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Nonlocal corrections to Fresnel optics: Comparison of exact solutions
with d-parameter approximations
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Various model systems whose optics can be calculated exactly are examined from the point of
view of d-parameter theory [Phys. Rev. B 39, 10 714 (1989)]. By comparing exact and approximate
estimates of reflection amplitudes, we determine the range of validity of d-parameter theory for
these specNc models. In general terms the d-parameter formalism at clean surfaces only has
difhculty near thresholds for bulk polaritons. The size of damping terms and the strength of the
spatial dispersion determine whether the breakdown of d-parameter theory is severe or not.

I. INTRODUCTION

We recently presented a formal derivation of the d-
parameter theory of nonlocal corrections to Fresnel op-
tics which allows its extension beyond jellium-model cal-
culations. ' At severa1 points in this derivation one must
invoke the assumption that the effective thickness of the
interface region is much smaller than macroscopic wave-
lengths of the radiation fields. Since the general argu-
ment was made without reference to specific systems,
quantitative estimates of when or to what extent the per-
turbative approach of d-parameter theory breaks down
were not made. In this paper we provide such estimates
for several simple models.

The model systems are chosen more for their simplicity
of analysis than for their exp erimenta realism.
Specifically we examine here only models whose optics
can be exactly calculated. We compare these exact solu-
tions with the approximate results of d-parameter theory
applied to the same models. Our aim is to illustrate ex-
plicitly the range of validity of d-parameter theory, and
to develop empirical measures of when it should or
should not be trusted. These empirical rules will hopeful-
ly remain meaningful for more realistic models whose ex-
act solutions are either unknown or too complicated to
conveniently evaluate.

Before turning to specific models in Sec. II, we sketch
the form of the d-parameter corrections to Fresnel optics.
Our focus is on the reAection amplitudes produced when
a monochromatic beam of light or either s or p polariza-
tion is incident from vacuum at an angle 0 with respect to
the normal to a Oat surface. The only material property
required by the Fresnel theory is e, the loca1 dielectric
function of the bulk material. One finds for the Fresnel
reAection amplitudes
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The d-parameter theory characterizes the first-order
corrections to (1) and (2) due to any intrinsic surface
response. For systems with sufhcient symmetry only two
d parameters can be nonzero, '

d~~ and d~, and both are
complex-valued functions of co, as is e in general. The
corrected reAection amplitudes are
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These results are derived under the presumption that the
corrections are sma11, ' and the equations for the d's are
usually evaluated neglecting retardation; i.e., with c set to

For the models considered in Sec. II one can find the
exact r's and explicitly examine the validity of the above
approximate scheme. We do this with models that
roughly describe in turn plasmons, optical phonons, and
Frenkel excitons. Then in Sec. III we summarize our re-
sults in general terms.

II. MODEL SOLUTIONS

We begin with two comments that apply to all the
models considered here. First we stress that these models
provide only crude descriptions of the particular physical
systems. Better models are known but their increased
physical sophistication usually complicates an exact
mathematical solution. One can often fit the crude mod-

With co the light frequency, c the speed of light in vacu-
um, and Q =(co/c)sin8 the common projection of all
wave vectors in the plane parallel to the surface, the vac-
uum pis
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els to specific experimental systems by adjusting various
free parameters, but we do not pursue this option. If we
do vary these parameters it is only to exhibit the sensitivi-
ty and precision of different mathematical approxima-
tions. Our second general comment is that all of the ex-
act solutions we study were obtained by others in earlier
work. Hence we do not give details of the solution
methods, but just define each model and quote its exact
r's. The emphasis is on comparing these exact solutions
with d-parameter estimates.

A. Plasmons

2
Qj COp

Bt 4m
E—DLV6p —yj, (7)

The first system we consider is a model of metal optics.
To understand nonlocal effects near the plasma frequency
has been a principal driving force behind the renewed in-
terest in d-parameter calculations. " The simple hy-
drodynamic model we examine here contains some of the
relevant physics, in particular the threshold for plasmon
creation at co=co . The metal is described by the consti-
tutive equation

This is to be compared via (6) with the simplest d-
parameter estimate for this model:

di =i//3s,

where dl is zero and /33, given by
—2 2

is the nonretarded limit of /33.
Thus the d-parameter estimate (6) is reliable for this

model if one can replace P3~P~ and expand (10) into
(10'). For metals DL is typically 4—5 orders of magnitude
smaller than c, so except for co very near co the above
reductions are justified. We show in Fig. 1 a comparison
of an eff'ective di with the simple estimate (12). The
former is found by requiring Eq. (6) with dl =0 to repro-
duce (10). We have chosen DL /c 2 = 10 and
y/co =10 . The latter choice is rather small, but larger
values make the agreement in Fig. 1 even better.

To provide some insight into why the d-parameter
theory works so well here, consider the polarization am-
plitude P =j/( i co). In vac—uum P vanishes, while inside
the metal for an incident p wave

which relates the time derivative of the electron current
density j to the electric field E and gradients of the in-
duced charge density 5p. At the simplest level the plas-
ma frequency co~, the dispersion parameter DL, and the
scattering rate y are fixed constants. For this case the
transverse dielectric function is given by Drude's formula

P=&, (Q, —P„O)e

(14)

cT—1 co& /ci) (8)

where co = (co+coiy); while the longitudinal dielectric
function alone has spatial dispersion effects,

where x is the normal coordinate and X describes varia-
tions within planes parallel to the surface. The metal lies
in x) 0 and all the P's here (and below) are chosen to
have a positive imaginary part so the various partial

where q is a three-dimensional Fourier wave vector.
These results imply that only p-polarized light will show
deviations from Fresnel theory, and in turn that only dj
is significan.

The exact p-wave reAection amplitude for a medium
described by (7) up to a matching plane with vacuum is, if
we require the normal component of j to vanish at the
surface, '
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where the normal component /33 of the longitudinal wave
is set by

DL
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Equation (11) follows from the condition eL=O. If we
identify the eT of (8) with the e of (1)—(6), we find upon ex-
panding (10)

FIG. l. Plasmon model of d, . We plot P~ d i, where
/3~ =co /c, vs co/co~ for frequencies near the plasmon threshold.
Both real and imaginary parts of dj are shown. The solid
curves are from the nonretarded result (12), while the dashed
curves describe an effective d& that reproduces the exact p-wave
reAection for an angle of incidence of 60 .
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waves decay into the bulk. The vector character of P is
described by a triplet of components along the mutually
orthogonal x, Q, and t=xXQ directions. The relative
strength of the transverse and longitudinal contributions
to P has been fixed by the additional boundary condition
(ABC) that x P =0 at x=0. As an aside, we remark that
we view the ABC required here (as well as others im-
posed below) as part of the specification of a model sys-
tem, and refer the reader elsewhere for its rationaliza-
tion. '

Equation (14) gives the polarization with all retarda-
tion included. The d-parameter derivations' assume that
P can be separated into a Fresnel-like piece

i p'F'xp(F) p(I')(ri /3(F) ())e' 1 ei(g x co.t)— (15)

and a "surface-localized" remainder. Equation (8) im-
plies here that /3I '=/3, and P', '=P, . The remainder
term only needs to be localized to the extent that one can
extract its integral over x from a spatial range small com-
pared to that over which P' ' varies. For the hydro-
dynamic model this constraint is simply that ~/33~ && ~/3, ~.

We emphasize that it holds equally well for P3 nearly
pure real (co —co » y ) or pure imaginary (co —co« —y). The minimum of ~/33~c/co& occurs near co& and
is roughly [(y/co~ )(c /DL)]', which for our parameter
choices equals 10. This is consistent with Fig. 1 where
the largest error in d i is about 10%%uo and occurs only for co

within 0.1% of co . We conclude that the maximum rela-
tive error in d ~ is controlled by the damping. However,
this inference is a special consequence of the longitudinal
nature of the plasmon since the two partial waves of po-
larization in (14) are completely uncoupled in bulk so
only the finiteness of 1/r keeps their respective P's from
crossing as co passes through co .

truncate the short-range coupling beyond nearest-
neighbor planes of molecules at a (100) surface of a
simple-cubic array with lattice constant a. The exact s-
wave refiection amplitude at O=O=Q can then be ex-
pressed as'

—i p)a —poa —i p2a
e ' —e
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1'Poa er = —eS +ipoa —i p&a +ipoa —i p&a

e ' —e ' e ' —e
(18)

where Pp=co/c and the origin for x is at a/2 outside the
last plane of molecules. Both P, and /3z are normal com-
ponents of transverse wave vectors and are to be found
from

0= 1 —a[ V(0)+2 V(1)cos(Pa)]

Ppa sin(/3pa )
+4mna

2 cos(/3a )
—cos(/3pa )

(19)

/3 =/3pe'(/3, co),

where

(19')

e(P, co) = 1+
1 —a[ V(0)+2V(1)cos(/3a)]

Here the V describe the contribution to the local field
from other molecules in the same plane —V(0)—or in an
adjacent plane —V(1). The V depend only weakly on fre-
quency and their nonretarded values are constants: for a
simple cubic lattice V(0)/n ~+4.517= V (0)/n and
V(1)/n —+ —0. 164= V (1)/n as c~ oo, where n =1/a
is the density of molecules.

It is not immediately obvious how (18) may be related
to a corrected Fresnel theory, but if we assume that the
products of /3a in (19) are small, that equation can be
reexpressed as

B. Optical phonons
=e (co) = 1+ 4mna

1 —a[V (0)+2V (1)]
(20)

For the next model system we switch from the picture
of itinerant charge fiowing to that of localized charge po-
larizing. Specifically we consider an ordered array of
point, dipole-polarizable molecules. Instead of (7) we
write an equation for the induced dipole moment at site 1

p(1)=aE„,(l ),

This last result for e is similar in appearance to the
Clausius-Mossotti formula. '" One would only need
V (0)+2V (1) to equal 4nn/3, which indeed is nearly
true. Hence we define an effective d~~ for this model by
requiring that (5) using the e of (20) exactly reproduce
(18). On the other hand, the d

~~

from the simplest nonre-
tarded treatment of this model is'

as a product of the molecule's (presumed) isotropic polar-
izability a and the local electric field at the site. The
latter has contributions from the externally applied field
and from the induced fields produced by the other mole-
cules

d~~ =0/( —1),
where /32 is a solution of

1 =a[V (0)+2V (1)cos(/3za)] .

(21)

(22)
E„,(1)=E~(l)+ g T(1,1').p(l') .

I'
(Wl)

(17)

The dipole-dipole coupling matrix T has both short-range
terms due to near (essentially nonretarded) fields and
long-range terms due to far (fully retarded) fields. The
latter vanish when c~ ~.

This model leads to nontrivial values of both d~~ and
d~, but if we limit ourselves to the normal incidence
refiectivity we only need d~~. We further specialize to

4mna=
CO CO

(23)

with f= 1. We again write co = co +t coy but now

Its prediction of r, is also to be found from (5) using the
e of (20) to set P, .

In Fig. 2 we plot d~~ versus frequency near its reso-
nance. We have chosen a/A, =10 where X=2~c/6
and have set
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Re ( dli)

scribed by a finite sum of terms exponential in the inter-
plane separation, they can be kept for all separa-
tions. ' ' One can find r, off normal incidence' and
can also find r for any 9.

Exact solutions can furthermore be easily found for
continuum models of the present system. Such models
can be imagined as the small-a limit of what we have just
analyzed. One introduces say as an intermediate step in
(20)

0
IQQ

tOo
eT(P, co) = 1+

1 —a[ V (0)+2V (1)]+aV (1)a /3

(25)

Irn( d„)

which when combined with (23) becomes

ScoT2

eT(/3, cu) = 1+
cuT —co +DT/3

where

(26)
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FIG. 2. Optical-phonon model of d~~. We plot Pd~~, where
/3=co/c, vs c0/co for frequencies near the transverse resonance.
Both real and imaginary parts of d~~ are shown. The solid
curves are from the point-dipole model, Eqs. (21) and (22), while
the dashed curves describe the continuum model, Eqs. (27) and
(28). Near coT the two d ~~'s differ by a/2.

=P, [(O,O, Po)e

(() () p )
'~2'x+'/"] &(g x ~t) (24)

which vanishes when l = —1; i.e., at the location of the
first "missing*' layer. ' The d-parameter theory
effectively assumes that /32=/3z is much larger in magni-
tude than /3, =/3„where P, is to be calculated from (4)
using the e of (20). This inequality is well obeyed except
near cor, where the exact /3, and /32 have an avoided cross-
ing. On the scale of Fig. 2 the consequent difficulties
scarcely show, but would become apparent on an expand-
ed scale such as used in the next section.

Before moving to that new physical system, we note
that exact solutions can still be readily found for several
extensions of the present model. One can allow the
short-range interactions to extend beyond the nearest-
neighbor plane for a finite distance for arbitrary ratios of
their relative strengths; ' or if the interactions can be de-

l

y/cu=10 . The (transverse) resonance in e (co) is at
coT/co=0. 816. The efFective d~~ defined above has noi
been plotted since it is nearly identical to d

~~. Only at the-
resonance peak does it show a small (10%) difference.
Hence again d-parameter theory is quite successful.

As in Sec. II A it is useful to examine the polarization
amplitude. The analogue of (14) is for an infinitesimal Q

P(x =(l+ —,')a, X=I.a)

d~~ =i//32,

where /3z is defined by the pole eT(P, co):

(27)

Q) COT

( )'= (28)

which is an analogue of (13). The continuum d
~~

is essen-
tially as accurate as that of the discrete lattice. The two
have qualitative differences between each other away
from coT, particularly at the other extremum of the band
of real /32 values for the point-dipole model. This is also
evident in the nonretarded dispersion curves shown in
Fig. 3. Such bands of solutions have been studied more
thoroughly elsewhere. ' We only stress here that the
inhuence of these differences on reflection amplitudes can
be accurately studied with d-parameter theory away from

AT since they occur when ~/32~ = ~/3z~ = n. /a )) ~/3, ~

= /3i ~.

Very near mT the main difference between the two model
estimates of d~~ is a constant, real-valued shift. This
arises since the ABC used to produce (27) makes the po-
larization vanish at x=0, while that in (24) vanishes at
—a/2. The extent to which this shift is noticeable is a
measure of how well one should expect discrete and con-
tinuum models to agree.

C. Excitons

The last model problem we consider will in its parame-
ter choices lead us to examine much sharper resonance
structure. Although a point-dipole model can be applied
to this case, we use for simplicity an isotropic continu-
um model since it should have the same qualitative be-
havior near the resonance peaks, aside from the constant

cuT/co =1 f [V (0—)+2V (1)]/4mn,

DT=fV (1)co a /4~n, and ScoT=fco . The d's that re-
sult from such modifications are qualitatively similar to
the discrete lattice answers. Figure 2 has a comparison
for d~~. The specific recipe for the continuum d

~~

plotted
there is [cf. Eq. (21)]
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FIG. 3. Comparison of nonretarded dispersion relations near
the transverse-optical phonon frequency, coT=0.816co. The
damping parameter y is zero and for each value of co/co we give
the value of (Pza/n)'. The solid and short-dashed curves are
for the point-dipole model (22) and the continuum model (28),
respectively. For the former, below co=0.784co, the real part of
/3z remains fixed at —m. /a while the imaginary part of p2 varies.
The resultant imaginary part of lgz) is denoted by the long-
dashed curve. The retarded behavior very close to coT is compli-
cated; see Fig. 4.

shift discussed above. The model is based on the postu-
lated bulk, nonlocal dielectric function

ScoT2

e(q, co) —eo+
co —co +D q

(29)

Aside from isotropy in q space this differs from (26) only
in allowing for a nonresonant polarization via co&i.
Various partial waves of polarization may be found from
(29). If we require e with q=(p3, Q, O) to vanish, we ob-
tain one (longitudinal) solution

—2 2

(p3)'= —Q', (30)

where coL=coT(1+S/eo). On the other hand, the zeros of
co e/c ~q~ yield two different (transverse) solutions for
the square of a normal wave-vector component, which we
call either (P&) or (P2) . Based on the results in Sec. II B
one might expect to identify one of these with P„ the
Fresnel solution, and use the other (hopefully much
larger) one along with p3 to describe the surface-localized
variation of the polarization. This scenario is possible for
frequencies away from mT and coL, but can fail in their
near vicinity.

We show in Fig. 4 how the various p 's vary with fre-
quency near the resonances for parameters typical of ex-
citons. We have chosen S = 10 and eo = 10, which
places ~L close to ~T. ~L/~T —1 =0 5 X 10 . The
dispersion parameter D/c is taken as +10, much
larger in magnitude than the Dr/c in (26) which is

-0.2
-0.4
-0.6
-0.8
—1.0

-200 -160 -120 -80 -40 0 40 80 120 160 200

(p +Q )/p

—5 X 10 . The physical rationale for this change is that
the coupling between nearby excitonic dipoles is dom-
inated by "mechanical, " rather than electrodynamic
eff'ects. The numerical consequences of these choices are
considerable. The nonretarded solutions which were
sufhcient in Sec. II B are now only rough guides over the
frequency range of interest. Near the avoided crossing at
coT, p, and p2 are comparable and neither is close to the
Pf found from (5) using the local limit of (30).

To find the exact r's one matches partial waves at x =0
using the ABC that all components of the polarization P
vanish there. This yields

CO /C
Po

—P, +(e, —1)
2+ O

CO /C
Po+P, + (e, —1)

2 0

(31)

FIG. 4. Comparison of exact and asymptotic dispersion rela-
tions near the exciton resonance. The damping parameter y is
zero and we show (P, +Q')/Pr, where Pr=coT/c, vs co/cur for
both the longitudinal mode (30) and the two transverse modes
P, and Pz. The various branches are labeled by the appropriate
subscript of p. Note that since Q /pr=sin 0&1, the depen-
dence on 0 is slight. The long-dashed curves give the asymptot-
ic, uncoupled behavior of the transverse modes. The nearly
vertical one is l/3, ) +Q =(co'/c )eo, while the oblique one is

(P2) +Q =(co —coT)/D. The two panels contrast the behavior
for positive and negative sign of the spatial dispersion parame-
ter D. When D &0, there is a region near coT where p, and p2
are neither pure real nor pure imaginary, but are complex con-
jugates of each other. The resulting imaginary part of (/3, )' for
j= 1,2 is denoted by the short dashes.
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Ep( Q +PiP3 )(Pi +PQ ) Ei( Q +P2P3 )(P2+Po)
' Ez(Q'+ pip3)(pl —po) —Ei(Q'+ p2p3)(pz po)

do—

(32) where

2 2

(35)

Here Po is given by (3) and for j= 1,2, E~
=E( q

=(p~, Q), ro). We compare in Fig. 5 the rellectivities im-
plied by (31) and (32) with the simplest Fresnel results
based on (1) and (2) and using

2 2
CO COL

( )'=

(36)

(37)

ScoT
E(co)=Eo+ (33)

d'= l
(34)

In both (29) and (33), co =co +iroy and we now set
y/roT=10 . We did not show analogues of Fig. 5 in
Secs. II A and II B because the differences between exact
and Fresnel results are scarcely apparent there. But here
the differences are large and one should not expect that
d-parameter theory which is based on the lowest-order
correction will be able to explain them.

The simplest estimates of d's are the nonretarded equa-
tions

These are compared in Figs. 6 and 7 with two different
sets of effective d's. For the erst set, denoted by super-
script a, we require Eqs. (5) and (6) using (33) for E to ex-
actly reproduce (31) and (32). We find from (5)

d(a)
p, +p, '

which is fairly simple and clearly tends to (34) as c~ ae.
When this result is substituted in (6), the implied d~"
does not reduce to a simple algebraic form, but is readily
evaluated. Since much of the numerical difticulty near coT

is caused by the large value of e, we also consider a form
of the r's found at an intermediate step in the d-
parameter derivation

I I I I I I I I I I I I I I I I I&III I I

0.8 — D 0
/

/ ji'L x

Rs 0.6

1.0 — D &0 D&0

Rp /)
Ij

/

00
-1

l I I I I I l & l l I l l I l I L& I Q l

10 (culm —1)
pl(s. 5. ~arious estimates of the re(lection coe%cients, R =!r!,for the exciton model at an angle of incidence of 60'. Th«our

panels are distinguished by the polarization of the light and the sign of the spatial dispersion parameter D. We plot vs frequency near
the exciton resonance the exact result, solid curve; the Fresnel result, short-dashed curve; the d-parameter estimate based on (5) and
(6) using (34) and (35) for the d's, dot-and-dashed curve; and the d-parameter estimate based on (39) and (40) using (34) and (35) for
the d's, long-dashed curve. These last two cases do not always yield reflection coe%cients less than unity.
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FIG. 6. Real and imaginary parts of d~~ and d~ in the exciton model vs frequency. The spatial dispersion parameter D is positive.
We plot the nonretarded result (34) and (35), solid curve; the d"'s, long-dashed curve; and the d' 's, short-dashed curve. The latter
two are effective d's, which when used with either (5) and (6) or (39) and (40), respectively, reproduce the exact r's.

0.75—
I I ) N I f I / I l I l t t 'I I t

0.50

0.25—

I

II
II
I)
I)
I

)
I

I

I

Re (d))) Re(dj)

0.00—

0.00—

—0.50 Im (dpi) Im(dg) I

I I 'L I I I 1 I I I t I I I

1 —1

10 ( 4U / QJ T
—1 )

l I I I I I

FIG. 7. Same quantities as in Fig. 6, except here D is negative.
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rs=
CO

/3o+P, +i (e—1) d~~

(39)

ePO
—

13, +i (e—1)(P(P,d~~
—Q di)

ePO+P, +i (e—1)(P(P,d~~+Q di)
(40)

Expanding these to first order in the d's reproduces (5)
and (6), but if e is divergent such an expansion seems ill-
advised. Hence the second set of effective d's, which we
denote by a superscript b, are defined by requiring Eqs.
(39) and (40) with e, substituted for e to agree with (31)
and (32). It is again possible to find a simple equation for

dll'

d(b)—
a+a ' (41)

but not for d J

From Figs. 6 and 7 it is evident that near coT and co&

the d 's, although showing some qualitative similarities
to, are quantitatively quite distinct from both the d"s
and the d' 's, with D &0 being a worse case than D) 0.
The disagreement between the d"'s and d' 's is a mea-
sure of the error of expanding (39) and (40) into (5) and
(6); but using the d 's in either pair of equations does not
account well for the differences between the Fresnel and
exact reQectivities shown in Fig. 5. We further checked
that all the other approximations in the d-parameter
derivations are failing, too. Both P2 and P3 are compara-
ble in magnitude to 13„which is quite different from P,
defined via (33). Consequently the higher-order terms
omitted from both the numerator and denominator of
(39) and (40) are significant. Some qualitative improve-
ment is possible by using eff'ective Fresnel values in (5)
and (6); e.g. , letting e~e„but there seems to be no quan-
titatively reliable way to repair d-parameter theory for
the parameter choices used in Figs. 4—7.

use a continuum model to describe the behavior. Thus in
effect (29) applies to all the resonances described in Sec.
II, with different choices of parameters. From this point
of view the question of whether d-parameter theory will
be reliable hinges on the size of y/coT and D/c . Either
large damping or small spatial dispersion can preserve
the accuracy of d-parameter theory through a resonance.
When these conditions do not hold there does not seem
to be a simple way to fix the theory, aside from going to
an exact solution.

The models examined here all possess considerable
simplifications, most of which are not relevant to the is-
sue of the validity of d-parameter theory. For instance,
allowing for anisotropies or near-surface modifications of
coupling parameters or for different ABC's should not
change our conclusions. The problems with the theory
arise from bulk behavior too dissimilar from the Fresnel
model, specifically when the disturbances away from the
interface are not well described by a single, or narrow
band of wave vectors. For the models treated here this
problem occurs because P2 and/or P3 become comparable
to P, . More generally it would also arise when the fre-
quency exceeds the threshold for diffraction.

It may be possible in cases where a single P, is not evi-
dent to still apply the theory. We have in mind the
anomalous skin-effect regime, where although Fresnel
theory is wrong the disturbance that extends into bulk
has only long-wavelength components. One need only re-
formulate the theory so that the zeroth-order result is,
say, the standard anomalous skin-effect theory, with the
corrections arising from variations on a spatial scale
much smaller than either the skin depth or mean free
path. Such a formalism is developed in Ref. 24.

Our conclusion is that although bulk spatial dispersion
can cause serious difficulties for d-parameter theory, the
problems are only evident over a limited frequency range.
Outside this range the theory provides a tractable and ac-
curate description, but inside it the theory is inadequate
and alternate approaches are required.
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