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Strange attractors in parallel-pumped spin-wave instabilities: Bifurcation of multifractals
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An experimental study of strange attractors at and beyond the period-doubling accumulation
point is made for parallel-pumped spin-wave instabilities in a ferrimagnetic yttrium iron garnet
disk. Singularity spectra are found to show a distinctive bifurcation, in the transition region lead-
ing to the growth of a high-dimensional attractor. A microscopic theoretical model well explains
this phenomenon.

Nonlinear spin-wave dynamics beyond the Suhl thresh-
old is found to show rich structures of chaos and tur-
bulence' comparable to those in Iluid dynamics. The
most attractive feature of the spin-wave instability would
be that the microscopic interactions are well known. The
microscopic theoretical model which includes the eA'ect of
a cavity mode explains a variety of experimental results
(period-doubling cascade, quasiperiodicity, irregular re-
laxation oscillations, and chaos) very well. To further
compare experimental results with a theoretical model,
detailed characterization of strange attractors is required.
In this Rapid Communication, we shall present an experi-
mental study of strange attractors at and beyond the
period-doubling accumulation point for a parallel-pumped
spin-wave instability in an yttrium iron garnet (YIG). In
particular, the change in the multifractal structure of the
strange attractor will be examined by increasing a driving
power. Little attention has been given to a study of this
kind so far. Though our major subject lies in an experi-
mental aspect, some results of numerical iteration of the
theoretical model will also be described.

Experiments were performed at a pumping frequency of
8.9 GHz at a temperature of 4.2 K. A disk-shaped YIG,
1.28 mm in diameter and 0.40 mm thick, is mounted on
the bottom of the TE|ol cavity. Both microwave and stat-
ic fields are applied along the [11ll direction perpendicu-
lar to the disk. Measurements were done in a field of 1935
G where the minimum threshold for instability is given by
Pth 0.3 mW, which will be taken as Pth 0 dB in the fol-
lowing. The excited magnons have the wave number
k -0 and propagate perpendicularly to the static field. As
the cavity is critically coupled, the spin-wave instability is
detected in the reAected microwave power. Microwave
signals are detected by a tunnel diode and recorded in a
computer at intervals of 1 @sec.

Figure 1 shows power spectra and strange attractors
which are constructed by the time delay method with a
delay time of 3 Itsec. An observed period-doubling cas-
cade accumulates at P P, 2.20 dB, and developed
chaotic oscillations whose power spectra exhibit broad-
bands are obtained at P 2.97 and 3.60 dB.

The singularity spectra f(a) are procured from whole

trajectories embedded in five-dimensional space (each at-
tractor has 20000 points). We first calculate the partition
function I (q, l) (P;(l)v '), where the probability P;(I)
is obtained by counting the number of points within the
ith hyperspherical distribution with radius l and dividing
it by the total number of points in the trajectory data set.
The angular brackets represent an average over 2000 ran-
domly chosen distributions. I (q, l) has a wide scaling re-
gion satisfying I (q, l) -I' ~, which leads to f(a) with the
use of the Legendre transformation. Our experimental
results have precisions up to the scale 1-2, below

(c)

lt'r aItII~t&, +l~,
CQ

l I

50 k Hz Idiv
FIG. l. Experimental result for power spectra (a)-(c), and

strange attractors (d)-(f): (a), (d) P P, 2.20 dB; (b), (e)
P 2.97 dB; (c),(f) P 3.60 dB.

5279 1989 The American Physical Society



S280 MINO, YAMAZAKI, AND NAKAMURA

which noise eA'ects become operative. As the obtained
f(a) spectra contain a trivial one dimension in the direc-
tion of trajectories, we hereafter subtract unity from both
f and a.

The f(a) spectrum at P P, =2.20 dB is shown in Fig.
2(a). The maximum point of the curve (i.e., Do) is
0.55 0.04. This curve is consistent with the universal
one for the period-doubling route [see the solid curve in

Fig. 2(a)l. At P 2.97 dB, however, I"(q,l) has two dis-
tinctly different scaling regions separated by a crossover
region R, [see Fig. 2(d)]. The scaling exponents z(q)
below and above R, differ from each other. (Error bars
associated with the individual scaling regions are too small
to overcome the difference between these two exponents. )
Consequently, there occur two kinds of coexisting humps
or a "bifurcation" of f(a) [see Fig. 2(b)l. This bifurca-
tion is due to the band structures of the strange attractors
(i.e., island structures of their Poincare section) emerging
from the period-doubling route. In Fig. 2(b), the left-
hand-side curve with Do 0.6 is related to a larger-scale
behavior (i.e., weak bunching which wanders with
different bands), retaining a feature of the universal curve
at the critical point. The right-hand curve with Do =1.0 is
related to a small-scale curve (i.e., strong bunching in
each band), describing a new multifractal structure. [The

scales of both abscissas and ordinates in Figs. 2(b) and
2(c) differ from the ones in Fig. 2(a).] At P =3.60 dB, a
unique z(q) is recovered. The f(a) curve in Fig. 2(c) has
a fractal dimension of DO=1.0. By increasing the power
further, the oscillations become periodic again and exhibit
period halving. Period 4, period 2, and period 1 are ob-
served at P 4.08, 4.32, and 5.25 dB, respectively. A fur-
ther increase of driving power causes the growth of
higher-dimensional attractors. The correlation dimen-
sions D2, which are obtained with use of a correlation in-
tegral, are 1.4, 2.0, 2.4, and 3.2 at P =8.56, 13.01, 14.73,
and 16.20 dB, respectively. Thus, the bifurcation of f(a)
is followed by the growth of high-dimensional attractors.
Note: In both Figs. 2(b) (right-hand-side curve) and
2(c), the f(a)'s cannot be attributed to the quasiperiodic
origin because the Poincare sections of the attractors in
Fig. 1 indicates no torus structure characteristic of quasi-
periodic attractors. In general, we cannot expect this kind
of bifurcation in the case of the quasiperiodic route to
chaos, ' because the trajectory at its criticality shows no
band structure.

To stimulate the present system, we employ a theoreti-
cal model with four-magnon interaction as shown in Fig.
3. The equation of motion for spin-wave modes Ck
(=C I, ) is

Cp —
yj Ct —ihQI, CI, —tQFgkCk —i 2+Tki I Cp I Ck+g(SI, k +Egkgk*)Ck Ci,

*
k' k'

where yi„hei„gi„and F(=A~V) are damping constants
for Cl„ frequency shifts, coupling between the cavity mode
and Ci„and a driving field, respectively. T&k and Skk
denote the coupling among spin waves. Equation (1) is
formally identical to the equation employed in the case of
the first-order perpendicular pumping. However, in our
parallel pumping case a cavity mode couples directly with
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spin-wave pairs, thereby producing new expressions for Q
and E: Q

—i/I and E= —i/(2I"), with I being the
damping constant for the cavity mode. Further, in
marked contrast to Ref. 8, gk are vanishing for the mode
propagating parallel to a static Geld. We now con6ne to
the case of two modes a systein where gk ~

e0 and gk2-0.
Noting the realistic parameter values in Ref. 11, we take
F=Fx 10 sec ' in the following: Consistent with exper-
imental results, a period-doubling cascade accumulates at
the critical point F=F, =1.92286. When F is increased
beyond F„we see a gradual growth of a higher-
dimensional strange attractor. Some aspects of this
dramatic change in the attractor may also be described on
the basis of a unique low-dimensional map, e.g., a Henon
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FIG. 2. Experimental f(a) spectra: (a) P=2.20 dB; (b)
P 2.97 dB; (c) P 3.60 dB. (d) Experimental I (q, l) in loga-
rithmic scales at P =2.97 dB (q =0).
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FIG. 3. Theoretical mechanism behind Eq. (1).
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FIG. 4. Computed f(a) spectra of Eq. (1): (a) F F,
1.92286; (b) F-1.9229; (c) F 1.94. (d) Computed 1 (q, i)

in logarithmic scales at F 1.9229 (q =0).

map. Our microscopic model has a greater advantage,
however, because it is directly related to a set of micro-
scopic material constants of YIG. The singularity spectra
f(a) are calculated here by using the Foincare sections of
the attractors. (We have obtained 8000 points for each

section. )
The f(a) curve at F F, in Fig. 4(a) is almost identical

to the universal one. The accuracy of Do, a,„, and a;„is
indicated by error bars. At F 1.9229, 1(q,/) has a
crossover region R, [see Fig. 4(d) and note that a noise
level lies only in the region I ~ 2 ' ], and "bifurcation" of
f(a) is observed [see Fig. 4(b)], which is quite similar to
the experimental issue in Fig. 2(b). When F increases
further, R, moves toward a larger scale region, and finally
at F 1.94 in Fig. 4(c), we find no indication of a cross-
over region. Corresponding Do are 0.54 and 1.07 at
F F, and 1.94, respectively, while we have two Do
values, 0.51 and 0.92, at F 1.9229. [A one-mode model
here can, of course, yield no chaotic attractor and the
two-mode model proves enough to describe the bifurcation
of f(a).] Furthermore, we have obtained Do 1.8 at
F 2.20. Much larger values of Dp will be available by
increasing the number of active spin-wave modes. The
theoretical model thus explains most of our experimental
issues very well.

In conclusion, our experiments indicate a route toward
a high-dimensional attractor via the transition region
where f(a) shows a remarkable bifurcation. A micro-
scopic theoretical model captures the essential aspect of
this phenomenon.

One of us (K.N. ) is grateful to A. Libchaber and S. A.
Rice for fruitful discussions at the University of Chicago.
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