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We develop a scaling theory of polydispersity in an equilibrium ensemble of polymers. The
theory predicts the existence of an "infinite" chain. The radius of gyration exponent for "finite"
chains in the "semidilute" regime is 76 & 0.5 in two dimensions. Thus, this exponent cannot be

1 ~

ln general. We also show that the Flory-Huggins approximation is qualitatively incorrect.

The Flory-Huggins (FH) approximation ' has been ex-
tremely useful in polymer physics, "especially in deter-
mining the Flory exponent v=vF defined by R-¹,
where R is the radius of gyration and N is the average po-
lymerization index in a dilute solution of chains in a good
solvent. It has also been argued theoretically using this
approximation that the chains must be Gaussian in the
amorphous state and the interpretation of some experi-
ments seems to support this. This result has been used to
suggest that R -N even in a semidilute solution. This is
quite remarkable in view of the simplistic nature of the
FH approximation.

Oono has argued that v- —,
' for a test chain of length

N which is much bigger than other chains, whereas oth-
ers have argued for v = vF. But, it is evident that if N is
comparable to the volume No of the system, the chain
must be compact, ' regardless of whether other chains
are present or not. Therefore, neither of the above re-
sults ' could be valid for N-Np. They are valid for
"finite" chains (N/Np 0) in the thermodynamic limit
(Np~ ee). It should be noted that one necessarily has an
"infinite" chain (N/Np) 0 as Np ee) in the ordered
phase of a single chain system. This chain is then com-
pact: v=v, 1/d where d is the dimension of space.
However, when one considers an ensemble of many
chains, it is by no means obvious that there must be
"infinite" chains in the ordered phase. Indeed, it has been
suggested that there are no "infinite" chains in a particu-
lar model of equilibrium polymerization (to be discussed
below) and, therefore, one would expect the above re-
sults ' to be applicable.

Our aim in the present Brief Report is to examine this
model of equilibrium polymerization. We will construct,
for the first time, a scaling theory that will describe po-
lydispersity that exists in our model. We will then com-
pare its predictions with those obtained by the use of the

FH approximation. We will argue that the FH approxi-
mation is misleading. In particular, our scaling theory
predicts the existence of an infinite chain, which is com-
pact, along with finite chains. This contradicts previous
claims. The existence of such a chain, which appears
when N & N* is not predicted by the FH approximation.
When N & N*, the chains are far apart and remain swol-
len. However, we will present evidence that when
N &N*, the chains, even though they overlap tremen-
dously, are no longer as swollen. Here, N* is some criti-
cal length that will be determined below. It is the regime
N & N* that is of interest to us here, because of its novel
behavior. In this instance, finite chains have a radius
R-N" with v, in general, different from v. Furthermore,
they form a "semidilute" solution. We show that in two
dimensions, v 76 =0.566 & 0.5. This suggests that v is
probably not 0.5 in d 3 as is customarily believed. This
is a new and remarkable result, and should have profound
impact on our conceptual thinking about the nature of po-
lymer melt, rubber, glassy polymers, etc. We also confirm
a recent prediction by Saleur' in d 2. An expanded
version of the work will be reported elsewhere. However,
all the necessary details have been given here.

We wish to study the following model of the polymer
system which is defined by the partition function on a lat-
tice

Z etc'ri ~Up t,
p, l

where g is the activity for creating a chain end, ~ is the
activity for creating a chain bond or link, and Up I is the
number of distinct configurations of p diA'erent chains of
total length I on the lattice of coordination number q and
total number of sites No. '' %'e only allow chains having
at least one link (two monomers) in Eq. (1). The model is
closely related to the n 0 limit of the n-component mag-
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netic system. This model is particularly suited for our
purpose as it has been studied extensively not only using
FH approximation, ' but also either directly or using the
n 0 limit. ' ' ' Here we will go one step further and
develop a scaling theory for the distribution of chains of
various lengths. We consider this to be the most funda-
mental quantity to be investigated. Therefore, we can
check the validity of the FH approximation by comparing
its predictions with those obtained from our scaling
theory.

Let p~, (()), and (t -(t1+p~ denote the densities of poly-
mer chains, polymer links, and polymer monomers, re-
spectively. The following results for Eq. (1) are well
known:' The polymer density &~~0 as zi 0 for all
values of (tl. For zi-O, the system undergoes a phase
transition at x x„with p) zero below x, and nonzero
above x, . For zi & 0, p~ & 0. The average polymerization
index N is given by pl/p~.

From the n 0 analogy, we had argued for a phase
transition in the model described by Eq. (1) across a cer-
tain curve AC in the x-zi plane (see Fig. 1 in Ref. 14). As
a matter of fact, it has been shown' that a phase transi-
tion does exist at finite fields at low temperatures in the
discrete n-vector model for n & 1. Since the magnetic sys-
tem (n-0) is identical to our model (1) above AC, a
phase transition must also occur in this model (1) across
AC. Such a transition from a swollen phase (v=vF)
above to a collapsed phase below AC was conjectured in a
recent study, by using scaling arguments. The study of
the polydispersity in the present work will clarify the na-
ture and the physical significance of this phase transition
in the polymer context.

According to the FH approximation, ' ' the number
U~([N, })of distinct configurations of p chains, with N,
chains of length s =1,2, 3, . . . , is given by

p I
q

—1

Np
q

2(q —1)U), ([N, ))) =

x =((+(zi'/2)(2 —(()(t '/(1 —(t))'. (4)

It is easily seen that as zi 0, p x. for x & 1 and p 1 for
x & I; x =x; =1 and ri -0 is the critical point as discussed
above.

For x& anxd zi~ 0, p —x=e ', z=x, —x, and o in-
troduced in Eq. (3) is given by o =z. Therefore, for any
g~O, the polymer phase below rc, is highly polydisperse.
However, as ri ~ 0, pl ~ 0 and there are no polymers left
in the system. For x. & x, and zi~0, (( —1. From Eq.

(2)
where p QN„ I gsN„and m I+p. Inserting (2)
into (1),we find that the most probable distribution of the
density n, N, /No (No~ ~) is given by

n, =(ri /2)yo(xylo)'=(zi /2)exp[ —so(x, q)], (3)

where po =1 —
p is the density of sites uncovered by po-

lymers, and where we have redefined zi q/(q —1) and
rc(q —1) by zi and x, respectively. The definition of cr is
evident from Eq. (3). Furthermore, (t)=x&0~ 1 in order
that n, is bounded. Using &0=1 gn, ——gsn„we find
that p is determined by

Therefore,

~(f) ~g ) —(/y
~

)P(l+)/y) (6)

whereas (I)~ zi ~
z (~, as required. The superscript fon &If

has been added to remind us that the sum in Eq. (6) gives
the contribution to &I due to all finite chains of length
s 1,2, 3, . . . . In the mean field, P —,', y 1, and
pI(f) —

( z ( as we saw earlier in the FH approximation.
We consider Eq. (6) to be our most important result

which has very significant consequences as we will see

(4), we find that p-I —ri/(2~ z~ )'1 . Therefore, (r zi/

(2 [ z ( ) '1, and p~ —(zi/2x) (2 ( z ( ) ' and pl —( z ( /x A. s
)t~ 0, n, and p~ both vanish, yet &I AO. Therefore, there
are polymers left in the system (zi 0) provided x & x,.
This phase is again polydisperse. At x x„p—1

(zi2/2) I/3 and o ~ (ri2/2) (/3

The prediction of a polydisperse phase above x, as
ri~ 0 in the FH approximation is in disagreement with
the prediction of a collapsed phase' using the n =0 mag-
netic analogy and other calculations based on finite-size
scaling ideas. ' We will now show that the above po-
lydispersity in the FH approximation above x, is qualita-
tively incorrect. To this end, we develop a scaling theory
of polydispersity that exists in our model. This is a first
attempt of its kind for the polymer system. Our analysis
will depend heavily on the results already known in the
context of percolation clusters. '

Our proposed scaling form of polydispersity in Eq. (1)
is an extension of n, given in Eq. (3) and is based on the
Fisher droplet model: 's

n, - ( zi' /2) s" ' exp[ —sr''1 k(z/zi'1 )1. (5)

This form is dictated by the well-established result
8; p's ' for the number of self-avoiding walks of
length s; here p is the effective coordination number of the
lattice and y is the "magnetic-susceptibility" exponent. In
the dilute limit (x & x, ), the chains are far apart and the
above form of W, is valid. Therefore, with the weights in
Eq. (1), n, is given by

n, - (ri'/2) x'W, —(zi'/2)s' ' exp( —sz)

(with the replacement xp~ x) near the critical point
x, -1. In the mean-field calculation of the FH type, y 1

and the enhancement factor sz ' is missing in Eq. (3).
Of course, as usual, we expect logarithmic corrections in

d =4.
Let us now consider various possible values of the scal-

ing functions k(z), z z/zi'1 . As z ~ (x & x„zi 0),
we expect the ri dependence in the dilute limit to disap-
pear in the exponential: X-z. This is consistent with
o z in the FH approximation. For z 0 (x a;, riaO),
n, must become independent of z Therefor. e, k const,
which we take to be unity: A, (0) 1. This is consistent
with o —zi

213 in the FH approximation. For
z —~(x & x„zi 0), A, must behave in such a way so
that p~ —ri ~

z ~~ as expected from the magnetic analogy if
the analogy is to work all the way down to zi 0, x & x,.
This implies that X —

~
z (

~1' and

n, -(zi'/2)s" 'exp[ —s(zi/~ z~~) ' "f .
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n, = (y('/2)s' ' exp( —s/N) (7)

in a more elegant and customary scale-invariant form. ' '
We note that n, /n(v can be written entirely as a function
of the scaling variable s/N. Our original form (5) is
justified because it is equivalent to Eq. (7). Moreover, the
normalized distribution

P(s) =n, /p =(1/N)(s/N) ' 'exp( —s/N)

is the usual Schultz distribution. ' This further adds to
the validity of Eq. (5).

Let us now consider chains of a fixed length s below g*.

below. First of all, since y & 1 in d -3, we observe from
Eq. (6) that the contribution p(' ' from all finite chains
vanishes as y( 0. (This is not the case in the FH approx-
imation, because (t)((I) is independent of y( as y 1.) On the
other hand, p( is nonzero above x, even as y( 0. There-
fore, there must exist an infinite chain which must give
rise to the entire density p(, at y(-0. The existence of this
infinite chain is not predicted by the FH approximation,
as the approximation is qualitatively incorrect and
misleading.

As y( is decreased, (t((~ begins to decrease. Let y(=y(*
be the value at which p( =&~, —

~
r (

' '. This means
that y(

=
I r I . At y(=y(* N=N* I/I rI For y(& y(*,

p((/ & (I)(, and there is no infinite chain in the system.
Here N &N*. However, an infinite chain appears at
y(=(1*, but contributes nothing to p(. For y( & y(*, this
infinite chain makes a finite contribution to p( to make up
for the concentration difference p(, —(((/) which is non-
zero below g*. Here, N & N . The phase transition that
has been observed in the n =0 magnetic system now has
the following analog for the polymer system: The phase
transition in the polymer system corresponds to the emer-
gence of an infinite chain in the system at y( y(

The monomer concentration, due to this infinite chain, is
given by p( = I r ~"' 'll —(y(/y(*) ' '/yl. However, the
chain density p~(

) due to this infinite chain must be zero
as (/)~ is completely made up by all finite chains, (/)z =Pn,
This infinite chain disappears for y(& y( . The distribu-
tion n, does not undergo any singular change as the sys-
tem undergoes the phase transition. The form of n,
remains smooth across g =g*. This is precisely what hap-
pens in percolation. ' The only signature of the phase
transition is the existence or the nonexistence of the
infinite chain. We expect this infinite chain to exist below
y( even in high enough dimensions (d~4) where y=l,
i.e., we believe that t()((

) is not the total contribution to
p(—there must be an additional contribution (t(((

to P(.
The infinite chain, which exists below y(*, is distinct

from other finite chains even as s , in that it is com-
pact. Since p~ is zero, it is clear that the ends of this
chain do not couple with g, even though g may be non-
zero. This again distinguishes this chain from finite
chains. Therefore, we can safely assume that we have a
single compact chain below q*.

Let us make some important observations about our
scaling form (5). In terms of N=p(/(I)(, —(g' A, ) ', we
can rewrite n, as

The link density (t)((s) due to these chains is given by
sn, (y( /2)syexp( —s/1V), whereas the chain density is
n, . The link density contribution due to a single chain of
length s is p(' (s) s' "", where we are assuming that
the chain occupies a volume s "d. The necessity of a
different v will become apparent below. Therefore, we
need to put n„,(s) different overlapping chains, each of
length s, in a given region to make up the link density
((((s):

n., (s) -((((s)/(((")(s)

-(y('/2)s "+"" 'exp( —s/N),

which is nothing but s' n, If. n„,(s) & 1, these chains
overlap, otherwise they do not overlap. It is easily seen
from this that the maximum overlap occurs when s-N.
Therefore, in the following we will replace our poly-
disperse system by typical chains of lengths -N and the
width hN ¹ such that n(vt)N p~ and n~NAN ((((I .
The total overlap now is given by n„, n„, (N)hN:

no, , (y('/2)N4 + y - —,
' y() -4"/y

( r (()((+4 /»

Obviously, n„, N 'p(„as should be expected. We need
some extra information to determine the value of v. If we
choose v v, we find that n„,—(( r( /y() ~' ao as
y( 0 in all dimensions, provided P/y&0. In d 1, P 0
and there is no overlap, as is evident. Therefore, for all
d & 1, there is tremendous overlap among finite chains
and the overlap becomes unbounded as y( 0. In this re-
gard, finite chains form a "semidilute" solution with the
exception of the infinite chain. As g~ 0, the finite chains
also disappear and, therefore, the overlap among finite
chains is presumably of no physical consequence. The
physics of the model is solely determined by the infinite
chain. However, it is clear that the predicted overlap in
d 2 cannot be correct.

Another alternative choice for v is v 2 . This choice
is obviously restricted to d 2. Again, there is overlap
among finite chains provided d & 2y. However, for d 2,
this inequality is violated and there is no overlap. There-
fore, it appears that the choice v —,

'
is more appealing

than v v.
However, we will now argue that ve —,

' in d 2. There
is strong evidence' that p~ in d 2 behaves as
-y(' '( r)(r, a —,', , P' P+ba &0. This implies that
1V- ( ( r )~/y('+') '/y r( [ r )~/y, where we have used
v —,

' and y= —', . Moreover, p( -y('/'
) r( ~ "+' /' 0

as y(~0 and we must still have an infinite chain for
y(& y( —

( r) and x & x, . Therefore, our picture of the
emergence of an infinite chain is still valid, even though
a ~0.

The number of overlapping chains is now given by

ydv~ ) —a —dv(I+a)/y
) & ((('() +dv/y)

Because of the topological constraint in d 2 which for-
bids chains to overlap, the exponent of y( must vanish.
This determines v for us (y» ):

v [y(1 —a)l/[d(i+a) j - '6 .

Therefore, v is uniquely determined. The correlation
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length g —N" is now given by g —ri
(' ')t

ri
which is what is predicted by Saleur' in d=2. It is easy
to see that the monomer concentration due to this chain is
N/g —rt't' —ptf and no overlap is needed. It is indeed
gratifying to see that our scaling theory confirms the pre-
diction of Saleur who used a very diA'erent approach. We
further observe that v y/2A —,

' even if a 0.
It is very likely that a is nonzero and positive for d & 4.

From the finiteness of pt(f), it is easily deduced that
(1+y) (1+a) ~ 2 y. This implies that a ~ 0 as d 4
(y 1). Our experience with d-2 suggests that pt(f) 0
as ri 0 provided yal. Therefore, it is safe to assume
the existence of the infinite compact chain at g 0, v & rc,
even if a~0. In that case, all our conclusions remain un-
changed.

We can now appreciate the physical significance of v in
d 2. Due to the presence of the infinite chain, finite
chains do not have to make up for the total link density by
themselves. This then allows for v& &, the chains are
somewhat swollen compared to Gaussian chains (v= —,

' ).
Since the conformations of finite chains are affected by
the infinite chain in d 2, it is not inconceivable that the
same happens in higher dimensions.

A recent Monte Carlo simulation in d 3 (Ref. 20) has
confirmed our basic assumption that n, remains smooth
across ri, with an infinite chain appearing below ri . Our

results in d 2 also confirm its validity. However, we be-
lieve that there is an essential singularity at rl due to the
emergence of the infinite chain and that most approximate
calculations are incapable of detecting such a weak singu-
larity.

We have clearly established that v 2 cannot be true
in general. What happens in d 3? It is clear that v 1

in d 1. Furthermore, it is not counterintuitive to assume
that v —,

' in d~4. If one further assumes v to be a
monotonic and smooth function of d, then it is obvious
that v cannot be —,

' in d 3. It probably is closer to —,
' but

not exactly equal to it. Our present analysis is incapable
of determining v uniquely. It would, indeed, be very in-
teresting to evaluate v in d 3, as it is a first step towards
an understanding of a more concentrated solution of
chains. It is also possible that d 2 is special because of
the topological constraint that uniquely determines v.
Since such a constraint is not present in d )2, there may
be no unique value of v. It is also possible that v 2 for
a11 d) 2. However, we have clearly demonstrated that
the existence of the infinite chain has a profound effect on
the conformational properties of finite chains, at least in
d-2. We hope that our scaling analysis is a first step to-
wards a complete understanding of the effects of the
infinite chain in d-3.
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