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The metallic phase of strongly correlated electrons is discussed within a novel statistical ap-
proach that correctly reproduces the principal features of the Mott insulating state when localiza-
tion is reached at half-filled band (n 1). The entropy in the normal phase decomposes into a
spinless-fermion part representing holes, and a part describing moments. The explicit form of the
superconducting gap h, i, is derived; this solution is shown to disappear when n 1. Most of tbe re-
sults cannot be obtained by using the Fermi-Dirac distribution for single-particle states.

We have recently proposed' a novel approach to
strongly correlated metals (spin liquids) at temperature
T)0. This approach properly describes the transforma-
tion of correlated itinerant states into a lattice of localized
spins when the Mott insulator limit is reached (band
filling n ~ 1). The treatment is based on the fundamental
observation that when the magnitude U of the short-range
Coulomb interaction far exceeds the renormalized band
energy per particle, the doubly occupied singlet-spin
configurations ( i f j & must be excluded not only in the
real-space (Wannier, R;) representation but also in the
reciprocal-space (Bloch,

~
k)) basis. This concept of pro-

jected fermion states in k space has been applied subse-
quently to the resonating-valence-bond (RVB) state4 and
the superconductivity. 5

In this paper, we explicitly describe several basic prop-
erties of such electron liquid. The novel findings are as
follows: First, we show that the holes in the Mott insula-
tor (or more precisely in the lowest Hubbard subband3)
may be regarded as spinless ferrrtions Secon. d, we prove
that the newly proposed distribution function for quasi-
particles removes the redundancy of the number of states
for the half-61led case obtained with the fermion represen-
tation in the Gutzwiller ansatz ' for strongly correlated
electrons. The limiting case of the Mott insulator is
correctly described only if the redundancy is removed. To
achieve these results we characterize the normal hase by
the distribution of single-particle energies [El, in the
U~ eo limit. In this respect, our approach represents a
quasiclassical statistical description of the normal and
metallic RVB state in the U~ eo limit, since we disre-
gard quantum pair spin-fiip processes characteristic for
this state when U is large but 6nite. Third, we include
exchange-mediated singlet-pairing and in the mean-6eld
approximation obtain the superconducting gap Al, when
both two- and three-site pairing parts are included. Final-
ly, we show that the superconductivity (SC) disappears
when n~ 1; we thus eliminate the spurious solution ob-
tained when the Fermi-Dirac (FD) distribution is used to
describe quasiparticle states.

To emphasize from the outset the difference between
the properties of the spin liquid (SL) and the ordinary
Fermi liquid (FL) we have plotted in Figs. 1 and 2 the dis-
tribution function as a function of particle energy a, and

n1,.- —,
' [1+—,

'
exp[P(al, —p))) ' —=f1„

with P= (kttT) '. This may be rewritten as

n1, --,' [I+exp[P(al, —p)]1 '= —,
' fl„ (2)

where p —=p+ ktt T In2, and f1, is the FD function with the
shifted chemical potential p. The distribution (1) is ob-
tained in the standard manner' or by de6ning projected
particle-number operator nq~ a1,~q~(——1 —al, ~l, —~),
where a t and a are fermion operators, and are calculating
the expectation value nl, within the grand ensemble for-
malism.
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FIG. 1. The comparison of the energy dependence of the dis-
tribution function for the spin liquid (for ns) with those for the
Fertni-Dirac (for Hs ) and Boltzmann distributions.

the entropy S for T~ eo as a function of n, respectively.
The position of the chemical potential p differs for those
two systems. ' Moreover, the total occupancy nq H 1,1

+n1,1 has been plotted for the SL case and compared with

nl, l n1, 1 n J2 for the FL case. The difference in the
values of 5 as rt~ 1 arises because both the empty ) k0),
and the doubly occupied ( k t J ) states are excluded for the
SL state; they are retained in the FL case. Only the
former (SL) model correctly reproduces the entropy of
the Mott insulator. ' This model is shown to provide a
coherent theory for n ( 1 as well.

To analyze the physical consequences of the new ap-
proach' we consider first the normal state in the absence
of magnetic 6eld, for which the distribution function in
U~ limit is
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By introducing magnetic moment mk per particle through
the relation

mk (nest
—nki)/(nkt+nkt),

we obtain the following expression for the entropy

SL, —ks+L, [(1—nk) ln(1 —
nL, )+nklnnk

1 —mk 1 —mk 1+mk 1+mk
+nk In + la

O. I 43 0.429 0.7 I 4
BAND FILLING, n

I .0

FIG. 2. The limiting (T oo) value of the entropy (per site)
vs band filling n for the FL and SL states. The constant
R—:AN.

Using Eq. (2), one obtains the internal energy E(T)
(I/N)gj, eke and the shifted chemical potential p

throughout the relation n (I/N)/k'. These expres-
sions for nN spinless fermions with p p, can be trans-
formed to the following integral forms

(9)
The first two terms represent the entropy of spinless fer-
mions, associated with holes in the lower subband. ' The
last two terms represent the entropy of magnetic moments
weighted with the probability that the given state is occu-
pied. In the limit nk 1 this part reduces to the usual en-
tropy of a magnetized system of spins s —,', which repre-
sents a necessary condition to be fulfilled by any theory
claiming to properly describe the situation in the Mott in-
sulator limit.

For H, aO, the method of most probable distribution'
as applied to (7) leads to the distribution

~ W/2
E(T) Ep(E)f(E)dE, (3)

nk. -(1 nk —.)[I+exp[p(ek. j))—] -'. (10)

(S)

In the limit T 0, it W(n ——,
' ), which for n 1 leads to

p W/2, i.e., the band is full. This fact proves directly
that the number of states in the band and with distribu-
tion function (1) or (2) is N, not 2N (as for ordinary
fermions. ) Thus, the redundant states appearing in the
Gutzwiller approximation in the limit n~ 1 have been
automatically removed in the present approach. Also, in
the limit T 0 Eq. (3) [with p given by (S)] reduces to

E(T 0) —(W/2)n(1 —n),
which coincides with that obtained within the Gutzwiller
ansatzs 9 in the limit U/W ee. Thus, the scaling factor
(1 —n) renormalizing the band energy ' also appears
automatically in the present approach.

Next, consider the normal state in applied magnetic
field H, . The general expression for the entropy is then '

SL —keg (1 —nk) ln(1 —nk)+ ink Innk
k

(7)

and

w fV/2
n „p(E)f(E)dE, (4)

where p(E) is the density of states (DOS) per site per
spin, and Wis the particle bandwidth. Equations (3) and
(4) are of the same form as for fermions but with the cus-
tomary factor of 2 missing, i.e., as if only half of the total
DOS had been taken. This halving reflects the splitting of
the underlying bare band into two Hubbard subbands.

The integrals in (3) and (4) may be explicitly evaluated
for a featureless form of p(e); we obtain

exp(nPW) —1 Wjt —ks T1n2+ ks T ln

Application of this distribution in the mean-field approxi-
mation provides the following equation for the magnetic
moment m (n;t —n;~) per site

p.g0~ —Jzm
m n tanh

which holds for an arbitrary DOS. In this equation J is
the magnitude of the kinetic exchange interaction which is
present for the strongly correlated electrons, "and z is the
number of nearest neighbors. Here we have used condi-
tion (S) for p when H, WO. We see that the magnetic po-
larization of the spin liquid follows the magnetization
curve of nN localized spins. This situation arises because
the double occupancies are suppressed; hence, unlike the
case of the Pauli paramagnet, no reduction of m occurs
due to the spin pairing below the Fermi level. The form
(11)will lead to the Curie-Weiss law for the static suscep-
tibility [g-(T+8) ] in the normal phase. If 8 is large() 1000 K) then the susceptibility will be small and al-
most flat, as observed in almost all high-T, systems.

Next, we use the projected fermions in k space ex-
plicitly when considering a condensed Bardeen-Cooper-
Schrieffer (BCS) type of state within the exchange-
mediated high- T, superconductivity. ' The effective
Hamiltonian with a full pairing part (i.e., with the three-
site terms) in real space derived before ' is

Zijatijbiabjcr Zijk (2tij tjk/U)bij bkj ~ (12)

where t;j is the hopping integral, U is the magnitude of the
Coulomb irtteraction, and b;t—:a;t (1 n; ) and-
bjt —= (1/J2)(btibjtt btibjtt) are, re—sPectively, the Pro-
jected single-particle and pairing operators; the projec-
tions arise from exclusion of site double occupancies in
real space. Inclusion of both two-site (i k) and three-
site (i ~k) terms in (12) leads to important consequences.
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First, transform (12) into the k space

P g ekbk+k& (2/UN) p ek —q/2 ek' q/—2bk+q/2, —k+q/2
ka kk'q

where

X bk'+q/2, —k'+q/2 ~ (i 3)

bkt k (I/J2) (bi, tbk )
—bk)bk t ),

and ek and bkt are the space-Fourier transforms of t;~ and
b;t, respectively. Unfortunately, the operators bkt and bk
do not anticommute to a number because we used project-
ed operators. This difficulty may be overcome by limiting
ourselves to the classes of projected wave functions which
fulfill the identity

I @o&=—IIk(I —nkink& I & o&. (i4)
The above property of the projected wave function is

automaticallp preserved by introducing projected fermion
operators ak =—ak (1 —nk ~) and ak =—ak (1 nk—~),
respectively. ' Such projection is analogous to that pro-
posed before ' in the real-space representation. Then,
nk ak~k nk (1 —nk ), and the starting condition
that nkt+nk~ 0 or 1 is obeyed automatically. The new
operators still have nonfermion anticommutation rela-
tions but the reformulation of the problem in this new
form renders the solution of P tractable, at least in the
mean-field approximation.

Namely, the Hamiltonian (13) is solved by choosing the
trial wave function of the BCS form in the projected
fermion-operator representation

~
e) -IIk(uk+ vkaktta t

k) ) I +o&.

Within the class of wave function fulfilling the condi-
tion (14) we can rewrite (13) in the form'

P gk eka k(y8 k(y

—(4/UN) gkk ekekakta —k(a —k )ak t . (15)

Thus, the inclusion of the three-site terms leads to a se
parable k-dependent singlet-spin pairing potential
Vkk 4ekek/UN. F—urthermore, one sees that (15) cor-
responds to (13) if only terms with q 0 are included in

the second term and if we replace the operators bk by the
projected operators ak . In other words, our approxima-
tion scheme is complementary to the Gutzwiller scheme
which is based on the removal of double occupancies in

the real space. Yet, the present approach leads to the re-
sults which are in some aspects similar, as discussed
above. This may mean that both the Gutzwiller and the
present formulations of the correlated state contain some
universal features, the validity of which goes beyond the
approximation scheme involved.

For the choice (14) of
~ +o), the distribution (1) should

be used instead of the FD function. Then, the supercon-
ducting gap equation is of the type

4~ ~'Ak'
(1 —2fk ), (i6)

2Ek

where k is given by Eq. 1, an Ek ~—p
+ ( hk ) ] ' is the energy of quasiparticles in the SC
phase. A very important conclusion following from (16)
is that the k dependence (and symmetry) ofAk is the same

as that for ek. In the case of high-T, superconductors
modeled by a planar con6guration of Cu and 0 atoms
with ek zt [cos(k„a)+cos(kra)], the solution is of an ex-
tended s-wave form, independent of the type of the distri-
bution function or of the DOS form (the same result is ob-
tained for the mean-field solution with Gutzwiller ansatz
if the full Vkk is taken). So, contrary to earlier ap-
proaches, hk- ek can now be explicitly speci6ed.

Writing b,k A(T)ek we obtain from (16) either that
6=—0 or 6&0 obeys the equation

(1-2fk) .4 (i7)
2Ek

This equation must be supplemented with the equation
specifying p.

1 —n -—gk (1 —2f„)N Ek

1 g lek /21 (is)
Ek(i+2e ' ")

If the FD function is taken for fk, then Eq. (17) differs
from the standard BCS result by the factor ek2 in the
numerator, and by the fact that [ hk ~ ~

d, ~2ek2. For the
SL state the form (1) should be introduced and this leads
to two new important features. First, since the particle
levels are singly occupied and the exchange interaction
takes place between all electrons, the summation in (17)
should be taken over the whole Brillouin zone, and not be
limited to states close to p. Second, in the limit of the
Mott insulator (i.e., for n~ 1) no superconducting solu-
tion with d, AO exists; this result is again not limited to a
particular form of DOS. To prove this statement one no-
tices that Eq. (18) then yields 2fk= l. This form of fk,
corresponding to the 611ed Hubbard subband state, when
substituted in (17) leads to a contradiction. Hence, the
5—:0 solution must be chosen. In other words, the T,
vanishes as n~ l. Thus, with the new statistics one
avoids the spurious solution obtained with AWO, which is
inherent in the standard mean-field approximation. ' '
Also, it does not necessitate a decomposition into holon
and spinon parts of the pairing interaction, '5 though the
result is the same in both formulations.

In summary, we have discussed the statistical properties
of strongly correlated electron systems (the spin liquid),
using a novel approach' based on exclusion of double oc-
cupancies in k space. The entropy can be decomposed
into the spinless-fermion and the localized-moment parts.
The existence of the well-defined magnetic moments
within this approach does not preclude superconductivity
because the latter is due to mutual spin-singlet pairing in-
duced by antiferromagnetic' exchange interactions. We
have also shown that if the full pairing part (with the
three-site terms) is included, then the mean-6eld (BCS-
type) solution automatically leads to a k dependence of
superconducting gap,

'
d,k hek. The superconductivity

vanishes in the Mott-insulator limit. These results prove
the usefulness of the concept of the spin liquid developed
here and in Ref. 1. The detailed numerical analysis of the
superconducting and antiferromagnetic phases requires a
separate treatment.
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