '(z =0)]/Re[vs '(z =0)]=a/k when tra )&1.
Hence in order to have Re[vT '(z =0)] considerably
larger than —Im[ur '(z =0)],we need an incident energy

significantly greater than half the barrier height. Figure
4 repeats the comparison of Fig. 3 for a symmetric DRB
with m increased by a factor of 2 so that its second reso-
nance E„"' is large enough for Re[uz '(z =0)] to be con-
siderably larger than —1m[v& '(z =0)] for the corre-
sponding SRB. For very small z the real transmission
time ~ (0 z) for the symmetric DRB at resonance againT

Vmerges with (minus) the imaginary part of r T(O, z) for the
corresponding SRB rather than the real part. Moreover,
although ~T(O, z) and uz '(z) for the DRB are now less
than Re[a.T(O,z)] and Re[vT '(z)], respectively, for the
corresponding SRB for very small z, they never fall below
the SRB results for —lm[~T(O, z)] and —Im[uz '(z)].
This is true for all the cases that we have studied.

The increasing spread between the solid and dashed
curves of Figs. 3 and 4 with increasing z is due to in-
creased sampling of those trajectories for which a particle
trapped in the well makes repeated excursions of varying
length, with short trips exponentially more probable than
long ones, back into the 6rst barrier. On the other hand,

2for energies far above the top of the SRB,
~
T~ =1, the

imaginary part of &T(O, z) is negligibly small, and there is
no doubt that Re[sr(O, z)]=m*z/Ak is the dominant
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FIG. 3. Top: {a) comparison for small z of the local Larmor-
clock time at resonance, rr(0, z}='Re[sr(O,z)], for the sym-
metric DRB of Fig. 2 { — ) with the real ( ~ ~ ~ ) and (minus)
the imaginary ( ———) parts of the local Larmor-clock time
for the isolated SRB V(z)= V&e(z)e{a —z) at the same in-
cident energy. Bottom: the same comparison for the inverse lo-
cal m@an transmission speed UT (z) —=~T(0, z)/»—1 V
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FIG. 4. Top: a comparison for small z of the local Larmor-
clock time at resonance, rr(o, z)=Re[rr(0, z}], for the sym-
metric DRB having V& = V2=0. 16 eV, d& =d2=100 A, w =100
A, m =0.067m, and E=E„'"=0.10795 eV ( ) with the
real (. ~ ~ ) and (minus) the imaginary ( ———) parts of the
local Larmor-clock time for the isolated SRB V(z) = V[
e(z)e{a —z) at the same incident energy. Bottom: the same
comparison for the inverse local mean speed
UT '(z)—:B~T(0,z) /Bz.
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component. Hence, as the incident energy approaches
the top .of the barrier from below the increasing impor-
tance of Re[rT(0, z)] should become more and more ap-
parent. There is some indication of this in Fig. 4(b),
where the solid curve bends slightly away from the
dashed curve in the direction of the dotted one as z ap-
proaches zero.

Figure 5 shows the local transmission time rT(a, z) and
inverse speed uT '(z) for the well region a &z & b of the
DRB considered in Figs. 2 and 3. rT(a, z) increases most
rapidly with z in the center of the well where the proba-
bility of finding a trapped particle is largest for the lowest
resonant energy E,' '. In Fig. 6 the same quantities are
shown for the well region of a symmetric DRB when the
incident energy coincides with E„'". In this case rT(a, z)
increases most slowly with z in the center of the well,
where the probability of finding a particle is smallest be-
cause of a quasinode in the wave function pk(z) at the
center of the well. Because the tunneling current is finite,
the wave function does not have an actual node anywhere
and hence uT (z) is never zero. However, in the immedi-
ate vicinity of the point at which ~gk(z)~ is a minimum
uT (z) is so small that uT(z) is much greater than the
speed of light. Since uT(z) was calculated using the
Schrodinger equation, this is not necessarily a cause for

Z2= f dz tj'k(z)fk(z)
Z ]

(10)

where gk (z) is the scattering solution of the time-
independent Schrodinger equation. ' The relativistic
generalization of Biittiker s expression, Eq. (10), is ob-
tained by replacing the nonrelativistic (Schrodinger) ex-

concern. Since the question of whether or not uT(z) is
bounded by the speed of light c is of fundamental impor-
tance, the efFective-mass approximation is not used in the
following discussion. The tunneling of a free electron is
considered with the barrier parameters chosen in a range
appropriate to tunneling between typical metal rather
than semiconducting electrodes, and assuming that the
dielectric constant e is unity.

For a symmetric double barrier at resonance,
~
T

~

= 1

and the Larmor-clock transmission time rT(z&, z2) is
equal to the dwell time rD(z„zz). The latter is, in turn,
equal to the average number of electrons in the region
z, ~z~z2 divided by the particle Aux of the incident
beam, i.e.,

Z2

+D(zlz2) dz Pk(z)~Jk
Zl
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FIG. 5. Top: local Larmor-clock time at resonance,
rr(a, z) =Re[rr(a, z)] with a &z &b, for the well region of the
symmetric DRB with V& = V2 =0.16 eV, d& =d2 =100 A,

0
w =50 A, and m *=0.067m. The incident energy is
E =E„' '=0.06769 eV. Bottom: the inverse local mean speed
vT '(z) =B~T(0,z)/Bz at resonance for the well region.

FIG. 6. Top: local Larmor-clock time at resonance,
rr(a, z)=Re[rr(a, z)] with a &z & b, for the well region of the
symmetric DRB with V& = V2=0. 30 eV, d& =d2=100 A,
w = 100 A, and m =0.067m. The incident energy is
E =E,"'=0.13259 eV. Bottom: the inverse local mean speed
U„'(z)—:B~T(0,z)/Bz at resonance for the well region.
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2.0

1.5—

pressions for the probability density pk(z) and probability
current density jk(z) with the corresponding relativistic
(Dirac) expressions:

1.0— Pk f——k (z) teak (z)

0.5—
1 z (Z)y 1 (Z)+q( z (Z)y 3 (Z)

0.0

2.0

14.992 14.996 15.000
z (A)

I

15.004 15.008

jk(z) =c P k(z)~ ek(z)

=C[y(1)z (Z)y„(z)+y z (Z)q (Z)]

where

(12)

1.5—

1.0—

0.5—

)tJ'„"(z)

0
(teak(Z)= ~(3)( )

0

0.0 I

14.880 14.884 14.888
z (A)

I

14.892 14.896

FIG. 7. Comparison of Dirac ( ———) and Schrodinger

( ) calculations of UT '(z) for the symmetric DRB with z in

the immediate neighborhood of a local minimum of the eigen-

state density pk(z) in the well. The horizontal dotted line

denotes c '. The barrier parameters are V&
= V2 =10 eV,

d l
=d2 = 10 A, m = 10 A, and E„=9.772 eV for the top panel,

and V] = V2 =10 eV, d& =d& =10 A, w =9.775 A, and

E„=9.997 eV for the bottom panel.

for (positive-energy) spin-up Dirac electrons, and

0 0 1 0
0 0 0 —1

1 0 0 0
0 —1 0 0

The nonzero components of the stationary-state
scattering wave function 1tik(z) outside the barrier region
0 z d are given by

g( )(z) eikz++ ikz q(3)( )
——

g( k )( ikz Z i z) Z (—0

Q' "(z)= Te'"' f( '(z) =g(k) Te'"' ~ d

(15)

(16)

with ckk =(E mc )'~, g(k—):cfik l(E+mc—), and E =E+mc . The incident particle Aux jk is obtained by substi-
tuting 1''k"(z) =e'"' and 1i)'k '(z)=g(k)e'"' into Eq. (12) for jk(z). The result is jk =2c fikl(E+mc ). Hence the relativ-
istic expression for the dwell time is

z2

rD(z), Z2)= 1+
2 J 'd [lqz' (zk)l + I@'k '(z)l ] .

2mc 1

(17)

For the symmetric DRB, V(z)= V[6(z)6(a —z)+6(z b)6(d —z)] wi—th d =b+a, the nonzero components of
gk (z) within the barrier are given by

q(1)( )
—g zz+B —vz

y(1)(z) Ceikz+De —ikz

y(1)(Z) = g ezz+B e rcz

1((k '(z)=g(a. )(A)e"—B,e "'), 0 z a

g' '(z) =g(k)(Ce'"' De '"') a z —b

(t)(k '(z)=g(i()(A2e '—B2e '), b ~z ~d

with cA)r= —i[(E—V) —m c ]' and g(i~)=— icA~I(E —V+—mc ). The coefficients R, A„B),C, D, Az, B2, and T
are obtained by requiring continuity of 1t)'k"(z) and (t)'k '(z) across the interfaces at z =0, a, b, and d. For the symmetric
DRB at resonance (E =E„)the local mean speed for transmitted particles is given by

Ur(z) =2cg(k)[ l
@'k"(z) l'+

l
@'k"(z)l'] (19)

After a straightforward evaluation of C and D, it is found that
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lg'I,"(z)l + IMP'(z)I =(2y 5 ) '([2y 5 +(y +5 ) sinh (~„a)](1+y )

+(y +5 )sinh(~„a)I(y —5 )sinh(a„a)cos[2k„(z —b)]

—2y5 cosh(v„a) sin[2k„(z b)—I( 1 —y ) }, a z ~ b

where y =(A/mc)k„/(2+E/mc ) and 5—= (A'Imc)a„/
[2+(E—V)/mc ]. The resonant energies used in the
relativistic calculations are obtained for the symmetric
DRB by solving I T(E„)I

= 1. The result is

cot(k„u)) = [(y —5 )/2y5]tanh(~„a ),
where ~ =b —a. In the limit that the speed of light c ap-
proaches infinity, this reduces to the nonrelativistic ex-
pression of Hauge et al. '

For the barrier parameters of interest [i.e., V&=V2
=O(10 eV)] the relative difference between the Schro-
dinger and Dirac calculations of vT(z) is negligible, ex-
cept in the immediate vicinity of a local minimum of
pk(z) where, as shown in Fig. 7, it can be very large.

It is easy to prove for the symmetric double barrier
V(z)[6(z)6(a —z)+6(z —b)6(b +a —z)], with V(z)
arbitrary, that the Dirac result for vT(z) is bounded by
the speed of light c. It follows from Eqs. (11) and (18)
that in the well region the local extrema in pk)„)(z) occur
for z'"' given by exp(i4k„'"'z'"')=C*D/D'C, subject to
the condition that a ~ z'"' ~ b. At one of these extrema

p„(.)(z'"))=(ICI+IDI)'+g(k„'"')'(ICI+ ID I)' (20)
r

where the upper (lower) sign corresponds to a maximum
(minimum). Hence, for a local minimum in pk)„)(z)

within the well,

2cg(k„'"))
v (zn)=

1+2IDI' —2IDI(1+IDI')'"+g'(k'"')[1+2IDI +2IDI(1+IDI ) ]
'

where I Cl —IDI =1 has been used [this follows from the
requirement of current conservation, using (12},(16), (18),
and ITI =1]. Substituting vT(z'"')=c/(1+@) and solv-

ing the resulting quadratic equation for g(k„'n)), one ob-
tains

1+e+(2m+ e )
' i

1+2ID I'+2IDI(1+ IDI'}'"
Since g(k):—cA'k/(2mc +E) is real, the quantity 2e+e
must be non-negative. There are two possibilities (1)
e ~ 0, in which case vT(z'"') ~ c; (2) e (—2, in which case
vT(z'"') ~ —c, which must be rejected because vz(z) is a
speed. Hence the local Larmor-clock transmission speeds
in excess of c obtained with the Schrodinger equation for
the symmetric double barrier at resonance are eliminated
when the calculation is carried out with the Dirac equa-
tion. The Schrodinger results for the local minima and
maxima in p„~„) are (ICI —IDI), and (ICI+ IDI),

r

respectively. When ( I Cl —
I
D

I ), „ is very small,
( ICI+ IDI ), is very large in comparison. The primary
role of g(k„'")) in Eq. (20) is to mix in the large quantity

(ICI+IDI) . This explains why the Schrodinger and
Dirac results for vT(z'"') can differ by many orders of
magnitude when (ICI —IDI) =(ICI —IDI), „ is ex-
tremely small, even though g(k„'"') =E/2mc is itself
very small.

It is important to note that using the Dirac equation to
calculate wT for the SRB does not change the conclusion
that d/Re(~T) )c for suSciently large d. The relativistic
results for the transmission and reflection probability am-
plitudes of the SRB V(z) = V06(z)6(d —z) are

(~d)+i(y —5 ) sinh(
exp ikd-

4y 5 +(y +5 ) sinh~(~d )

R = —i(y'+5') sinh(~d )T exp(ikd)/2y5,

with y =craik/(2mc +E) and 5=cfire/(2mc +E —Vo).
It follows readily from Eq. (4) for rr(k;z„zz) and the
corresponding result for rz(k;z„z2) that rT(k;O, d)
=i AB I Tn/ )Vcaond rz(k;O, d) =i%'8 lnR /8 Vo for the
special case of a SRB. Using the above expressions for T
and R, it is not difticult to shov that

rD(k'0 d) Re[~T(k;O, d)]

=Re[r„(k;O,d)]

z y m /A'k
E 2 /~k

a. '(1+5 )(y +5 ) sinh(2ad) —2(1—5 )(y —5 )d
2mc 4y 5 +(y +5 ) sinh (xd)
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a ue SRB (sd » I ) it follows thatFor an opaque
t of d and, in par-Re[r (k;O, d)] is virtually independent of d an, '

p
[ (k '0 d)] & c for barrier widths suchticular, that d/Re[rT

that

sd &(l+E/2mc )(2mc/A'k)y (1+5 )/(y +5

III. COMPLEXEX LARMOR-CLOCK TRANSMISSION
TIMES FOR DOUBLE-RECTANGULAR BARRIERS

The investigation of local Larmor-clo- lock transmission
z z ) for double barriers in Sec. II was restrict-

ed to symmetric barriers at resonance. ei
d r (z z ) can develop antwo restrictions is remove, 7T z),

ofima inary part, t e p ys'cai ', h h ical meaning and significance o
'

1 The reader who cannot accepwhich are controversia . e
rtoe uatet creah 1comp ex r1 t ansmission times may pre e q

with the time ~,T associated with Larmo pr re-part of ~T wit e im, T
er endicular tocession of the electron spin in the plane perpen

netic field ' and (minus) the imaginary part with
the analogous time ~ T introduce y u i
scribe the spin polarization of the tra

~ ~

ransmitted beam in
the magnetic field direction.

Figure 8 shows the real and imaginary parts of ~r, z
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time ~T(O, d) for the entire width d of a symmet

'
metric DRB with

V, =50 A and m *=0.067m as a function of
incident energy E near resonai

'
nance for d]=dp=90 A {' ),

v 0100A ( ), an
O

110 A ( ———). At resonance, Im ~z
d)] =0.

as
' f 'th 0 z d for the symmetric DRBas a function o z wi z

of Figs. 2, , an od 5 f r two nonresonant energies
d E =3E' '/2. For the off-resonance ener-

0 z) with zies shown, most of the variation of Re[rT(, z wi z

E=3E' '/2. ) This is just the behavior
found in Ref. 32 for the (isolated) single barrier. For bo
cases, there is signi can'fi t Larmor precession only withm a
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FIG. 8. The real and imaginary parts oarts of the local Larmor-
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metric DRB having Vi = V& =0.16 eV, d] =
Aandm = . m, an*=0.067 nd for three incident electron energies:E' E(o) 006769,~ ~ ~. E E(0)&2

~

=3E' '/2 ( —~ —~ —~ ). The vertical dotted lines indicate the
well region.
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FIG. 10. The near-resonance behaviorior of Re rr(0, d)]
( ) and ~T(0,I& (0 d)l ( ———) for the symmetric DRB with
V = V& =0.16 eV, d ] =dp = 100 A, and w =50 A.1
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decay engt o1 h f the outside edges of the barrier. It is also
r from the figure that ~rT(0 z)

~
is not a monotonica yall

increasing function of z for E =3E„. uc
is also possible or ef th SRB but only for transmission

32above the barrier.
(E=E' ') behavior of the real andThe near-resonance

f r (0 d) is shown in Fig. 9 as a func-imaginary parts o
DRB 'thtion of incident energy E fo yfor a s mmetric wi

=0.16 eV, w =50 A, and three values (90,
110 A) of the common barrier width di = z.

very small shift to lower energy in E„should b
for the thinnest barrier. Although the imaginary part of
rr(O, d) is zero orf E =E' ' it becomes comparable in

d to the real part very quickly as E moves away
ffoID „ ln elE„'

' 'ther direction. This is illustra e 'g.
10, where e ~TR (0 d)] is compared with ~rr(O, d) or

m of thed =d2=100 A.. The full width at half maximum o e
(0 d)~ is almost double that forresonance peak in

Re[rT(0,d )]
The dependence of the real and imaginary par s o

DRB's with d =d2=50, 100, and 150 A. Note the1 2

change in the vertical scale by a factor of 10 from Fig.
, so that the behavior far from resonance is visible. For

E sufficiently small that the efFect of the resonance is
negligi e, ~T

' 'bl (0 d) for the DRB has qualitative features
.10in common wiith the same quantity for the SRB:

itRe rT(0, d)]~ E' and Im[rT(O, d)]~E in the limi
that E approaches zero; (2) for opaque barriers
Re[rT(O, d)] is almost independent of barrier thickness.

Th d dence of the low-energy off-resonance behav-
ior of the real and imaginary parts of rT(O, d) on the we
width w is shown in Fig. 12 for a symmetric DRB wit
d ] =dp = 100 A and V] = V2 =0.16 eV. The resonance
energy

&
is very sen

' 'E' ' '
ensitive to m and only the curve for

w =150 A has a resonance peak below 0.02 eV, the max-
imum value of E considered in the figure. It is important
to note that, despite the large variation in d =d I+d2 ui

the curves for Re[rT(O, d)] show negligible dependence
h ll 'dth w in the energy range well below the

lowest resonance energy. This is a reAection of t e ac
e of interestthat, in the low-energy ofF'-resonance regime o in

~ b f., th. ..here, the real part of the Larmor time ~T a,
tire well region is completely negligible compared to the
free-partic e time, T a,r "'( b):m(b ——a)/A'k =—mw/III', to
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FIG. 11. The real and imaginary parts of tof the Larmor-clock
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V, = V, =0.16 eV, w =50 A, and m *=0.067m as a function of
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10-" s)panel of this figure (10 ' s) and that of Fig. 9 (10 s).

IG. 12. The real and imaginary parts of thof the Larmor-clock
time ~T(O, d) for the entire width d of a symmet

'
mmetric DRB with

d =d =100 A, and m'*=0.067m as a func-
f incident energy E over the low-energy rangetion o inci en

A ( ), 125 A { ~ ~ ~ ), andmeV for w =0, 25, 50, 75, 100 A (
=0—100 A150A( ———. n e———). I th top panel the results for w =0—1 A

m anelcoincide to wit in p o ing
' h' 1 tt accuracy, while in the bottom pane

they are ordered (for meE + 15 meV) in terms of increasing ur from
top to bottom.
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3.0 P(k) = f dz g(z, t =0)e

2.0— (22)

a
C)

I-
t-
(D

tX.

1.0—

0.0
67.2

I

67.4 67.6 67.8
Energy (meV)

68.0 68.2

of g(z, t =0) is negligibly small for negative values of k.
For the moment, the k dependence of the dwell time is
shown explicitly. Substitution of Eq. (1) into (21) gives

rD(O, d) = f ly(k)l' IT(k)l'rT(k;O, d)
0

+ f ly(k)l' l&(k)l'rii(k;o d)

2.0
—= tT(O, d)+tz(O, d) . (23)

a
C)

I-

10—

0.0—

-10—

Hence the real time t~(O, d) splits quite naturally into the
sum of two terms, one describing transmission and the
other reAection, with no interference term involving both
transmission and reAection. Although each of the two
terms is, in general, complex their sum is real.

Figure 13 shows the real and imaginary parts of the
Larmor-clock wave-packet transmission time (normalized
by the transmission probability for the packet)

-2.0
67.2
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I I

67.6 67.8
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68.0 68.2 rr(O, d)=tT(O, d) f ly(k)l' IT(k)l'
0 7T

FIG. 13. The real and imaginary parts of the Larmor-clock
wave-packet transmission time ~T(0,d) as a function of
Eo =A k 0 /2m *, with Eo near E„' ', for wave packets des-
cribed by lP(k)l i(3 /2irbk)[1 —(k —ko)i/(bk) ]6(k

ko +Ak )e(ko +Ak k ) incident on the symmetric DRB
of Figs. 2, 3, and 5 (i.e., V&= V&=0. 16 eV, d&=dz=100A, and

0
m =50 A). The half-widths for the three curves are
6k=0.0 A '

( ), 1.0X10' A '
( . ~ ), and 2.5X10

A-'( ———)

t~(O, d)= f di f dz le(z, r)l'

= f IP(k)l'r (k;O, d), (21)

provided the Fourier transform

cross the well. On the other hand, over the same energy
range, Im[rT(O, d)] has a much stronger dependence on
well width and —Im[rT(a, b)] has a much more reason-
able magnitude in comparison with HP'(a, b). This is ad-
ditional evidence for the importance of the imaginary
part of the Larmor transmission time for off-'resonance
energies.

It is possible to construct complex Larmor-clock
transmission (and reflection) times for suitable wave
packets incident on arbitrary barriers. These are needed
in the next section. From the work of Hauge, Falck, and
Fjeldly' it follows that the mean time tD(O, d) spent in
the barrier region O~z ~d by an electron with tirne-
dependent wave function P(z, t) is given by

as a function of Eo=—fi ko/2m*, with Eo near E„' ', for
wave packets described by

lP(k)l =(3n/26k)[1 —(k —k ) /(bk) ]

x 6(k k+ b, k )6(—k + b,k —k )

incident on the symmetric DRB of Figs. 2, 3, and S.
Clearly, well below the resonance the imaginary com-
ponent of rT(O, d) dominates just as it did in the plane-
wave case.

IV. A BREAKDOWN OF THE LARMOR-CLOCK
APPROACH OR AN EXAMPLE

OF QUANTUM NONLOCALITYP

In this section the Larmor clock is used to calculate
the mean time spent by a transmitted (reflected) particle
of energy E in a region z, ~ z ~ z2 on the far side of an
isolated SRB, V(z) = V06(z)6(a —x). This can be calcu-
lated either directly or from the expression for the local
Larmor-clock transmission (reflection) time for the DRB
V(z) = V&6(z)6(a —z)+ V&6(z —b)6(d —z) by setting
V, = Vo, b =z, , and d =z2, and then letting V2 go to
zero. Intuitively, one might expect that rT(z„z2) is just
the free-particle transmission time m*(z2 —.z, )/haik and
that r~ (z„zz ) is zero. These guesses are obviously
consistent with the dwell time rD(zi»2)=lTl'm*(zp
—z, )/Ak. The calculated results are, in general, com-
plex:
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m +(k +lcz)sinh(«) [(k2 lr2)c(z„z ) sinh(«)+2k'(z~' 2

( k 2 Ir2)s(z ) z~ ) sinh( «)2kac(zi, z2) cosh(«)—2m
Re[ (zl pz2)] (k 2+ lr2)D ( k lr) sinh(«)(, ) cosh(«)+(k —K )c( ]~ 2z z ) sinh(«)

a z& Z2
m[rv(z, z )]=

(k2+~2)D(k, &)sinh(«)

Im[1T(zJ z2)]

e(z z, ) I+(k2+lr )sinh(«) k2 &2)s(z, z2) sinh(«)
2

c z z )cosh(«)] i
Z2 1

Re[rT(z~ zz)] gk 2A'k D(k~~)
(24)

(25)

(26)

(27)

where

s(z&, z2) =sint zz-[2k ( —a)]—sin[2k(z& —a)],

c(zi, z2) = cost z2[2k( —a)]—cos[2k (z& —a)],

D k ) =(k + ) sinh (Isa )+4k K
7

(28)

(29)
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(24) —(29) and concluded that they provide clear evidence
of the unreliability of the Larmor-clock approach. They
reject the possibility that the common sense answer that a
rejected particle spends exactly zero time on the far side
of a barrier might in fact be incorrect. A study of signer
trajectories for an electron of energy E incident on a
rectangular barrier might provide a conclusive answer.

V. SUMMARY

In this paper the Larmor-clock approach has been ap-
plied to the calculation of local transmission times for
symmetric double rectangular barriers. The on-
resonance results provide support for Biittiker's exten-
sion' of the original Larmor-clock analyses of Baz' and
Rybachenko to include the differential effect of the Zee-
man energy on the transmission probabilities for up-
and down-spin electrons. It has also been shown that
local transmission speeds UT(z) calculated with the
Schrodinger equation can be very much in excess of the
speed of light c for symmetric double barriers on reso-

nance, but that UT(z) & c when the Dirac equation is used.
This satisfying result is in strong and significant contrast
to that for the transmission speed calculated for the sin-
gle rectangular barrier from the real part of ~T. In this
case, the conclusion that UT(z) )c for sufBeiently opaque
barriers is not altered when the Dirac equation is used in
place of the Schrodinger equation. This provides strong
grounds against identifying Re(rr) with the transmission
time ~z. Results for the dependence of the Larmor-clock
transmission time on incident energy, barrier widths, and
well widths have been presented with an emphasis on the
behavior off resonance. Finally, it has been shown that
the Larmor-clock approach leads to a result contrary to
the common sense notion that a reflected particle does
not spend any time on the far side (z )a) of the potential
barrier V(z)6(z)6(a —z). Does this indicate a break-
down of the Larmor-clock method or does it provide a
simple example of quantum nonlocality7 It is hoped that
this question and others raised in this paper will stimulate
further activity to clarify the often controversial and
confusing problem of "tunneling times. "

APPENDIX: LOCAL TRANSMISSION TIMES FOR SYMMETRIC DOUBLE
RECTANGULAR BARRIERS AT RESONANCE

The local Larmor-clock time for the first barrier (0 &z & a) is

C, (k, K)(e "—1)—C2(k, K)(e "—1)
r (0, 0&z&a)=

2K
+C3(k, K)z

where

e '(k+K)
C, (k, K)= ([(k +K ) sinh (Ka)+2k K ]8k'x4

—sinh(Ka)I[(k —K ) sinh(Ka)+4k K cosh(Ka)]cos(2kw)

—2kK(k' —K')[sinh(Ka ) —cosh(Ka )]sin(2kw) j ),
e 2@a(k 2 +K2 )C2(k, K) = ( [(k'+K')'sinh'(Ka )+2k 2K2]

8k'~4

—sinh(Ka)t[(k —K ) sinh(Ka) —4k K cosh(Ka)]cos(2kw)

+2kK(k —K )[sinh(Ka )+cosh(Ka )]sin(2kw) j ),
C3(k, K)= —I(k —K )[(k +K ) slnh(Ka)+2k K ]

—(k +K ) sinh(Ka)[(k —K )sinh(Ka )cos(2kw)+2kKcosh(Ka ) sin(2kw) j /16k K

The local Larmor-clock time for the well (a & z & b) is

rT(a, a &z & b ) = {(k —K )sinh(Ka) Isin[2k(z —b)] —sin[2k(a —b)] j
m * (k +K )sinh(Ka ) 2 2

Ak 2k

+2kK cosh(Ka ) I cos[2k(z —b)]—cos[2k (a —b)] j )

+[2k K +(k +K ) sinh (Ka)](z —a) 2k K
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The resonance condition is'

cot( kto) = k —~2 2

tanh(tea ) .2k'

The local Larmor-clock time for the second barrier (b ~ z ~ d) of the symmetric DRB is symmetrically related to the
time for the 6rst barrier by

rT(d —z, d)=sr(O, z), O~z~a .
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