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The magnetic Hamiltonian of NdqFel4B at the Nd site has been constructed using a first-

principles approach based on the energy-band results. The crystal-field parameters are evaluated

using the real-space charge-density distribution and the exchange field is obtained by applying an

approximate Stoner model to the spin-polarized density of states. The calculated stabilization en-

ergy is in good agreement with the experimental measurement. It is also shown that the ex-
change field predominates in the magnetic Hamiltonian but the fourth-order and second-order
off-diagonal crystal-field terms are not entirely negligible.

The magnetic behavior of the rare-earth-transition-
metal-boron compound Nd2Fe|4B has received consider-
able attention in recent years due to its high performance
as a permanent magnet. Both theoretical and experimen-
tal investigations' indicate that the anisotropy in magne-
tization is mainly from the rare-earth ions and the source
of this 'anisotropy is attributed to the combined eff'ect of
the crystal field and the exchange field, such that the basic
magnetic Hamiltonian can be written as

H HCF+H, „.
The crystal field HcF and the exchange field H,„are given

by

HcF Z Bnm On

He)( —gyp' JxH

where B, are the crystal-field parameters (CFP), 0„ the
Stevens operators, and H the molecular-field parameter
all taken at the Nd sites. Up to now, all the analyses with

regard to the magnetic anisotropic energy in Nd2Fe~4B
are semiempirical in nature because of the dif5culties in-
volved in constructing a reliable Hamiltonian. Some
researchers obtained CFP from magnetization curve
analysis, while others treated them as fitting parame-
ters. ' The point-charge model (PCM) has been routinely
used to calculate the CFP which gives unrealistic re-
sults because the model is obviously oversimplified. As for
the exchange field, the situation is even worse. There is
not even a simple theoretical estimate of H for Nd2Fe~4B
and one has to rely entirely on the experimentalists to
determine H . Unfortunately, there are too many param-
eters involved in the crystal-field part of 8 and this com-
plicates the experimental data analysis. Although the
higher-order field terms are generally believed to be less
important, especially at high temperatures, it is undesir-
able to discard some of them without any compelling
justification. As a matter of fact, in the extreme case, '

only one term B2p is kept in HcF. Thus, the Hamiltonians
used in these analyses are arbitrary empirical model
Hamiltonians, and the conclusions obtained from such
analyses could be misleading. It is highly desirable that

an alternative scheme based on a more fundamental ap-
proach be developed.

In this paper, we show that the basic Hamiltonian (1)
can be constructed based only on the spin-polarized
band-structure results without using any empirical data
from experimental measurements. In order to check the
validity of such a Hamiltonian, we have calculated the
stabilization energy of Nd2Fe|48 at zero temperature and
compare it with experimental measurement. The relative
importance of HcF and H,„ is clarified. We also test ex-
plicitly the inAuence of neglecting some of the CFP, there-
by providing necessary insight important to the correct in-
terpretation of magnetic measurements. The present
work is therefore a good attempt to connect the funda-
mental aspect of the electronic structure with the magnet-
ic and other measurable properties for N12Fe~4B.

Based on the spin-polarized band structure of Nd2Fe~4B
calculated by Gu and Ching, we have recently devised'
a numerical procedure for the calculation of CFP of
Nd2Fe~48 using the real-space charge-density distribu-
tion. The method consists of using a PCM for the contri-
bution from the charge density on other sites away from
Nd and numerical integration for contribution from the
charge density in the vicinity of the Nd on site. The
eA'ective ionic charges in the PCM calculation were ob-
tained from the site decomposition of Mulliken charges
given by the band-structure calculation. For the on-site
contribution, a tesseral harmonic expansion of charge
density by successive least-squares fitting plays a central
role in reducing the dimension of integration from three to
one. The final CFP are the sum of these two contribu-
tions. The distinctive feature of this method is that no ar-
bitrary fitting parameters or data of empirical origin were
used and the calculation is therefore of first principles in
nature.

. The calculated CFP up to fourth order for the f and g
sites of Nd ion are listed in Table I. From these results
the following circumstances are apparent. (i) The CFP of
the same order are of the same magnitude. Hence, there
is no justification in neglecting the off-diagonal terms such
as 822, B24, B44 and keeping only the diagonal ones of the
same order as B2p (Ref. 1) or B2p and B4p (Ref. 11). (ii)
The signs for B22 on f and g sites are opposite and their
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TABLE I. Crystal-field parameters in K at Nd sites in

Nd2Fe~4B from Ref. 8.
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magnitudes close. One tends to believe that the effects of
82' from different sites will cancel each other if the total
Hamiltonian of the system is a summation over all sites in
the crystal. This may not be true because for a single-ion
anisotropy, the basic Hamiltonian must be diagonalized
separately. (iii) The differences in CFP between f and g
sites are appreciable. In a pure PCM calculation, the
leading terms of the second-order CFP on f and g sites are
very close. This is because the PCM takes into ac-
count only the effect of environmental charges at a dis-
tance and a single effective ionic charge is assigned for all
ions of the same element regardless of whether they are
crystallographically equivalent or not. This leads to a
false impression that the difference in the crystal fields be-
tween f and g sites is not important. From the band-
structure calculation, it is clear that the crystallographi-
cally inequivalent ions have different effective ionic
charges. This results in a difference in the charge-density
distributions around the f and g sites. Our calculated
values for 82o on the f and g sites are —3.77 and —2.85 K,
respectively. The difference is not negligible and may
have important implications in relation to the local level
splitting which have not yet been studied experimentally.
Diagonalization of HCF led to local moments of 4.47pg
and 4.22pz for f and g sites, respectively, which are very
close to J -4.5 for the ground state of the Nd ion, a condi-
tion necessary for the usual magnetization analysis.

The first-principles calculation of CFP has provided the
first part of the basic Hamiltonian (1). For the second
part, there has been no previous effort to evaluate the ex-
change field in Nd2Fe~48, mainly because of the complex-
ity of its structure. In simple metals and alloys, the Ston-
er model' has been routinely applied to the band struc-
ture to obtain the phenomenological molecular field. Al-
though the model can be criticized as being oversimplified
since it neglects the gain in the exchange energy due to
spin fluctuation, ' it is still a good approximation at low
temperature. The local magnetic moments on different Fe
sites obtained from band calculation were in good agree-
ment with experiment, thus indicating the applicability of
the Stoner model in this system. It is also well known that
the Stoner model is based on a rigid-band approximation.
In NdzFe~4B, the total density of states (DOS) of
Nd2Fe~48 for spin-up and spin-down bands are not of the
same shape and use of the Stoner model may be question-
able. Fortunately, a careful examination of the DOS dia-
gram which is reproduced in Fig. 1 clearly reveals that all
the partial DOS (PDOS) for spin-up and spin-down
bands are close to a rigid shift in the energy scale. We
may apply the Stoner model to each PDOS separately and
determine an approximate exchange splitting for each
case. The total exchange splitting d is assumed to be an
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FIG. 1. DOS and PDOS of Nd2Fe~48 from Ref. 9 for the
spin-up (above zero) and spin-down (below zero) bands. Left-
hand panel: (a) Total DOS; (b) solid line, Nd 6s; dashed line,
Nd 4f; (c) solid line, Fe 4s; dashed line, Fe 4p; dotted line, Fe
3d; (d) solid line, B 2s; dashed line, B 2p. Right-hand panel:
PDOS at difl'erent Fe sites: (a) 4e, (b) 4c, (c) 8j~, (d) 8j2, (e)
16k), (f)'16k2.

average over all those PDOS which can be expressed as

ct 1 8t 1 6 IM/Pls, (4)

where I is the Stoner param, eter, M the total magnetic
moment of the unit cell, and the average is taken over all
pairs of spin-up and spin-down bands at all k points where
the bands were calculated. In this way, we obtained a
Stoner parameter of 71.4 K in Nd2Fe14B. The average
root-mean-square deviation is 22.6 K, which is an iridica-
tion of how far the approximate Stoner model deviates
from an ideal one. The molecular field H for the whole
unit cell is obtained through the Stoner parameter by the
relation"

H„, 2M
I

2pg 2@g
(5)

To obtain the molecular field on the Nd site for H,„, we
assume that magnetic ions in a unit cell share the field in
proportion to their contribution to the total magnetic mo-
ment. In Nd2Fe~4B, the local magnetic moments on f and

g sites of Nd are 3.04pp and 3.01p~, while the total mo-
ment is 163.4pg (Ref. 9). We thus obtain H of 216.9
and 214.8 K for f and g sites, respectively. It should also
be pointed out that the application of the Stoner model
based on the spin-polarized band structure implies that
the effects of the conduction electrons, which are mainly
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from the Fe sites, are properly taken into account.
H, „and Hcp constitute a complete Hamiltonian for the

magnetic structure. Both are obtained from the results of
the energy-band calculation. To test the validity of this
Hamiltonian, we have calculated the zero-temperature
stabilization energy at the Nd site in Nd2Fe~4B. This con-
cept was introduced by Greendan and Rao. ' The stabili-
zation energy is the difference between the ground-state
magnetic energies, with the molecular field H,„being
parallel or perpendicular to the tetragonal axis. The an-
isotropy energy can be written as

E~ (0) =E j sin 8+Kq sin 48, (6)

where 8 is the angle between the magnetization direction
and the c axis, and the stabilization energy is interpreted
as a simple effective anisotropic coefficient:

Est'b -
I &j+&z I (7)

The magnetic Hamiltonian is diagonalized within the
ground-state multiplet I9i2 of the Nd + ion, which has
the multiplet wave function

The matrix elements of the Stevens operators can be easi-
ly calculated in this basis since they are expressed in terms
of the total angular momentum operators. For example,
02=3J, —J(J+1); 02-(J++J'—)/2, etc. The ex-
change field is also expressed in terms of the total angular
momentum operator J. The matrix is 10x10 in size. To
obtain the stabilization energy, we diagonalize the Hamil-
tonian twice, one with the molecular field being parallel to
the c axis, the other perpendicular to the c axis. The
difference between the lowest energy levels in these two
cases gives E,t,b.

It is instructive to check the effects of ignoring specific
crystal-field terms as was done in some experimental
analysis of the magnetic data. To this effect, we have cal-
culated the E„,b for three different choices of Kcp in (3):
(a) Hj. keeping only B2Q and neglecting B22 and all
higher-order terms; (b) H2 'keeping B2Q. and B4Q while
neglecting Big and all other fourth-order terms; (c) H3.
keeping all second- and fourth-order field terms. Al-
though the sixth-order CFP have also been calculated by
us' using the first-principles approach, we do not include
them in HpF because they are less reliable. In our calcu-
lation of CFP, a PCM with effective charges obtained
from band structure was used to evaluate the contribution
from the charge density at distant sites. For the sixth-
order terms, one cannot take enough sites to reAect the
true angular dependence of the sixth-order tesseral har-
monics because of the rapid convergence. As pointed out
by Schmidt, ' it is impossible for PCM to give an accurate
estimation for the sixth-order field term. The neglect of
the sixth-order term in HcF may, to certain extent, affect
the accuracy of the magnetic Hamiltonian. Nevertheless,
the sixth-order term was found to be much smaller than
the second- and the fourth-order terms. '

The calculated stabilization energies for Nd2Fej4B for
the three different Hamiltonians are listed in Table II. It
is clear that when we keep only the lower order or only the

TABLE II. The stabilization energy in K for Hamiltonians
Hl, H2, and H3.

Site Hl

93.63
138.99

H2

118.82
159.38

H3

155.20
139.28

TABLE III. Anisotropy coefficient El in 10 erg/cm' on Nd
sites.

Calculated values
(Present work)

f site g site
Experimental values

Ref. 16 Ref. 17 Ref. 18

18.1 16.4 21.9 12.0 11.0

diagonal terms, the difference in the stabilization energies
of the f and g sites is large. However, if all the second-
and fourth-order field terms are included (H3), this
difference tends to diminish. This behavior is not surpris-
ing because the lower-order field terms are far from being
spherically symmetric. With additional higher-order
components added, the crystal field tends to be more
spherically symmetric, thus bringing the anisotropy be-
tween f and g sites closer. From our calculation, it is also
clear that at the low temperature, the crystal-field part of
the anisotropy energy is due to a combined effect of both
the lower- and higher-order terms. Therefore, in analyz-
ing experimental data, it is unrealistic to neglect fourth-
order terms while making no distinction between f and g
sites.

The calculated effective anisotropy coefficient values of
18.1 (16.4) x10 erg/cm' on the f (g) site are listed in
Table III together with those from experiments. ' ' The
calculated result corresponds to the Hamiltonian 03 in
which all the crystal-field terms up to the fourth order are
included. The agreement with the available experimental
data is quite satisfactory. Sinnema etal. ' obtained an
averaged value of 21.9 x 10 erg/cm which is considered
to be more reliable since the experiment was carried out in
a higher magnetic field of up to 35 T. The data of
12.0x10 erg/cm by Yamauchi et al. ' was obtained
from the measurement with a magnetic field of only 2 T.
Using only a single CFP Bz for HcF and molecular-field
values based on a 3d-4f spin-coupling parameter deduced
from high magnetic field studies, ' Radwanski and
Franse' calculated the rare-earth contribution to the an-
isotropy energy in R2Fe~48 where R is a rare-earth ele-
ment. The value of R=Nd is 12.3x10 erg/cm . Our
present approach is quite different from that of Ref. 1

since no arbitrary parameters are used in the calculation.
The relative importance of HqF and 0,„ in the total

Hamiltonian can be estimated by calculating the overall
splittings using only part of the total Hamiltonian. We
have obtained an approximate ratio of 5.8 for H, „/Hcp.
This means the exchange field is much stronger in com-
parison to the crystal field. This preponderance in the
strength of the exchange field in determining the aniso-
tropic energy is consistent with the fact that the spin-
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density map of Nd2Fe~4B shows a network type of struc-
ture in the direction parallel to the c axis. It is also in-
teresting to note that Radwanski and Franse ' had ob-
tained the same ratio for H,„/HcF. However, they have
used only one term, 82n —2.0 K for HCF, and a com-
paratively smaller value of the anisotropy coefficient was
obtained.

The good agreement of our calculated stabilization en-
ergy with experimental measurements indicates that the
Hamiltonian we constructed is basically sound. Since no
arbitrary parameters or experimental information were
used in the calculation, this first-principles approach to
the magnetic properties of complex intermetallic com-
pounds will have some predictive power. The accuracy of
the calculation can be further improved as long as the ac-
curacy of the band-structure calculation can be improved.
Although the present calculation of anisotropy energy is
limited to zero temperature, it is possible to extend to the

case of nonzero temperature using the excited states of the
Hamiltonian. The basic Hamiltonian obtained by us us-
ing the more fundamental approach can be coupled with
several different theoretical for malisms ' to study
Gnite-temperature magnetism. However, the Stoner mod-
el may not be adequate for finite-temperature studies and
a more realistic calculation of the exchange interaction
will be needed.

In conclusion, we have succeeded in establishing a basic
Hamiltonian for the magnetic structure for N12Fe~4B
from first principles. The accuracy of such a theoretical
calculation is at a level comparable with experimental
measurements. It is expected that such a calculation will
be extremely valuable in interpreting various magnetic
measurements in similar hard magnets.
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