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Exact diagonalization results on the quantum dimer Hamiltonian of Rokhsar and Kivelson on

lattice sizes up to 6X6 are presented. Correlation functions of a new order parameter character-

izing the crystalline states of the model are calculated. All of the results are consistent with the

existence of a direct transition between a columnar crystalline state and a staggered crystalline

state with no intermediate spin-Auid state. However, the existence of a spin-Auid state over a

small, but finite, range of parameters has not been definitively ruled out.

INTRODUCTION

The quantum dimer model was introduced recently by
Rokhsar and Kivelson ' (RK) as a phenomenological
description of a non-Neel phase of the spin- —,

' Heisenberg
quantum antiferromagnet on a square lattice. Interest in
the latter model is motivated partly by the suggestion of
Anderson that properties of the non-Neel phase are im-
portant in understanding the occurrence of high tempera-
ture superconductivity in La2 „Sr Cu04 and YBa2Cu3-
07 —„. In a phase with exponentially decaying two spin-
correlation functions, RK argued that it was a reasonable
approximation to truncate the Hilbert space to states that
can be expressed as a tensor product of nearest-neighbor
singlet pairs of spins. There is clearly a one-to-one map-
ping between such states and the set of all close-packed di-
mer coverings of the square lattice. RK also argued that
the effects of the nonorthogonality of these states could be
absorbed into a redefinition of the parameters in the fol-
lowing phenomenological Hamiltonian H acting upon an
orthogonal basis set of states represented by all the
different close-packed dimer coverings of the square lat-
tice:
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corresponding correlation functions of S(r) S(r+e) in
the non-Neel phase of the Heisenberg antiferromagnet.

In a separate development, Read and Sachdev have
shown, using several different semiclassical and I/N ex-
pansions of SU(N) antiferromagnets, that the non-Neel
phase exhibits spin-Peierls or valence-bond solid order.
For the quantum-dimer model, these phases correspond to
a crystallization of the dimer bosons into a "column"
state with the symmetry of Fig. 1(a); note that this state is
fourfold degenerate and completely breaks the Z4 lattice
rotational symmetry.

We brieAy review known results and open questions on
the properties of H:

(i) The dimer states are characterized by conserved
winding numbers (N, N~) (Ref. I) (specified below) with
—L/2 & N„,NJ & L/2 on a L x L lattice.

(ii) For V) J the exact ground state is the fourfold de-
generate "staggered" crystalline state ' shown in Fig.
1(b). These states have winding numbers (+'L/2, 0) and
(0, ~ I./2).

(iii) At exactly V=J, the lowest energy states in all the

The dark lines denote dimers on the links of the square
lattice and all the sums extend over all the elementary pla-
quettes of the square lattice. The first term is a dimer ki-
netic energy and the last two terms are the diagonal po-
tential energies. Read and Sachdev have recently shown
that 0 may be obtained in a formal 1/N expansion of a
particular nearest-neighbor SU(N) antiferromagnet with
the states at each site transforming with an appropriately
chosen representation of SU(N), and exchange constant
J,; at order 1/N the parameters obtained in this expansion
are J 2J,/N and V=O. We also have the correspon-
dence nd(r+e/2) ——S(r) S(r+e) between the dimer
number operators nd(R) and the spin- —,

' generators S of
the Heisenberg model (e is an elementary link of the
square lattice). The symbol —implies that correlation
functions of nd in the ground state of the dimer Hamil-
tonian 0 should have the same asymptotic form as the
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FIG. l. (a) The perfectly ordered column state and (b) the
staggered state; this state is the ground state of H for V) J. (c)
The phase factors 0 and (d) /on the links of the lattice.
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winding-number sectors are degenerate; these states are
equal superpositions of all dimer coverings with a fixed
winding number. Correlation functions in the equal-
superposition state on a square lattice with free boundary
conditions [this restricts the state to be in the (0,0)
winding-number sector] can be

exacts
calculated using

the results of Fisher and Stephenson; we shall refer to
this particular eigenstate as the Fisher-Stephenson (FS)
state. The FS state has no broken lattice symmetry:
correlations of the column state order parameter, intro-
duced below, fall off as 1/r .

(iv) For V & tcJ, where tr~ 1 is an unknown constant,
the ground state of H breaks lattice rotational symmetry
and crystallizes into a state with the symmetry of the
column state shown in Fig. 1(a). Thus, there is a possible
range of values xJ~ V ~ J over which H displays a spin-
fluid ground state. In fact, RK suggested that x & 1 and
that the spin fluid was thus stable over a finite range of V.

The primary purpose of this paper is to obtain more in-
formation on the value of x by exact diagonalization of H
on a L xL lattice with periodic boundary conditions with
sizes up to L =6. Our results allow us to conclude with
reasonable certainty that K )0.5, although all of our re-
sults are consistent with a value x 1. Thus for the pa-
rameters obtained in the 1/N expansion (V 0), we find a
crystalline ground state.

It is useful at this juncture to introduce the complex or-
der parameters q ~,~(r) to measure the breaking of rota-
tional symmetry in the column phase

q ~,l(r) -+[8(r+e/2)) ~nd(r+e/2), (2)

where, as before, the sum over c extends over i, —I, y,
and —y; the 8(R) take the fixed values 1, i, —1, and —i
on the links of the square lattice, as shown in Fig. 1(c),
and are chosen such that under a rotation by nx/2 about
any point on the A sublattice +„] e'" +„~, while on
the 8 sublattice +f,~~ e '" ~~ Oc, ~. These properties im-

ply that (~1',~) 0 for pa(mod4) in any spin-ffuid state
with unbroken lattice rotational symmetry while ( (W~,l) ~

&0 for p~(mod4) in the column phase.
The order parameter associated with the staggered state

1s

+~t(r) g [g(r+e/2)] nd(r+e/2),

of matrices of order 10s, which is clearly prohibitive. For
all V & J the ground state of H was found in the winding
number (N„N~) (0,0) sector. All of the correlation
functions presented below are obtained with the Hilbert
space restricted to the (0,03 winding num-ber sector for
all Ualues of V. For V& J, this implies that, for large
enough system sizes, the low-energy states will consist of
domains of the staggered states in different orientations;
the domains are chosen in a manner that restricts the glo-
bal winding number to (0,0). The order parameter corre-
lation functions are trivially calculable in the exact stag-
gered ground state [Fig. 1(b)] for V& J and do not yield

any useful information.
We begin by measuring the correlation function

g 2 +co) &

In a phase with long-range column-phase order we expect
g'-L for large L, while g'-O(1) in a spin-fiuid or
staggered phase. In the FS ground state at V J we find

gF's-(logL) . The results of the numerical calculations
of g' for L 4 and L 6 are shown in Fig. 2. We note
that (i) for V & J, the strong size dependence of g' and its
almost linear dependence upon V/J are consistent with

presence of long-range column phase order, and (ii) for
V& J, the large value of g' for the 4x4 lattice is due to
the impossibility of inserting two domains of the staggered
phase in this lattice size; the (0,0) winding-number sector
is thus strongly frustrated.

A further probe of the nature of the ground state is
offered by the quantity g:

(5)

the ratio of the fourth moment of the order parameter to
the square of its second moment. In a phase with long-
range column-phase order we expect g 1 as L
However, in a spin-fluid or staggered phase, the fluctua-
tions in ~,', ] can be expected to be Gaussian, in which case

where g(R) takes the values shown in Fig. 1(d). Note
that e„~=q,l. It can also be shown that g„c~q,'i(r)
=L(N~+iN, ), where the summation over r extends over
the 2 sublattice, and % and N~ are the conserved ~ind-
ing numbers. ' The connection of 9",t with the conserved
winding numbers will restrict its utility in the finite-size
calculations presented below.

5-

2-

NUMERICAL RESULTS

With momentum and winding-number conservation the
calculation required diagonalization of matrices of dimen-
sions up to 1256: the diagonalization was carried out by a
modified Lanczos method. We note that an analogous
procedure on a 8x 8 lattice would require diagonalization

V/J

FIG. 2. The correlation function Z' [Eq. (4)] as a function of
V/J.
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FIG 3 The uc 'quantity g [Fq (5)] a function of V/J
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