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Fracton dynamics of percolating elastic networks: Energy spectrum and localized nature
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We have performed computer experiments on the dynamics of two- and three-dimensional (2D
and 3D) percolating elastic networks with the site number N &10'. The densities of vibrational
states (DOS's) for these large percolating networks as well as the mode patterns of fractons are ob-
tained. It is confirmed, for both 2D and 3D networks, that the DOS is proportional to co" ' with d
close to —, in the regime above the characteristic frequency co, . We could not find the notable steep-

ness or hump in the DOS at the vicinity of a phonon-fracton crossover frequency co„ i.e., our results
were incompatible with the prediction by the effective-medium theory. Specific realizations of mode
patterns show that the core of fracton excitations falls off sharply at their edges, and that the local-
ized nature is quite unique.

I. INTRODUCTION

Percolating networks have a fractal geometry on small-
er length scales than the percolation correlation length
g~. This behavior crosses over to the Euclidean geometry
on larger scales than g . The density of vibrational states
(DOS) with wavelengths much larger than g should obey
the conventional Debye law, D(co) -co" ', where d is the
Euclidean dimension. These excitations are called pho-
nons.

The scaling argument has suggested that the DOS for
fractal networks follows the universal law, '

D(to) - to

where d is the fracton dimensionality. ' When percolat-
ing networks are characterized by the fractal dimension
D and the exponent of diffusion 0, d can be expressed as
d=2D/(2+8). Alexander and Orbach' have conjec-
tured that the fracton dimensionality d for a percolating
network is —,, which is independent of the. Euclidean di-
mension d. These excitations were named "fractons. "' '"

Fracton excitations play an essential role in many
stages of physics for topologically disordered systems.
Examples are the thermal conductivity of glasses, ' elec-
tronic relaxation with fracton emission, Raman ' or
Brillouin" ' scattering for topologically disordered ma-
terials, spin-wave excitations on randomly diluted antifer-
romagnets, ' ' dc conductivity due to the variable range
hopping, ' and ultrasonic attenuation in porous media. '

None of these phenomena can be completely understood
without detailed knowledge of the DOS, the dispersion
relation, and the shape of the fracton wave function.
Another important feature of fractons is the localized na-
ture. It appears to have been generally accepted that
fractons possess the unusual localized character called
"superlocalization. "' ' However, the understanding of
fracton excitations (eigenmodes) is not satisfactory either
theoretically or experimentally at the present stage.

Computer simulations permit one, in principle, to in-
vestigate the dynamics of percolating networks that may

be inaccessible to direct experimental study. Although
computer simulations have had difhculty in treating large
systems, which would provide a model that can be com-
pared with laboratory experiments, the situation is
changing because array-processing supercomputers have
become available.

In this article, we have performed computer experi-
ments on the dynamics of two- and three=. dimensional
(2D and 3D) site-percolating elastic networks. Our sys-
tems treated have the site number as large as N ) 10, for
which a novel numerical method developed by Williams
and Maris is employed. The DOS's for these large per-
colating networks as well as the mode patterns of frac-
tons are obtained. From these mode patterns, we have
found evidence of specific character of localized fractons.

In Sec. II, the model and the numerical method used in
this work is described. The results of the DOS's calcula-
tions for 2D and 3D percolating networks are given in
Sec. III. This section also presents numerical evidence
for the localization of a fracton wave function on 2D per-
colating networks. Conclusions are given in Sec. IV.
This paper would provide useful details for our related
brief reports of Refs. 21—23.

II. THE SITE-PERCOLATING NETWORK
AND OUR NUMERICAL ALGORITHM

We consider a site-percolating network consisting of X
atoms with unit mass and linear springs connecting two
nearest-neighbor atoms. The equations of motion of this
system are simple, as expressed by

(2.1)

where u,. is the scalar displacement of the atom on the ith
site. The force constant is taken to be K;.=0(i&j) if ei-
ther sites i or j are unoccupied, and K,- =1 otherwise.
Diagonal elements satisfy the relation K;; = —z, where z;
is the coordination number of the site i. It should be not-
ed here, if we put K;; =0, that our system is transferred to
the quantum percolation problem. The displacement u;
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is assumed to have only one component. This sirnpli-
fication enables us to extract the intrinsic features of the
dynamics of percolating systems.

In standard numerical methods, the dynamical matrix
[K;~.] is diagonalized directly to obtain the eigenfrequen-
cies and eigenmodes of the system described by Eq. (2.1).
These methods, however, require a large amount of com-
puter memory space (order of N ) and relatively long
CPU time. Because of these conditions, the site number
we can treat is limited in general to a few thousands. In
addition, these standard numerical routines yield poor ac-
curacy for the low-frequency eigenvalues. The method
employed in the present work, introduced by Williams
and Maris, enables us to treat the eigenvalue problem of
very large systems as large as X) 10, because the algo-
rithm requires less memory space (order of N) and is ex-
traordinarily suitable for array-processing supercomput-
ers. The method is based on the physical analogy that
the eigenfrequency of the system satisfies the resonance
condition when applying the periodic external force with
frequency Q to the system.

A. The algorithm (Ref. 20)

The initial set at t =0 is prepared in which all atoms
are at rest and have zero displacements. A random force
is applied to each atom at rest, which is given by

F, =Focos(P; )cos(Qt ), (2.2)

where Fo is a constant amplitude, the phase P; and Q are
a random variable with respect to the site number i and a
frequency of the external force, respectively. The aver-
aged total energy of the system after time T becomes

Fo sin [(roz —Q)T/2]
(cog —Q)

(2.3)

where co& is an eigenfrequency of mode k. If one chooses
the time interval T so that: (i) the resonance width b, Q is
small enough compared with Q; (ii) the number of modes
in AA is much larger than unity, one can approximate
the summand in Eq. (2.3) by the 5 function. As a result,
one has the DOS of the system as

8(E(Qy T) ) (2.4)
~TF0N

In order to obtain the DOS, our task is to compute the
averaged total energy (E(Q, T) ).

The mode patterns can be obtained by the following
procedures. If a certain periodic external force I'; acts on
each atom at rest, the amplitudes of several eigenmodes
belonging to frequencies close to 0 are enhanced during
the appropriate time interval T. These amplitudes are
wntten as

The system is driven, starting again with all atoms at rest,
for a time interval T under the new external force I' ".
Repeating this procedure p times, the displacement of
atom i becomes

u ~'=g FJe;(A, )e~(A, )h~(Q, co&, T) .
A.,J

(2.6)

Thus, for sufficiently large p, only the eigenmode belong-
ing to the eigenfrequency closest to the frequency 0 of
the external force can survive and all other remaining
modes vanish.

This algorithm requires a memory space of order N.
Since the total energy (E) involves less statistical fluc-
tuation as the system becomes large, the approximation
for deriving Eq. (2.4) becomes more accurate for larger N.
To summarize, this method has the foHowing advantages:
(i) One can apply this algorithm to a very large system
(N) 10 ); (ii) It is possible to calculate quite accurately
the DOS in the low-frequency regime; (iii) The eigenmode
(mode pattern) belonging to a given eigenfrequency can
be arbitrarily selected; (iv) The algorithm is very suitable
to vectorize the computer program when utilizing an
array-processing supercomputer. In particular, the first
advantage (i) is crucial for our purpose for two reasons:
one can avoid both the boundary effects and the sample
dependence on vibrational excitations, i.e., all features of
randomness of the system are involved in one percolating
sheet.

B. The ensemble-averaged shape of localized excitations

At first, we have to determine the spatial center of the
fracton eigenmode from a smoothly leveled mode pattern.
The smoothly leveled mode-pattern was formed by the
following way. The absolute value of the time-averaged
mode pattern [ u, j is calculated from the relation,

u;= I ~u, (t) dt/T, (2.7)

where roT))1. This mode pattern [u, j is still bumpy.
Therefore, the time-averaged amplitude of the ith site is
changed to the value averaged over the amplitudes of
nearest-neighbor sites of the ith site and the ith site itself.
For example, for the site i with coordination number z, a
newly evaluated amplitude is written as

u I"= u, + g u,
1

jEW,.

and e;(A, ) is the displacement pattern of a normal mode A..
As a next step, the amplitude of the external force ap-
plied to an atom is replaced by

/(]) —u (])
l

u,'"=g F e, (A, )e (A, )h(Q, ~g, T),
A.,J

where

2sin[(co& —Q) T /]2sin[(czo+Q) T/2]
h(Q, coq, T)=

Q cog

(2.5)
where X; is a set of nearest neighbors of the ith site and
u; is zero if the ith site is unoccupied. The first leveled
mode pattern [u ';"j becomes smooth compared with
[u; j. The second leveled mode pattern [u ,

'. 'j is calculat-
ed from the pattern {u,'"j in the same way. Repeating
this procedure an appropriate number of times m, the
mth leveled mode pattern [u ,

'~
j is calculated from
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1.Q-

Exact solution

one percolating network for e%cient computation. In
fact, we can choose the appropriate times p in Eq. (2.6) so
that several fractons can survive on a network. It is,
however, necessary that these modes are enough apart
from each other. We have averaged over the order of 100
fracton modes in order to obtain the precise shape of the
ensemble-averaged fracton.
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FIG. 1. The DOS for a square lattice per one atom. The an-
gular frequency co is obtained in units of mass of particles m = 1

and force constant K =1. The solid line shows the exact solu-
tion for the infinite system. Filled circles are our experimental
results for a 100X 100 square lattice.

C. The accuracy of our procedure

We have checked the accuracy of the above techniques.
As a first step, the DOS's on a square and cubic lattice
have been calculated by our routine. The exact solution
for the DOS's for scalar displacement on a infinite square
and cubic lattice were given by Montrol and Potts.
These exact DOS's are shown by solid lines in Figs. 1 and
2. Our numerical results are indicated by fiHed circles.
Figure 1 shows the result for a 100X100 square lattice
and the result for a 30X 30X 30 cubic lattice is given in

(a)
1.0

This set of the amplitudes u ';
' has a unique maximal

point. This position at Ro is identifie with the center of
the localized fracton excitation. In our case of percolat-
ing networks formed on 700X700 square lattices, the re-
peating times m were around 100.

Next, we must compute the ensemble-averaged shape
of fracton wave functions from the time-averaged mode
patterns I u; I of Eq. (2.7) at a distance r from the center
Ro. To take the ensemble average from as many fractons
as possible, several fractons are retained consciously on
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FIG. 2; The DOS for a simple cubic lattice per one atom.
The solid line indicates the exact solution for the infinite system.
Filled circles are our results on a 30X30X30 simple cubic lat-
tice.

FIG. 3. The DOS's for 2D site-percolating networks at two
different percolation concentrations. Filled circles indicate our
numerical results and the straight lines are only a guide to the
eye. (a) The DOS per site at the percolation threshold p,
(=0.593). The network is formed on a 700X700 square lattice
and contains 116,991 atoms. (b) The DOS per site at p=0.67
formed on a 700X700 square lattice. The network size is
317672.
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Fig. 2. Both of them agree weH with the exact solutions;
especially the agreement in the very-low-frequency re-
gime is excellent. The DOS's near the cutoff frequency
coD deviate slightly from the exact solution. This comes
from the effect of the finite width of the resonance peak
described by Eq. (2.3).

We have examined our routine of computing the shape
of the localized wave function by comparing the localized
mode pattern on a linear chain calculated by our method
with that of the corresponding exact solution obtained by
Montrol and Potts. The system was constructed of 99
atoms with unit mass, and one light impurity with mass
m=0. 8 located in the center of the linear chain, which
are connected by linear springs (force constant K= 1).
The exact solution for the wave function of localized im-
purity state is written as

~P(r, t )~ =Poexp[ —rln~b ~+isn't], (2.9)

where

2ct)p
[co —(co —co )' j+ 1

CO~

Here, r denotes the distance from the impurity site, and
coD is the Debye's cutoff frequency (coD =2 for 1D chain).
The eigenfrequency of the localized impurity state m~ is
determined by mass ratio y (in our case, y=0.8) as ex-
pressed by

The agreement between our numerical result and the ex-
act solution can be improved by increasing the site num-
ber.

2
COD

CO

y(2 —y)
(2.10)

As seen by Eq. (2.10), the light-mass impurity state
should have the eigenfrequency co =2.041 and the time-
averaged wave function takes the form

III. RESULTS OF COMPUTER EXPERIMENTS

A. Densities of states for 2D and 3D percolating networks

P —exp[ —(r /d )'],
We have computed the DOS's for 2D and 3D percolat-

ing networks. Our results of the DOS for 2D percolating
networks are shown in Fig. 3 by filled circles. Figure 3(a)
shows the DOS at the percolation threshold p, (=0.593).

where d= —1/in~b~ =2.466 and a= 1. Our numerical
result provides a=1.005 and d=2.506 by setting the pa-
rameter p =5 in Eq. (2.6) and choosing T as TED =800.
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FIG. 6. The ensemble-averaged shape of the core of fractons
as a function of a radial distance r (open circles) in unit of atom-
ic spacing a = 1, and the log-log plot of r and —1n(

~ P„~ ) {filled
circles). The straight line through filled circles is drawn by the
least-squares fitting, and the solid line through open circles
represents the same line in a linear scale. This line indicates the
exponent to be d& =2.3 as well as A(co=0.01)= 17.2.
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FIG. 4. The DOS per site for a 3D site-percolating network

at p=0.4 formed on a 70X70X70 simple cubic lattice. The net-
work size is X= 122448.

1.0

FIG. S. Magnified figure of vibrational mode with angular
frequency co=0.02 excited on a network at the percolation

, threshold p, =0.593. The network is formed on a 700X700
square lattice and the size is 169576. The displacements of
atoms are shown by oblique arrows. Note that arrows for very
small amplitudes are omitted in this figure.
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This network, formed on a 700X700 square lattice, has
116991 atoms. The DOS was obtained under the condi-
tion that cuT=10 and cohT=0.05 for each frequency co,
where T is the time defined in Eq. (2.3) and hT is the time
step used when solving the equation of motion of forced
vibration. The solid line through filled circles with a
slope of —,

' is not from the least-squares fitting, but only a
guide to the eye. This result indicates that the
Alexander-Orbach conjecture, ' that the DOS is propor-
tional to co" ' with d= —,, is correct for 2D percolating
networks with scalar displacements. It should be em-
phasized that this co' law holds even in the low-
frequency region, because the correlation length
diverges at p =p, and the network has a fractal structure
even for longer length scales. We see that the DOS does
not follow the co' dependence above co-1. This is due
to the fact that the system is not fractal on a length scale
shorter than the wavelength corresponding to co-1.

The DOS at p=0.67 is shown in Fig. 3(b) for the clus-
ter size of N=317672. Our result clearly indicates that
the frequency dependence of the DOS is characterized
into two regimes. In the higher frequency region,
co, «co « 1, the DOS is proportional to co', so that the
excitations in this region are fractons. For lower frequen-
cies (co«co, ), the DOS obeys the conventional Debye's
law D(co)-co for the 2D lattice. The crossover frequency
~, is close to 0.1. Note here that the wavelength corre-
sponding to ~, is related to the percolation correlation
length gz varied as ~p

—p, ~

', where the critical exponent
v is a positive constant. The system can be regarded as a
homogeneous continuum on larger scales than gz, so our
numerical result in the low-frequency regime is reason-
able. Figure 3(b) tells us that the DOS is smoothly con-
nected from the phonon regime to the fracton regime.
Especially, in contrast to the prediction of the eFective-
medium theory or the numerical work by Grest and
Webman, our result does not exhibit a notable steepness
or a presence of the hump in the vicinity of co, .

The absence of the hump in the crossover region has
been confirmed also in the case of 3D percolating net-
works. The DOS of a site-percolating network at p=0.4
(p, =0.312) formed on a 70X70X70 simple cubic lattice
is shown in Fig. 4. The network size is N=122448. We
can see that the DOS in the frequency region 0. 1 &co & 1

is proportional to co' as well as in the 2D case, that is,
the Alexander-Orbach conjecture holds for the 3D case.
The DOS in the low-frequency regime (co«0. 1} obeys
the Debye's law D(co)-co where the phonon-fracton

crossover frequency co, is close to 0.1. It is clear that no
steepness or hump of the DOS exists in the crossover re-
gion in the vicinity of ~, . We can find in Fig. 4 a sharp
peak at co=1. This peak is attributed to a vibrational
mode of a single site connected by a single bond to a rela-
tively rigid block. We have checked that such a peak in
the DOS does not appear in the case of m =2 "bootstrap"
percolation ' in which there exists no site connected by
a single bond.

B. Mode patterns of fractons

The mode patterns of fractons were calculated by ap-
plying our method mentioned in the preceding section.
The network at p, =0.593 was formed on a 700X700
square lattice and had the size 169 576.

On percolating networks at p, all excited modes (co & 1)
should behave as fractons. The typical mode pattern
with co=0.02 is shown in Fig. 5, where the displacements
of atoms are shown by oblique arrows. Figure 5 shows
the magnified picture of the mode pattern (4.4X5 times
from the original 700 X 700 lattice) excited on a percolat-
ing networks at p, . We have obtained this result by
choosing p=16 and coT=80 in Eq. (2.6), respectively.
The vibrational excitation in Fig. 5 is evidently very
shp. rply localized at the edge. Especially, we should note
that displacements of atoms in a "peninsula" (weakly
connected portions in the percolating network} move in
phase, and the vibrational amplitudes fall off sharply at
their edges. In addition, it is interesting to note that the
tail (the portion spread from the center of the figure to
the lower right direction) from the core of a fracton
(upper left) extends over a large distance with alternating
phases (phases are indicated by directions of oblique ar-
rows). This is because the overall center of mass of the

30-

0

TABLE I. The values of localization length (A) in a unit of
atomic spacing a= 1 and the geometrical exponent (d&) for vari-
ous eigenfrequencies (co).

l I I I l l

0.005
0.006
0.007
0.008
0.010

28.13
24.18
23.49
19.41
17.20

2.25
2.24
2.34
2.26
2.31

5678910
10 Frequency

FIG. 7. Localization lengths vs frequencies of fractons plot-
ted in a log-log scale. The straight line through filled circles is
drawn by the least-squares Atting.
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fracton must not move in its vibration, and there must be
compensating mass outside of the core which moves in an
opposite direction. Indeed, we have the relation g;u; =0
(this implies that a fracton is orthogonal to a uniforin
translation).

C. The ensemble-averaged shape of fractons
and the superlocalization

Alexander et al. ' have supposed that fractons on
percolating networks are strongly localized in the form of

d
P&, -exp[ —[r/A(co)] ~I, (3.1)

where A(co) is the localization length depending on fre-
quency, and r is a radial distance from the center. The
exponent d& indicates the strength of the localization.
Excitations with d& larger than unity are called "superlo-
calized" modes. ' We have investigated the localized na-
ture of fractons, paying much attention to the value of
the exponent d& and the localization length A(co) in Eq.
(3.1). We have prepared nine 2D site-percolating net-
works at p, formed on 700X700 square lattices in order
to average over as many fractons as possible. The max-
imum network size was N=171306 and the minimum
one %=76665. We excited 129 fracton modes in all,
with eigenfrequencies close to co=0.01 on nine percolat-
ing networks. The smoothly leveled mode patterns have
been obtained by the procedure mentioned in the preced-
ing section. The ensemble-averaged shape of the core of
the fracton wave function was obtained by averaging over
all these fractons. Figure 6 shows the ensemble-averaged
shape as a function of a distance r from the center (open
circles), and the log-log plot of r and —ln(

~ (Pr, ) ~ ) (filled
circles). The straight line through filled circles is drawn
from the least-squares fitting for the range r & 30, and the
solid line through open circles represents the same line in
a linear scale. The gradient of the straight line indicates
the value of the geometrical exponent d

&
of the

ensemble-averaged fracton excitation. As a result, the
geometrical exponent is obtained as d& =2.3+0. 1 and the
localization length A(co =0.01 ) = 17.2. It should be
remarked that this localization length A(co) is not the
same with the size of the fracton which will be obtained
from the inverse participation ratio or the moments of
Q

In addition, we have calculated d& and A(co) for four
diferent eigenfrequencies; co=0.005, 0.006, 0.007, and
0.008, excited on five percolating networks. The results
are shown in Table I. It should be emphasized that the
localization length A(co) clearly depends on frequency.
Localization length is plotted as a function of frequency
by a log-log scale in Fig. 7. The straight line drawn by
the least-squares fitting indicates that A(co)-co with
A. =0.71. The exponent A, is predicted to be A, =d/D by
Alexander and Orbach. ' Substituting the values 4= 4,

and D=1.89 for 2D networks, the exponent I, should be
0.705. The fair agreement between the theory and our
experiments suggests that we have treated surely fracton
excitations in our ensemble. As seen in Table I, the
geometrical exponent d& takes the same value indepen-
dent of frequencies within our numerical accuracy. This

value is larger than any theoretical predictions. ' ' The
origin of this discrepancy is discussed in Sec. IV.

IV. CONCLUSIONS

We have performed computer experiments on the frac-
ton dynamics of 2D and 3D percolating networks with
large particle sizes (N ) 10 ). In the vicinity of the cross-
over between phonons and fractons, the DOS is smoothly
connected [Fig. 3(b) and Fig. 4] and the results do not ex-
hibit a notable steepness or a hump. These are in con-
trast with the effective-medium theory. It should be
noted that a self-consistent mode-coupling theory, in
which the correlation of networks is taken into account
to some degree, does not predict a drastic change in the
DOS in the crossover region. This tendency was also
pointed out for the d-dimensional Sierpinski gasket by
Southern and Douchant. Our numerical results of the
DOS correctly show that the integrated number of modes
equals the degree of freedom. It seems that the absence
of the hump in the vicinity of the crossover region im-
plies the appearance of excess density of states in the pho-
non regime. Unfortunately, the numerical accuracy of
the computed DOS did not allow to evaluate such an ex-
cess.

Though some experimental results for topologically
disordered materials indicate the existence of a steepness
or hump in the crossover region of the DOS, the
low-frequency inelastic light scattering experiments for
superionic borate glass with fractal structure show no
steepness, nor do they show the hump in the crossover re-
gion. Furthermore, Brillouin scattering on a series of sili-
ca aerogels has revealed that the phonon-fracton cross-
over is characterized by smooth dispersion and loss
curves. " It should be noted that systems used in experi-
ments are not always regarded as percolating networks.

The steepness observed in the above experiments could
be considered to be attributable to the additional DOS
relevant to the bond-bending force constant. There is a
theoretical suggestion from a scaling argument that the
DOS of a system with the appropriate relative strengths
of bond-stretching and bond-bending elastic force con-
stants can exhibit a hump in the vicinity of the crossover
frequency. This point has been discussed also by
Buchenau et al. from an experimental viewpoint. The
existence of bond-bending force constant a6'ects some
fundamental properties of percolating networks such as
the stability of structure ' ' or the universality class.
This is an interesting problem itself.

The ensemble-averaged shape of the core of the fracton
excitation has been treated on 2D percolating networks
at percolation threshold p, . When constructing the en-
semble average of the core of fracton excitations,

d
we have found (Pr„) -exp[ —[r/A(co)] ~I, where
A(co)-co ' with the exponent in close agreement with
the prediction of the fracton dispersion law for 2D per-
colating network (A(co) -co ~: d /D =0.705) ', and
d& =2.3+0.1. The value of d& is not consistent with any
theoretical predictions derived for localized electronic
impurity states. ' ' These theories have argued for su-
perlocalization on the basis of the known indices of the
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chemical length, that is, they presumed that the localiza-
tion is governed by the averaged distance Pt,((r ) ), not
the ensemble average of fracton functions themselves
( Pt, ). It appears that two problems, electronic impurity
state and our problem, yield different values for d4, . For
our vibrational problem, it would surely not be appropri-
ate to discuss the exponent of (Pt, (,r) ) in terms of the
chemical length. This is because the individual realiza-
tions of Pt, have such an abrupt property that

In addition, we should emphasize that the ensemble aver-
age of the matrix element may be different from the ma-
trix element using the ensemble average of fracton func

tions. For example, the Raman scattering intensity is pro-
portional to the square of the elastic strain induced by
fracton excitations. ' For this case, the ensemble aver-
age of matrix elements for strained fractons should be
taken into account. We hope that our numerical investi-
gation presented in this article will provide new insight
into the underlying properties of fractons.
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