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We consider the question of ferromagnetism in the one-band Hubbard model on the square lat-
tice with infinite on-site repulsion using exact diagonalization techniques. Our results show a non-
monotonic behavior as a function of the number of holes N, away from half filling. We find that
the spin per electron is generally finite but less than its maximum value and, for a fixed hole num-

ber, increases with increasing system size.

We interpret this as indicating that the infinite-U

Hubbard model is ferromagnetic in the thermodynamic limit for a finite fraction of holes, but
that there are nonferromagnetic states which are very close in energy.

The considerable activity in trying to understand high-
temperature superconductors has aroused interest, once
again, in the Hubbard model. While most of the work has
investigated the possibility of superconductivity, there
remains another long-standing puzzle regarding this mod-
el: Namely, is there a ferromagnetic phase? Since the
Hubbard model is proposed as a model of itinerant
magnetism, among other things, and many itinerant mag-
nets are ferromagnetic, this is obviously a relevant ques-
tion. A ferromagnetic phase is predicted for large
Coulomb repulsion U by the Hartree-Fock approxima-
tion' and also, though only for even larger values of U, by
recent slave-boson mean-field theories. ?

Since a finite value of U induces an effective antiferro-
magnetic coupling (see below), the most probable region
to find ferromagnetism is for U— oo. Indeed, Nagaoka?
has proved rigorously that for infinite U, the ground state
with one hole away from half filling is a fully aligned fer-
romagnet for bipartite -lattices with periodic boundary
conditions. However, one is really.interested in knowing
whether ferromagnetism persists for a finite fraction of
holes in the thermodynamic limit and one cannot infer
whether or not this is the case from Nagaoka’s result. In
a recent paper, Shastry, Krishnamurthy, and Anderson*
prove rigorously that the fully aligned ferromagnetic state
(Nagaoka state) cannot be the ground state on the square
lattice for hole fraction § greater than 0.49. In addition,
based on their variational calculations, they argue that the
Nagaoka state is surprisingly robust. There is, however,
no rigorous result that ferromagnetism exists in this model
in the thermodynamic limit for any finite hole density.

Here we report on results of the U == oo one-band Hub-
bard model on the square lattice obtained by exact diago-
nalization of clusters of up to N =16 sites for various
numbers of holes away from half filling. We find a highly
nonmonotonic behavior as the number of holes is in-
creased. For one hole with periodic boundary conditions
we recover the fully aligned Nagaoka state with spin S
given by S = NN,/2 where N, is the number of electrons (so
N.=N —1 here, where N is the number of sites). By con-
trast, the ground state is a singlet for 2 and 6 holes with
periodic boundary conditions and has the minimum possi-
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ble total spin, S = +, for 1 hole with mixed boundary con-
ditions which are periodic in one direction and antiperiod-
ic in the other. The probable reason for this behavior will
be given below. For other numbers of holes we find that S
is nonzero, though smaller than N,/2, and increases as N
increases. These results indicate that the ground state is
presumably ferromagnetic in the thermodynamic limit for
U=c0 and a small but finite concentration of holes, but
the issue is clearly quite delicate.
The Hubbard Hamiltonian is given by

H“'t(E) (c,-r,cja+cjt,c,~a)+UZn,~;n,~1 s (1)
i,j),o i

where (i,j) indicates nearest-neighbor pairs, c,-I,, Cic are
the creation and annihilation operators of an electron in
the site i, and n;;=c/lcis. For U=oo, doubly occupied
sites never occur and we simply have a problem of con-
strained hopping, i.e.,

Heg=—1t 3, @ELéo+E,¢0), )

i, jhs

where &io=cis(1 —n; ~,) and n;=n;;+n;;. For U large
but finite one can still project out the doubly occupied
sites but there is, in addition, an antiferromagnetic term
JZ(i,j) S;'S;, where S; is the spin at site i, and J =4¢ 2/U.
Hence ferromagnetism is most likely to occur for U =0,
which is the case we consider from now on.

We consider clusters of size N =L x L where L =4,/10
(the sides of this cluster are rotated by tan ~'§ from the
lattice vectors), V8 (rotated by 7/4 relative to the lattice),
and 2. Our results for the energy as a function of spin for
different hole concentrations are summarized in Tables
I-1V. Because the calculations are performed in a sub-
space of fixed total S, we are unable to compute the ener-
gy for spin values less than the spin S, with minimum en-
ergy, because, for S, < S, we inevitably obtain the exact
ground state with S =S.. However, for S, > S., we have
S =S, provided the energy increases monotonically with
S, as generally seems to be the case, so the energy can be
obtained as a function of S for S = S..
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TABLE I. Energy, as a function of hole number and spin, for
the V8 x /8 lattice with periodic boundary conditions. Ny is the
number of holes away from half filling and S. is the spin of the
ground state. For 4 holes, the S =0 and 1 states are degenerate.

N Se S
1
2 0

Energy
—4.000000

—4.000000
—4.690416
—4.690416
—4.898979
—4.000000
—5.179262
—5.325920
—4.000000
—5.830952
—4.000000
—6.332638

—4.000 000
—6.928203

NS
M= Nl R N M Ne O = N W NS

(=)}
(=]
O -

In Fig. 1 we plot the spin of the ground state per elec-
tron against the hole fraction § =N;/N, where N}, is the
number of holes away from half filling Gi.e., N, + N, =N)
for hole numbers from 1 to 5 with periodic boundary con-
ditions. We see that Nagaoka’s result that S =N,/2 for
one hole is correctly reproduced, but that S =0 for two
holes, at least for the sizes studied. For the smaller sizes
this result had been anticipated by Takahashi.® For
greater than two holes, we obtain results which are inter-
mediate between the one and two hole cases, namely S/N,
is finite and increases as N— o, We plot in Fig. 2 the
spin of the ground state for the L =4 lattice with periodic
boundary conditions and with mixed boundary conditions
which are periodic in one direction and antiperiodic in the
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FIG. 1. Spin of the ground state per electron against the hole
fraction & =N,/N for periodic boundary conditions. Each sym-
bol represents data for a fixed hole number, as indicated in the
legend, for different lattice sizes.
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TABLE II. Energy, as a function of hole number and spin,
for the V10x /10 lattice with periodic boundary conditions.

Ny Se S
1 3

2 0

Energy
—4.000000

—5.000000
—5.686138
—5.847487
—6.000000
—6.000000
—6.935965
—7.082377
—7.000000
—8.502177
—8.000000
—8.316343
—8.343385
~7.000000
—7.993904
—8.004 121
—6.000000
~7.617354

—5.000000
—7.211103

~
-
Nj= Njw O e N M= N BB R W MW Ns NN O = N W Mo

O -

other. We see that the behavior is nonmonotonic and de-
pends on the boundary conditions.

How can we understand the curious nonmonotonic be-
havior in Figs. 1 and 2? It is instructive to consider the
Nagaoka state, which is quite simple since the problem is
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FIG. 2. The open squares show the total spin S, for the 4x4
lattice with periodic boundary conditions for different values of
the hole number N,. The solid squares are the same but with
mixed boundary conditions, periodic in one direction and an-
tiperiodic in the other. Inset: The average over these two
boundary conditions and is seen to vary much more smoothly
with hole concentration than the data for each boundary condi-
tion separately.
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TABLE III. Energy, as a function of hole number and spin, for the 4x4 lattice with periodic boundary conditions. Except for 5
holes, the energy decreases monotonically as S decreases from Smax to Se.

Ni Se S Energy Ny Se S Energy
1 1 L —4.000000 7 T z —12.00000
2 0 7 —6.000 000 3 —12.75661
6 —6.278097 3 —13.31621
;o Tam R
3 —6.568 688 2 —14.16114
2 —6.617851 8 0 4 —12.00000
! —6.642957 3 —13.14163
0 —6.677519 3 —13.709 90
3 I g —8.000 000 1 —14.22336
2 .
T —8.548 553 3 0 —14.34751
$ —8.757522 9 3 I —12.00000
I —8.820533 3 —13.458 56
3 —14.06053
4 5 6 —10.00000
5 —10.81160 10 2 3 —12.00000
5 s u —12.00000 3 2 —13.80356
3 —11.908 19 11 7 5 —12.00000
1 —12.00063 3 —12.34275
: —12.15913 12 0 2 —10.00000
1 —10.791 30
6 0 5 —12.00000 0 —10.81399
4 —12.38707 .
3 —12.74177 13 7 F —8.000000
2 —13.20195 L —9.194401
1 —13.35133
0 —13.75547 14 0 1 —6.000000
' —7.569559

then equivalent to that of /V; noninteracting spin aligned
particles. Because of spin alignment the exclusion princi-
ple takes care of the restriction of no double occupancy so
the particles are noninteracting. The energy of a hole is,
of course, given by ¢ = — 2¢(cosk, +cosk, ) where, for the
unrotated clusters (L =2 or 4 here), k, =2zn,/L, and
ky =2zn,/L with periodic boundary conditions, while for
the mixed boundary conditions k,=2zn./L, and k,
=27(n,+ 3 )/L. It is easy to see that with periodic
boundary conditions, those cases where S has its mini-
mum value, e.g., N; =2 and 6, are where the last hole in
the Nagaoka state has to go into a single-particle state
with a higher energy than that of the other holes. It costs
too much energy to promote the last hole in this way and
the system gains energy by making a substantial change in
the spin arrangement. For the case of 3, 4, and 5 holes
with periodic boundary conditions the last hole goes in a
state with the same energy as the second hole. Hence
these states are not quite so unfavorable as the Nagaoka
state with 2 holes, so the spin background does not have to
be modified as much and the ground-state spin is inter-
mediate between 0 and N./2. For a large system and a
finite fraction of holes we presume that this nonmonotonic
behavior, occurring when the next hole in the Nagaoka
state goes in a level of higher energy, will tend to be

washed out. For mixed boundary conditions, we also ob-
serve an irregular variation with hole number, though the
condition for minimum total spin observed for periodic
boundary conditions does not seem to be true for this case.

For a finite number of holes our results suggest that the
energy of the Nagaoka state and the exact ground state
become degenerate as N-— oo, as has been argued by
Trugman.® This indicates that the holes repel rather than
form a bound state, as found earlier’ for finite U.

While this work was near completion we received copies
of unpublished work from Fang etal.® and Doucot and
Wen.’ Fang etal. have shown, by numerical computa-
tion, that the Nagaoka state with 2 holes is unstable for
periodic boundary conditions and, like us, demonstrated
that the ground state is a singlet for V=8 and 10. Doucot
and Wen have given an analytic argument that the
Nagaoka state is unstable with two holes for periodic
boundary conditions. Incidentally, it is straightforward to
show!'? that with our mixed boundary conditions the trial
state of Doucot and Wen for 2 holes gives a higher energy
than the Nagaoka state. This is consistent with our result
that the Nagaoka state is the ground state in this case.

To conclude, we have seen that the spin varies non-
monotonically with hole number but that the main
features of this can be understood by looking at the energy
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TABLE IV. Energy, as a function of hole number and spin,
for the 4x 4 lattice with mixed boundary conditions, periodic in
one direction and antiperiodic in the other.

Np Se S Energy

3

1 ¥ —3.414214
—3.557152
—3.608 845
—3.650197
—3.682401
—3.707192
—3.724825

—3.736199
—6.828428

—8.242641
—8.688184
—8.720847
—8.754569

—9.656855
—10.23266
—10.65863
—10.70550
—10.788 69
—10.83935
—10.90298

Nl= Bjw N NN NP N Bjw Nl

(e

N
NN
~

NN NP |z N

O = N WhHh v

of the Nagaoka state. It is reasonable to assume that
these rapid variations in S will be washed out for a very
large system with a finite density of holes. If so, then one
may get a better feeling for what happens in the thermo-
dynamic limit by averaging over different boundary condi-
tions. In fact, the total spin does vary fairly smoothly
when averaged over the two boundary conditions used, as
shown in the inset to Fig. 2, for the 4 x4 lattice. Further-
more, we find that S/N, never decreases with increasing
size but generally increases, as illustrated in Fig. 1. From
these remarks we infer that the one-band Hubbard model
with U =oco probably is ferromagnetic in the thermo-
dynamic limit with a finite density of holes but it appears
that there are nonferromagnetic states very close in ener-
gy. It is, however, unclear to us whether the ground state
is the fully aligned Nagaoka state, or whether the magne-
tization takes a smaller nonzero value.
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