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Exact diagonalization results on the quantum dimer Hamiltonian of Rokhsar and Kivelson on
lattice sizes up to 6Xx6 are presented. Correlation functions of a new order parameter character-
izing the crystalline states of the model are calculated. All of the results are consistent with the
existence of a direct transition between a columnar crystalline state and a staggered crystalline

state with no intermediate spin-fluid state.

However, the existence of a spin-fluid state over a

small, but finite, range of parameters has not been definitively ruled out.

INTRODUCTION

The quantum dimer model was introduced recently by
Rokhsar and Kivelson! (RK) as a phenomenological
description of a non-Néel phase of the spin-3 Heisenberg
quantum antiferromagnet on a square lattice. Interest in
the latter model is motivated partly by the suggestion of
Anderson? that properties of the non-Néel phase are im-
portant in understanding the occurrence of high tempera-
ture superconductivity in La;—,Sr,CuO,4 and YBa;Cu;-
O7-..% In a phase with exponentially decaying two-spin
correlation functions, RK argued that it was a reasonable
approximation to truncate the Hilbert space to states that
can be expressed as a tensor product of nearest-neighbor
singlet pairs of spins. There is clearly a one-to-one map-
ping between such states and the set of all close-packed di-
mer coverings of the square lattice. RK also argued that
the effects of the nonorthogonality of these states could be
absorbed into a redefinition of the parameters in the fol-
lowing phenomenological Hamiltonian H acting upon an
orthogonal basis set of states represented by all the
different close-packed dimer coverings of the square lat-
tice:

H=—JX |1 IX=Z|+Hec.+VX [t X I +VvX|=X=].
1)

The dark lines denote dimers on the links of the square
lattice and all the sums extend over all the elementary pla-
quettes of the square lattice. The first term is a dimer ki-
netic energy and the last two terms are the diagonal po-
tential energies. Read and Sachdev* have recently shown
that H may be obtained in a formal 1/N expansion of a
particular nearest-neighbor SU(/V) antiferromagnet with
the states at each site transforming with an appropriately
chosen representation of SU(V), and exchange constant
Js; at order 1/N the parameters obtained in this expansion
are J=2J;/N and V=0. We also have the correspon-
dence ny(r+é/2) ~ —S(r)-S(r+¢é) between the dimer
number operators ny(R) and the spin-3 generators S of
the Heisenberg model (é is an elementary link of the
square lattice). The symbol ~ implies that correlation
functions of ny in the ground state of the dimer Hamil-
tonian H should have the same asymptotic form as the
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corresponding correlation functions of S(r)-S(r+¢) in
the non-Néel phase of the Heisenberg antiferromagnet.

In a separate development, Read and Sachdev*> have
shown, using several different semiclassical and 1/N ex-
pansions of SU(V) antiferromagnets, that the non-Néel
phase exhibits spin-Peierls or valence-bond solid order.
For the quantum-dimer model, these phases correspond to
a crystallization of the dimer bosons into a “column”
state with the symmetry of Fig. 1(a); note that this state is
fourfold degenerate and completely breaks the Z,4 lattice
rotational symmetry.

We briefly review known results and open questions on
the properties of H:

(i) The dimer states are characterized by conserved
winding numbers (V,,N,) (Ref. 1) (specified below) with
—L/2<N,,N, <L/2onaLxL lattice.

(ii) For ¥ > J the exact ground state is the fourfold de-
generate “staggered” crystalline state' shown in Fig.
1(b). These states have winding numbers (+ L/2,0) and
0,x£L/2).

(iii) At exactly ¥V =J, the lowest energy states in all the

(a) (b)

—e —o - o -—
—e —o — -~—
© @

o1 e.1 e ] .1 ¢ 1 e o1 o.1 ¢ 1 e.1 o1 o
-i i -i -i i -i -i i -i i -i i
el e.1 01 e.1 ¢ 1 o .1 o1 -1 e 1 .1 o
i i i i i i i i i 1 i 1
o1 .10 1 .1 o 1 e el e.1 0 1 e.] o 1 o
-1 i i -i -i -i i i -i i -i i
o] e.1 e ] e.] o 1 e -1 e 1 e.1 e ] eo.1 e
i i i i i i i i i i i i
e]1 e.]1 e ] e.1 o 1 e el .1 e 1 e.1 o 1 o

FIG. 1. (a) The perfectly ordered column state and (b) the
staggered state; this state is the ground state of H for ¥ > J. (c)
The phase factors 6 and (d) ¢ on the links of the lattice.
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winding-number sectors are degenerate; these states are
equal superpositions of all dimer coverings with a fixed
winding number.! Correlation functions in the equal-
superposition state on a square lattice with free boundary
conditions [this restricts the state to be in the (0,0)
winding-number sector] can be exactl 2' calculated using
the results of Fisher and Stephenson;® we shall refer to
this particular eigenstate as the Fisher-Stephenson (FS)
state. The FS state has no broken lattice symmetry:
correlations of the column state order parameter, intro-
duced below, fall off as 1/r2.7

(iv) For V < kJ, where k<1 is an unknown constant,
the ground state of H breaks lattice rotational symmetry
and crystallizes into a state with the symmetry of the
column state shown in Fig. 1(a). Thus, there is a possible
range of values xJ < ¥V =< J over which H displays a spin-
fluid ground state. In fact, RK suggested that x <1 and
that the spin fluid was thus stable over a finite range of V.

The primary purpose of this paper is to obtain more in-
formation on the value of x by exact diagonalization of H
on a L xL lattice with periodic boundary conditions with
sizes up to L =6. Our results allow us to conclude with
reasonable certainty that x> 0.5, although all of our re-
sults are consistent with a value k =1. Thus for the pa-
rameters obtained in the 1/ expansion (V' =0), we find a
crystalline ground state.

It is useful at this juncture to introduce the complex or-
der parameters Wi (r) to measure the breaking of rota-
tional symmetry in the column phase

w2, (r) =X [0(r+é/2)17n,(r +€é/2) , (2)

é
where, as before, the sum over é extends over X, —X, ¥,
and —y¥; the 8(R) take the fixed values 1, i, —1, and —i

on the links of the square lattice, as shown in Fig. 1(c),
and are chosen such that under a rotation by nx/2 about
any point on the A sublattice ¥4;— e"™P/2¢p . while on
the B sublattice ¥4,— e —innp/ 2‘1”’ These properties im-
ply that (¥%,;)=0 for p>=(mod4) in any spin-fluid state
with unbroken lattice rotational symmetry while I(\PCO;)I
=0 for p=(mod4) in the column phase.

The order parameter associated with the staggered state
is

Y4(r) = X [¢(c+&/2)17n4 (e +€/2) , 3)

where ¢(R) takes the values shown in Fig. 1(d). Note
that w2, =w2. It can also be shown that X c , ¥4(r)
=L(N,+iN,), where the summation over r extends over
the A sublattice, and N, and N, are the conserved wind-
ing numbers.' The connection of ¥y with the conserved
winding numbers will restrict its utility in the finite-size
calculations presented below.

NUMERICAL RESULTS

With momentum and winding-number conservation the
calculation required diagonalization of matrices of dimen-
sions up to 1256: the diagonalization was carried out by a
modified Lanczos method.® We note that an analogous
procedure on a 8 X8 lattice would require diagonalization

of matrices of order 10°, which is clearly prohibitive. For
all ¥V <J the ground state of H was found in the winding
number (Ny,N,)=(0,0) sector. All of the correlation
functions presented below are obtained with the Hilbert
space restricted to the (0,0) winding-number sector for
all values of V. For V <J, this implies that, for large
enough system sizes, the low-energy states will consist of
domains of the staggered states in different orientations;
the domains are chosen in a manner that restricts the glo-
bal winding number to (0,0). The order parameter corre-
lation functions are trivially calculable in the exact stag-
gered ground state [Fig. 1(b)] for ¥ > J and do not yield
any useful information.
We begin by measuring the correlation function

1-—<| )2 \Ircol(r)|> )

In a phase with long-range column phase order we expect
x'~L? for large L, while ' ~0(1) in a spin-fluid or
staggered phase. In the FS ground state at ¥ =J we find
)(%sﬂ-(logL)2 The results of the numerical calculations
of x! for L =4 and L =6 are shown in Fig. 2. We note
that (i) for ¥ < J, the strong size dependence of x' and its
almost linear dependence upon V/J are consistent with
presence of long-range column phase order, and (i) for
V > J, the large value of x' for the 4x4 lattice is due to
the impossibility of inserting two domains of the staggered
phase in this lattice size; the (0,0) winding-number sector
is thus strongly frustrated.

A further probe of the nature of the ground state is
offered by the quantity g:

< rE vl (r) 4>
g= <|§: 2>2 , (5)

the ratio of the fourth moment of the order parameter to
the square of its second moment. In a phase with long-
range column-phase order we expect g— 1 as L— oo.
However, in a spin-fluid or staggered phase, the fluctua-
tions in ¥/, can be expected to be Gaussian, in which case
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FIG. 2. The correlation function y' [Eq. (4)] as a function of
viJ.
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FIG. 3. The quantity g [Eq. (5)] as a function of V/J.

g— 2 and L— oo. The values of g are shown in Fig. 3.
We note (i) the rapid increase in the value of g for L =6
near V/J==1 as indicating a crossover from a column
phase to the staggered phase; (ii) the oscillations in the
value of g for L=6 and V> J can be traced to (a)
changes in the structure of the domain walls as a function
of V/J, and (b) the small value of y' whose square ap-
pears in the denominator for the expression for g; (iii) the
value of g for the FS state can be calculated to be grs =2.

The spatial structure of the state can be investigated by
the correlation function

G(r) =¥ ()l +1)). (6)

For r,r| € A, the function G(r) can be shown to be real.
The results for G(r) are shown in Fig. 4 for L =6 and a
range of values of V/J. Also shown are the values of
Grs(r), the correlation functions in the FS state. The
differences in the values of Ggs(r) and G(r) for V=J in
(0,0) winding-number sector (shown in Fig. 5 by the in-
verted triangles) are due to finite-size corrections. Thus
the nonmonoticity of G (r) at the two largest values of |r|
is a finite-size correction. For V=0 and V =0.5J, the
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FIG. 4. The correlation function G(r) [Eq. (6)] as a function
of the Euclidean distance |r| for various values of V/J on a
6x6 lattice. Also shown are the correlation functions in the
infinite lattice FS state.
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FIG. 5. The correlation function y? [Eq. (7)] as a function of
VIJ.

function G(r) clearly appears to asymptote at a nonzero
value as | r| — oo, implying long-range column-phase or-
der. The order parameter (¥l,) satisfies lim;—_. G (r)
= [(wl)% we thus obtain estimates of |{¥l,)| of 0.53
and 0.40 for V=0 and V' =0.5J, respectively. (¥l has
been chosen such that a completely ordered rigid column
state would have an order-parameter expectation value of
1)

Finally, we measure x-y symmetry breaking by exam-
ining the order parameter ¥2 (as W& =W¥3, we will drop
the subscript). We numerically evaluated the correlation

function
1
= 7 < 2> . (7)

We now expect y>~L? in both the column and the stag-
gered phases. An intermediate spin-fluid phase would
have y?~0(1). The values of y* for L =4 and L =6 are
shown in Fig. 5. The sharp minimum in y? for L =6 at
V =J is consistent with the restoration of Z, symmetry at
precisely V' =J and nowhere else. The sharp dropoff in
the value of y2? at ¥ =1.6J for L =6 is due to changes in
the structure of the domain walls between the different
staggered-phase domains; we obtain staggered phases ro-
tated by 90° with respect to each other, which drastically
reduces the value of Xy e 4 ¥2

> wi(r)

re A4

CONCLUSIONS

We have found convincing evidence for the crystalliza-

tion of the dimers into a state with the symmetry of Fig.

1(a) for ¥ <0.5J. However, the simplest scenario con-
sistent with all of the data is the persistence of the column
phase right up to V' =J. For V > J, the model is known to
be in the staggered ground state; the point V' =J will then
be a special singular point displaying power-law dimer
correlations. It is notable that none of the data show any
explicit signal of the existence of spin-fluid order over a
finite range of V. We cannot, however, definitively rule
out the existence of the spin-fluid phase over a small, but
finite, range of V. Monte Carlo simulations on an 8 X8
lattice will therefore be of considerable interest.
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