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Numerical study of symmetry effects on localization in two dimensions
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Effects of symmetry on localizatiori on two-dimensional square lattices are studied numerically.
The inverse localization length is determined by the system-size dependence of the Thouless number
in magnetic fields or in the presence of strong spin-orbit interactions. A finite-size-scaling method is
also applied to the case of spin-orbit interactions. Extended states, present in each Landau level in
strong magnetic fields or in the case of small randomness, are found to merge together with increas-
ing randomness and disappear beyond a certain critical randomness. In weak magnetic fields, the
field tends to reduce the localization near the band center, while the localization is enhanced in the
band-tail region. Spin-orbit interactions cause effects similar to, but much stronger than, that due
to a weak magnetic field. The critical randomness and exponent for a metal-insulator transition are
determined in the presence of strong spin-orbit interactions.

I. INTRODUCTION

In pejfect crystals, electron wave functions may be de-
scribed by Bloch functions extending over the whole crys-
tal. However, actual materials always contain certain
randomness, such as impurities, lattice defects, etc.
%'hen such randomness is sufticiently large, electrons be-
come confined and localized in a finite region of space. '

Despite much recent progress, there still remain many
unanswered fundamental questions on this Anderson lo-
calization problem. Several review articles have already
been published on this subject. In the localization
problem the symmetry as well as the dimensionality of
systems are known to play an important role. The pur-
pose of the present paper is to present results of numeri-
cal study of symmetry effects on localization in two-
dimensional systems.

The localization problem can most easily be under-
stood by a scaling argument. ' Consider a d-dimensional
hypercube with characteristic system size L,. By combin-
ing different hypercubes of the same size, we can con-
struct a hypercube with characteristic system size 2L. By
repeating such a procedure starting with a small system,
we can obtain energy levels and wave functions of a sys-
tem having arbitrary size. Combination of two hyper-
cubes causes mixings of energy levels, especially of those
whose energies are closest. Let V(L) be the resonance
energy between such levels and W(L) be their energy
difference. Whether states are localized or extended is
determined by the system-size dependence of the Thou-
less number g(L)= V(L)/W(L). If states are localized,
g (L) decreases with increasing system size L, rejecting
how wave function decays with the distance from the lo-
calization center. For extended' states, g(L) is propor-
tional to the conductance of the hypercube. In the
single-parameter scaling theory, we assume that g(L)
is only a relevant scaling parameter, i.e., g (bL)
=h(b, g(L)). This gives the scaling relation
d lng/d lnL =p(g), which leads to the conclusion that
states are all localized for dimensions d ~ 2. In d = 1 this

agrees with the well-known fact that states are always lo-
calized exponentially however small randomness may
be 10, 11

It has been known that there are essentially three
different universality classes for the symmetry of systems,
i.e., orthogonal, unitary, and symplectic. ' The orthogo-
nal case corresporids to systems in the preserice of time-
reversal symmetry, where the Hamiltonian is represented
by a real symmetric matrix and the corresponding wave
functions can be chosen as real. Transfer integrals be-
tween energy levels of two hypercubes are given by a real
number or their "dimensionality" becomes co=1. When
a magnetic field is applied, the time-reversal symmetry is
broken, and consequently the wave functions become
complex because the Hamiltonian becomes a complex
Hermitian matrix. We have now co=2. If we take into
account electron spins, we have another symmetry called
symplectic in the presence of spin-orbit interactions.
Even in the presence of spin-orbit interactions, each state
is always doubly degenerate (the Kramers degeneracy) if
the system is invariant under time reversal. In this case
interactions are allowed between degenerate levels and
co=4. This co is the level-repulsion exponent in random-
matrix theory. '

It is expected that states are less easily localized in sys-
tems with large co. As a matter of fact, there exist some
current-carrying extended states giving rise to the quan-
tum Hall effect in each Landau -level in strong magnetic
fields. ' ' This is quite in contrast to the system in the
absence of fields for which states are believed to be al-
ways localized. (See reviews on the quantum Hall
effect' ' for more details. ) There have been some sug-
gestions based on perturbations in weak-localization re-
gime, ' ' renormalization-group calculations, and
numerical study ' that a metal-insulator transition is
possible in the presence of strong spin-orbit interactions.

Perturbation calculations in weak-localization re-
gime' ' make a very interesting prediction for the
behavior of the scaling function p(g). In two dimensions
for g ))1, we have p(g)= —a/g with a )0 in the ortho-
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gonal case and a (0 in the symplectic case. In the uni-
tary case, we have a =0 and to the leading order
P(g)= —a/g with a &O. This predicts that P(g) is al-
ways negative and states are all localized in the orthogo-
nal and unitary cases. In the symplectic case, however,
P(g) can be positive for sufficiently large g. In more intui-
tive terms, this corresponds to a constructive rather than
destructive interference in the forward direction due to
impurity scattering. Since states are always localized in
strong-scattering cases, ' P(g) becomes eventually nega-
tive for small g, giving rise to a critical randomness g,
which separates exponentially localized states from those
having divergent conductivity. This has naturally led to
the expectation that there can be a metal-insulator transi-
tion in two dimensions for the symplectic case.

Numerical methods have been used extensively in the
localization problem because of the limitations of existing
analytical techniques. Various methods have been pro-
posed. Yoshino and Okazaki provided the first numerical
evidence for localization by diagonalizing matrix Hamil-
tonians up to 100X100 sites using Lanczos method.
The equation-of-motion method in which the time-
dependent Schrodinger equation is integrated numerical-
ly has been used to calculate the inverse participation ra-
tio, diffusion constants, and dc conductivity. The
Thouless-number method, first introduced by Edwards
and Thouless, has been used extensively by Licciardello
and Thouless ' and it has given the first indication that
states are all localized in two dimensions in the orthogo-
nal case. In this method, g (L) is estimated by the energy
shift of individual energy levels due to a change in bound-
ary conditions and the localization length is determined
by its system-size dependence directly. Various scaling
or renormalization-group calculations have been per-
formed, ' and one of the most successful methods has
turned out to be the finite-size scaling applied successful-
ly by MacKinnon and Kramer ' and by many oth-
ers. Using this method, we consider systems in the
form of a long strip and study the dependence of inverse
localization length on the width.

Numerical methods have been applied also to systems
belonging to unitary and symplectic universality classes.
The localization in strong magnetic fields has been most
extensively studied in connection with the quantum Hall
effect. In two-dimensional systems in strong magnetic
fields, orbital motions are completely quantized and den-
sity of states comprises discrete Landau levels. The
Thouless-number method has been successful in dernon-
strating that states are all localized exponentially except
at a single energy close to the center of each Landau lev-
el. The finite-size-scaling method has also been applied
and given the same conclusion. ' Two-dimensional
systems on lattices have also been studied in magnetic
fields. ' Some have suggested the presence of mobility
edge in each Landau level in high magnetic fields. In
symplectic cases the investigations based on the finite-
size-scaling method by MacKinnon and Evangelou and
Ziman have given results consistent with the presence
of a metal-insulator transition in two dimensions. How-
ever, the maximum width of systems considered has been
limited to a very small value and the results are not so

conclusive. The symmetry dependence has been studied
by other methods also.

It is now well known that effects of electron-electron
interactions are strongly modified in the presence of ran-
domness and sometimes dominate the transport proper-
ties of actual systems at low temperatures. For example,
there have been suggestions that the metallic phase in the
presence of strong spin-orbit interactions can be des-
troyed by many-body effects. ' ' However, the problem
on localization of noninteracting-electron systems is still
very important and interesting from a fundamental point
of view. In this paper, we perform a numerical study to
further clarify the roles of different symmetries in the lo-
calization problem in two dimensions. We employ both
Thouless-number and finite-size-scaling method on
square lattices in magnetic fields or in the presence of
strong spin-orbit interactions.

The organization of the present paper is as follows. In
Sec. II the models are introduced and the numerical
methods are brieAy reviewed. Results of the Thouless-
number study are presented in Sec. III. Extended states
present in weak-disorder cases disappear above a certain
critical randomness. In weak-magnetic-field regime, the
magnetic field always tends to decrease localization for
states near the band center, while it tends to enhance 1o-
calization for states near the band edges. Effects of spin-
orbit interactions are similar to those of weak magnetic
fields, although effects are much stronger. Results are
consistent with the presence of a metal-insulator transi-
tion, but cannot give a definite conclusion because of the
limitation due to finite system sizes. To obtain more reli-
able answers on this problem, the finite-size-scaling
method is used in the presence of strong spin-orbit cou-
plings in Sec. IV, from which we can obtain the value of
critical randomness and exponent. In the appendix a
derivation is made of a model Hamiltonian describing
spin-orbit couplings in a square lattice. A very prelimi-
nary account of a part of this work has been presented
elsewhere. 62'63

II. MODELS AND METHODS

A. Magnetic field

To study effects of magnetic fields, we consider a tight-
binding model for the square lattice described by the fol-
lowing Hamiltonian:

&= g s;c; c; —g Vexp H (R; XR )
1 l,j

A. (R; —R~) c; cj,
Ac

(2.1)

where R; denotes the position of the ith site, the site en-

ergy c; varies at random with distribution width 8'
( —W/2 ~ E, W/2), and the magnetic field H perpendic-
ular to the system is included in the form of Peierls'
phase factor in the nearest-neighbor transfer integral
with A=(Hy/2, Hx/2). The randomness is character-



NUMERICAL STUDY OF. . . LOCALIZATION IN TWO DIMENSIONS 5327

ized by the ratio 8'/V and the magnetic field by the ratio
of the flux @=Ha within a unit cell of the lattice con-
stant a to the unit flux No=bc/e. The energy spectrum
in the absence of disorder, 8'=0, has been obtained by
Hofstadter and comprises p different bands. (Landau
levels) when N/@o =q/p with integers p and q.

B. Spin-orbit interactions

&= g e;c, c; —g V. (i,o;j,o')c; cj ~, (2.2)

where V(i, cr;j,o')= V„or V depending on the direction
of the nearest-neighbor site in the x or y direction. We
have, in matrix form,

with

V) V2

—V2 Vi
and V = —iV2

—iV2
(2.3)

To study effects of spin-orbit interactions, we consider
a system shown in Fig. 1 consisting of s-like and p-like .

atomic orbitals and concentrate on the band associated
with s orbitals. The s orbitals form a square lattice and
the effective transfer between the neighboring s orbitals is
determined by a second-order perturbation via a transfer
integral with the connecting p orbital, The direct
transfer integral between s orbitals is neglected. The p or-
bitals are located on a plane parallel but displaced from
the plane of the square lattice formed by s orbitals. Spin-
orbit interactions are present only in p atoms whose ener-

gy is assumed to lie far from that of s orbitals. The
effective Hamiltonian for the s band with spin cr = t' or $
is calculated in the Appendix.

We have

0
and (2.4}

This Hamiltonian is expected to simulate actual two-
dimensional systems in n-channel inversion layers on sur-
faces of III-V compound semiconductors if we consider
states with low energies, where the s band corresponds to
the conduction band and the p bands correspond to the
valence bands. The strength of the spin-orbit interac-
tion is characterized by the parameter S= Vz/V with
V —

( V2+ V2 )1/2

Figure 2 compares the energy bands in the presence of
strong spin-orbit interactions, i.e., S =0.5 with those in
its absence (S =0). Figure 3 gives the corresponding den-
sity of states. Note that the fourfold symmetry is present
in spite of apparent breaking in the x and y direction in
Eq. (2.2}. As a matter of fact, we can change V into V
and vice versa by an appropriate modification of the
phase of atomic wave functions at each site. As is well
known, the density of states in the square lattice exhibits
a steplike increase at the band edge characteristic of two
dimensions and a logarithmic singularity at the band
center corresponding to a saddle-point dependence of en-

ergy on the wave vector in the absence of spin-orbit in-
teractions. Because of the lack of inversion symmetry,
the spin-orbit interaction lifts the spin degeneracy except
at certain high-symmetry point in the first Bri11ouin zone
(I, X, and M in Fig. 2) and gives rise to more singularities
in the density of states. These additional logarithmic
singularities are not strong and smeared out if random-
ness is switched on.

The spin splitting in the presence of spin-orbit interac-
tions, which was first pointed out by Ohkawa and Uemu-
ra in n-channel inversion layers on narrow-band-gap

tL, 0
C

LLI

-4
r X Y M

FIG. 1. Schematic illustration of a square-lattice system
formed by atoms with s and p orbitals. The open spheres
represent s atoms and the shaded spheres p atoms whose atomic
plane is displaced by an amount of 5 from that of the s atomic
plane. The transfer between nearest s orbitals is mediated by
transfer through a p atomic orbital lying in between. Spin-orbit
interactions are present only in p atomic orbitals.

FIG. 2. The energy-band structure of a square lattice. The
solid line is that in the absence of spin-orbit interactions and the
dashed lines in their presence (S =0.5). The energy is measured
in units of V and the bandwidth for S =0 is 8. The inset shows
the two-dimensional Brillouin zone.
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in each energy interval and the results are accumulated
for all the samples of a given size. As the density of
states is insensitive to the system size L, the final density
of states is obtained by further averaging of those systems
with different sizes. The energy shifts are calculated by
replacing periodic boundary conditions by antiperiodic
conditions in the y direction. The geometric mean AE of
energy shifts b.E; is defined as lnbE = (ln~b, E; I ), where
( ) denotes an average over levels and samples for a
given energy interval. In actual numerical calculations
we take averages over a large number of samples, the size
of which is in the range 5 (L /a (32.

D. Finite-size-scaling method
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FIG. 3. The density of states of a square lattice without ran-
domness. The solid line is that in the absence of spin-orbit in-
teractions and the dashed lines in their presence (S =0.5).

C. Thouless-number method

The inverse localization length a(E) is determined by
the study of the system-size dependence of the Thouless
number g (L), i.e., g (L) ~ exp( —aL). The Thouless num-
ber is defined as the ratio of the shifts AE of the individu-
al energy levels due to a change in boundary conditions
to the level separation L [D (E)] ', where D (E) is the
density of states. The calculation of the density of states
is straightforward. The number of eigenvalues is counted

Hg& „Cd Te, has been a controversial topic. Note that
this spin splitting does not mean the removal of the Kra-
mers degeneracy and that states are always doubly degen-
erate irrespective of the degree of randomness if we solve
Eq. (2.2). Under a magnetic field, this degeneracy is lifted
and the symmetry of the system changes from symplectic
to unitary and the localization effect is expected to be
stronger. As a matter of fact, perturbation calculations
in weak-localization regime have predicted positive mag-
netoresistance meaning stronger localization.

Mac Kinnon used an anisotropic model with off-
diagonal disorder in which in one direction the transfer
integrals are constant and connect like spins while in the
other direction they have random phases and connect un-
like spins equally. Evangelou and Ziman used a mod-
el with off-diagonal randomness similar to the local-
gauge-invariant model proposed by Wegner. These
models are not very realistic although they may retain
certain essential aspects of the Hamiltonian which deter-
mine its universality class. On the other hand, the
present model is more realistic in a sense that it can simu-
late actual inversion layers or heterostructures in spite of
its simplicity.

g(j)=(jI(E ~"') 'Ij ),
G(j)=(1I(E—~i'i) iIj),

(2.7a)

(2.7b)

where &'~' is the total Hamiltonian for the strip compris-
ing the first to jth cells excluding the intercell Hamiltoni-
an % +, and &I+i . These Green's functions for long
strips can be obtained by a set of recursion formulas in
matrix form,

G (j+ 1 ) =G (j)&~1+,g (j + 1 ),
g(j+1)=[E ~,+i ~, +i,,g(i)~,;j+i]

(2.8a)

(2.8b)

We can thus calculate G(j) for arbitrary j by iteration
starting form G(l)=g(1)=(E —&, )

' with numerical
procedure limited only by the availability of computation
time. The inverse localization length can be obtained
from 6 as

a(L~)= —lim [2(j—1)] 'ln[TrG+(j)G(j)] .
J—+ 00

(2.9)

Consider a system with width L and length L„. If L
is much larger than L„, the system is essentially one di-
mensional and states are all localized exponentially in the
x direction. Let a(L ) be the inverse localization length
of a system with width L . Then, we can determine the
inverse localization length a in two dimensions by a
study of the L dependence of a(L~ ). Conventionally, we
plot a(L )L» as a function of L~ in logarithmic scales
and seek the following scaling relation:

a(Ly, E, 8'/&, ~, S)Ly =f(a(E, W/V, H, S)L ) .

(2.5)

The inverse localization length a(L ) can be calculated
within a desired accuracy using the well-known technique
of Green's function. We first separate the system into
cells in such a way that the cell k consists of the L sites
(k, l) (/ =1,2, . . . , L~). The Hamiltonian is written as

L„= g Ik)W, (kl+ g [Ik)m, ,+,(k+1I+H. c ],
k=1

(2.6)

where
I
k ) is the set of L~ ket vectors belonging to the kth

cell and &k=&kk. We define the diagonal and off-
diagonal Green's functions, respectively, by
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In magnetic fields, elements of Green's function ap-
pearing in the above recursion formula are complex. In
the presence of spin-orbit interactions each element is
given by a quaternion number. A quaternion z is general-
ly written as

Z =Zo'70+Z)'T) +Z2'T2+Z3 T3 (2.10)

1 0
0 l

i 0
0 —i 7

0 —1

1 0

and

73=
0 —i
I, 0

(2.11)

There can be several ways of performing actual numer-
ical calculations in the presence of spin-orbit interactions.
The method employed in this paper is to express each
matrix element in terms of a quaternion number [a set of
four real numbers z (j =0, 1,2, 3)j and explicitly use its
multiplication table. It is also possible to express each

where 7 pT„=7„7p=r& T& 1p and rzrq = rqr—~ =r„
with u =0, 1,2, 3 and (p, q, r) an even permutation of
(1,2,3). Explicitly, we have

number in terms of a (2X2) matrix and perform usual
matrix calculations. However, the latter method has
turned out to require more computational time than the
former. Further, it leads to a numerical instability, in
which each element of Green's function is no longer ex-
pressed by Eq. (2.10) after many times of iterations.

III. THQULKSS-NUMBER STUDY

The Thouless-number method has been used extensive-
ly by Licciardello and Thouless. ' At first they tried to
confirm the presence of the minimum metallic conduc-
tivity and its universality in two dimensions suggested
originally by Mott. Numerical calculations for smaller
systems have shown that there really exists a minimum
metallic conductivity independent of randomness and lat-
tice structures. The critical randomness has been sug-
gested to be (W/V), -6 for square lattices. However,
later investigations for larger systems (L —30) have re-
vealed that states are always localized in two dimen-
sions.

We first apply the method to square lattices
(L„=L~=L) with L =8, 16, 24, and 32 in units of the
lattice constant a in the absence of a magnetic field and

TABLE I. Sample numbers used in the Thouless-number study. Actual sample numbers are twice
those shown below because of the symmetry about the band center.

10 15 20

L=8
L =16
L =24
L =32

L=8
L =16
L =24
L =32

L=8
L =16
L =24
L =32

L =10
L =15
L =20
L =25
L =30

L=5
L =10
L =15
L =20
L =25

1200
300
130
75

720
180
80
48

720
180
90
50

486
216
121
77
54

1200
300
130
75

2240
600
270
158

2240
600
280
160

486
216
121
77
54

2415
600
265
150
95

H =S=0
1200 1200
300 300
130 130

75' 75

Ha /40= —'
8

2240 2240
600 600
280 280
160 160

Ha /4()=-,'

486
216
90
77
54

486
216
121
77
54

S =0.5

2415 2415
600 537
265 265
150 150
95 95

Ha /+o= —'
4

2240 2240
600 600
270 270
257 158

2240
600
280
160

2240
600
280
160

486
216
90
77
54

2415
600
265
150
95

1200
300
130
75

720
180
90
50

720
180
90
50

486
216
121
77
54

2415
600
265
150
95

1200
300
130
75

720
180
90
50

720
180
90
50

486
216
121
77
54

2415
600
265
150
95

1180
234
130

0

990
234
112

0

2415
600
265
150

0

1200
436
130

0

1020
237
113

0
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FIG. 13. Calculated inverse localization length of a square
lattice. Only the low-energy part is shown because of the sym-
metry about the band center (E =0). The solid lines represent
results in the absence of magnetic fields and spin-orbit interac-
tions, and the dashed lines those in the magnetic field
Ha /4 =-'.

p
—8. The numbers appearing in the figure show W/V.

Statistical errors are within the size of circles.

FIG. 14. A schematic illustration of the Hall conductivity in
a square lattice in magnetic fields in the absence of randomness.
The top figure corresponds to the magnetic field Ha /4p= 4

with four Landau levels, the middle to Ha /Np= —' with fivep s wit

Landau levels, and the bottom to Ha /4p= —' with eight Lan-p wit

dau levels. The Hall conductivity in the spectral gap is always
quantized into an integer multiple of e /h.

shrink the ground-state wave function. Figure 13 shows
that the inverse localization length remains almost in-
dependent of energy away from the center E =0 and then
starts to grow rapidly below a certain energy. The energy
w ic separates the positive and negative magnetores'-esis-
ance corresponds to such a crossover energy. .

For 8'~V=6=6, 8, and 10, the inverse localization length
takes a local maximum at the band center in the absence
of a magnetic field. This is in qualitative agreement 'th
the results of Zdetsis et al. , who employed the finite-
size-scaling method in calculating the inverse localization
length away from the band center. This has been as-
cribed to eft'ects of the logarithmic singularity of the den-
sity of states at the band center. The present results in
the absence of a field are also quantitatively in agreement
with those of the finite-size-scaling method: We have, for
example, a =0.027 for W/ V =6 and a =0.44 for
S'/V =,15 at the band center. The corresponding results
of MacKinnon and Kramer ' are a=0.027 for W/V=6
and a=0.45 for W/V=15.

Thee way in which extended states disappear with in-
creasing randomness is closely related to the Hall con-
ductivity o. , which is always quantized into integer

Th
multiples of e /h whenever energy is in spectral gaps.

e integers have been obtained by Thouless et al. for ar-
bitrary magnetic fields given by Ha /No=p/q with p and
I integers in the absence of randomness. ' Figure 14 gives

a schematic illustration of o. as a functi fzy unc ion o energy in
magnetic fields Ha /@0= —' —' and —' The Hall conduc-
tivity m the present system is antisymmetric with respect
to the band center, i.e., o ( E)= a(E—)—xy zy

when the Fermi energy lies between the lowest two Lan-
dau levels. There must be two extended states below the
band center and they should disappear t thoge er at

)„which is consistent with the present result that
the two extended states associated with th t L d
eve s merge and disappear. In magnetic field

/4p ——„cr, changes from —2e /h to 2e /h when
the Fe ermi energy moves from the spectral 1

'
gap ying

below the Landau level at the band center to the gap ly-
ing above. The present result shows that the two extend-
ed states associated with the lowest two Landau levels
merge and disappear at a critical randomness. It is not
possible to determine whether the extended states at the

and center disappear faster than these two or not. (It is
even likely that states at the band center become local-
ized immediately in the presence of randomness. ) If the
extended states just at the band center disappear faster
than the two below and above, o. „just below the band
center should change suddenly from —2e /h to 0. In the
opposite case, o „should become identically zero as soo
as the extended states associated with the lowest two

soon

Landau levels disappear.
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FIG. 20. Inverse localization length vs randomness measured
from the critical values (S'/V), =5.875 in the presence of
strong spin-orbit interactions (S =0.5). Open circles represent
results calculated by the finite-size-scaling method and closed by
the Thouless-number method. From the straight line the criti-
cal exponent is estimated as v=2. 05+0.08.

FIG. 2l. Calculated logarithmic derivative d In[a(L )L ]/
d lnL» as a function of in[a(L )L ] in the presence of strong
spin-orbit interactions. The derivatives, estimated by taking
differences of the results given in Fig. 18, are plotted only for
8'/V ~ 4. The solid straight lines corresponds to v=2. 05.

may possibly give rise to a systematic error in the critical
exponent v. Another way of calculating v is to plot the
logarithmic derivative d In[a(L~)L~]/d lnL» as a func-
tion of in[a(L )L ] and calculate the gradient g at the
point where the logarithmic derivative vanishes. The
critical exponent v is related to g through v= 1/g. The
logarithmic derivatives can be estimated by correspond-
ing difFerences, which are plotted in Fig. 21. Unfor-
tunately, the results are noisy because of large statistical
errors originating from taking differences and can hardly
give a definite value of g. It is clear, however, that they
are consistent with v=2. 05 obtained above.

MacKinnon has performed a finite-size-scaling calcu-
lation based on his model of anisotropic off-diagonal ran-
domness up to width I. =16 in contrast to the present
maximum width L, =64. Evangelou and Ziman have
reported similar calculations within a model with off-
diagonal randomness again up to width I. =16. Both of
these works have given scaling functions qualitatively
similar to that given in Fig. 19 with a different critical
value of randomness. MacKinnon has given (W/V), -4
and Evangelou and Ziman (8'/V), -7. This difference
originates presumably from the difference in the model.
Because of insufficiencies in the width of systems, the
critical exponent has not been obtained in these works.

Grempel and Kawabata have independently sug-
gested that the single-parameter scaling is inadequate and
the spin-relaxation time is required as an additional
relevant scaling parameter. In particular, Kawabata has
obtained a phase diagram in which for a fixed strength of
spin-orbit scatterings the system undergoes a transition

from insulator to metal (having infinite conductivity) with
decreasing randomness. Although the present calcula-
tion is consistent with the single-parameter scaling, it
may not have enough accuracy to rule out the possibility
suggested by them. Kawabata has shown that the phase
diagram is quite insensitive to the strength of spin-orbit
interactions over the wide range, suggesting that the devi-
ation from the single-parameter scaling can be very small.

MacKinnon and Kramer ' calculated the scaling
function /3(g) appearing in the single-parameter scaling
function using Landauer's conductance formula in one di-
mension, g =(e /~A)T/( I —T), and setting the
transmission coefficient T =exp[ 2a(L )L ]. T—his is
based on the assumption that the long strip is made up of
blocks of size I. and that the resultant one-dimensional
system of blocks has the inverse localization length
a(L ). It is certainly possible to calculate /3(g) in the
present case under the same assumptions. The resulting
P(g) changes from negative to positive at sufficiently large
g, which is quite similar to that obtained by MacKinnon
and Kramer in three dimensions in the orthogonal case
except in the case of very large g. (We cannot give any
reliable results for very large g or in weak-localization re-
gime because of the insufficient system width. ) This is ob-
vious because the scaling function f (aL ) itself looks
similar. Note, however, that replacement of the system
by the one-dimensional system of blocks may not be
straightforwardly justified in the present case. As a
matter of fact, in one dimension, spin-orbit interactions
disappear and the system belongs to orthogonal univer-
sality class.
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V. SUMMARY AND CONCLUSION ACKNOWLEDGMENTS

In this paper, a numerical study has been made of the
effect of diff'erent symmetries on localization in two-
dimensional systems. We have considered magnetic-field
eff'ects as an example of systems belonging to the unitary
universality class and effects of spin-orbit interactions be-
longing to the symplectic universality class. Effects of
magnetic fields have been included as a Peierls' phase fac-
tor of transfer integrals in square lattices. As the model
of systems with strong spin-orbit interactions, we have
considered the band consisting of s atomic orbitals with
transfer integrals mediated by a p atomic orbital lying in
between. A strong spin-orbit splitting of degenerate p or-
bitals give rise to direction-dependent spin off-diagonal
transfers among s orbitals.

The Thouless-number method has been applied to
study effects of magnetic fields. The results strongly sug-
gest that there exist extended states (at a single energy) in
each Landau level for sufFiciently small randomness and
disappear above a certain critical randomness. The criti-
cal randomness is given by (W/V), —6 almost indepen-
dent of magnetic-field strength within the field range
studied (Ha /@0= —,', —,', and —,'). At (W/V)„at least two
extended states merge and disappear together. This
agrees with the prediction obtained from discussions of
the quantization of the Hall conductivity. In case of
large randomness or in weak magnetic fields (in the sense
that co, ~&&1 with %co, the energy separation of Landau
levels and A'/r broadening due to scattering from ran-
domness), the magnetic field always tends to reduce local-
ization effects at the band center, whereas it tends to
enhance localization effects at band tails.

Effects of spin-orbit interactions have also been studied
in the Thouless-number method. It has been shown that
spin-orbit interactions give effects qualitatively similar to
magnetic fields in the weak-field regime, i.e., they reduce
localization effects around the band center but enhance
localization at band tails. Even in the presence of strong
spin-orbit interactions, states are all localized exponen-
tially for randomness larger than W/V-6. For smaller
randomness, they may be extended states but the limita-
tion of system sizes prevents any definite conclusions.
We have applied a finite-size-scaling method to systems
with strong spin-orbit interactions, in which the max-
imum width reaches up to I. =64. The results have
turned out to be consistent with the presence of extended
states for small randomness and given the critical ran-
domness ( W/ V), =5.875+0.010 with exponent
v =2.05+0.08.

It may be worthwhile to give a warning on the well-
known limitation of the numerical study: The maximum
size of systems treated is limited by the current ability of
computers and more importantly conclusions are strong-
ly inAuenced by various assumptions made in the analysis
of results of calculations. In the present study, the cru-
cial assumptions are g(L)=exp( aL) in the Thoul—ess-
number method and the scaling hypothesis
a(L» )L» =f (aL ) in the finite-size-scaling method. The
results should always be taken with some reservation,
which certainly applies to the present study.

This work is supported in part by a Grant-in-Aid for
Specially Promoted Research from the Ministry of Edu-
cation, Science and Culture, Japan. Numerical computa-
tions have been performed with the aid of HITAC
S820/M680H computer at the Computer Center of the
University of Tokyo.

APPENDIX: SPIN-ORBIT INTERACTIONS

Let E, and E be the energy of s and p atomic orbitals,
respectively, where E, )E . In the presence of spin-orbit
interactions the degenerate p levels consisting of the ~x),
~y), and ~z) orbitals split into the two sets J=—,'and J=—,

'

with J the total angular momentum. The states J=—',
have energy E + b, /3 and those with J=

—,
' have

E~ —26/3. The parameter b, characterizing the strength
of spin-orbit interactions is defined as

3A BU BU5=i x p p„y
4m c X

(Al)

where U is the atomic potential for p-hke orbitals. The
eigenfunctions for states J=

—,
' are as follows:

~+ —')=+ )(x —iy) f ),1
2

(A2a)

~
+ —,

'
) = + —

) (x + iy) g ) i Q ', ) z—t ), —
6

(A2b)

~

—
—,')=+ —((x iy)l—)+Q—', (zl), (A2c)

~

——')=+ —((x —iy)L),2

and those for J=
—,
' are

I+-,' )=+ —((x —iy) l)+ —lz 1'),1

3 3
(A3a)

~

—
—,')= — —((x —iy)t)+ —Ized) .v'3 v'3 (A3b)

V:—V(i„,i», i„+l,i )=
2 1

(A4a)

V» = V(i„,i», ,i„,i +1)= —iV2

—iV2
(A4b)

Consider the configuration in which s-like orbitals
form a lattice with lattice points (i a, i a, 0), where i
and i„are an integer. We assume, as is shown in Fig. 1,
that a p-like orbital connecting s-like orbitals at
(i„a, i a, 0) and ((i +1)a, i a, 0) is at
((i„+—,

' )a, i»a, —5) and a p-like orbital connecting s-like
orbitals at (i„a, i a, 0) and (i a, (i + 1)a, 0) is at
(i„a, (i»+ —,')a, —5). Define further Eg =E, E» —b, /3. —
By simple second-order perturbation theory, we can easi-
ly get

V) V2
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3E +26
(ASa)

(Asb)

where tan9=25/a and V, is the transfer integral be-
tween an s atomic orbital and a p orbital.

When the atomic plane of p orbitals is the same as that

of s orbitals (5=0 or 8=0), the matrix element between
difFerent, spins vanishes and the spin splitting disappears.
This is in agreement with the mell-known theorem that
the bands are always doubly degenerate even in the pres-
ence of spin-orbit interactions if the system has an inver-
sion symmetry. In this limit, however, the Hamiltonian
belongs to the orthogonal university class. In the present
model we can choose any values for the ratio of V, and
V2 by varying 0 as long as the spin-orbit parameter 6 is
nonzero.
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