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Two-dimensional Ising models are studied on square and triangular lattices with layered disor-
dered bonds (McCoy-Wu-type models). It is shown that exact solutions exist for diluted exponential
distributions of couplings. In the ferromagnetic case the free energy exhibits an essential singularity
(slightly different from the result of McCoy and Wu) at the transition point. If frustration is present
the transitions occurs at T =0, and the specific heat is linear.

I. INTRODUCTION

In the present paper we study the thermodynamics of
2D Ising models on a square or triangular lattice with
layered disorder. %'e make use of exact methods. First
Grassman variables are used in order to obtain re-
currence relations for quantities determining the free en-
ergy of finite systems. Then integral equations are de-
rived in the thermodynamic limit under the assumption
that randomness is independent with the same distribu-
tion in each column. It is shown that these integral equa-
tions can be reduced to recurrence relations with nonran-
dom coefficients if one assumes disorder to be distributed
exponentially.

If all couplings are ferromagnetic, these systems have a
phase transition at some positive temperature. Our result
for the essential singularity occurring there differs slight-
ly from the one predicted by McCoy and Wu. At low
temperatures the specific heat is, of course, exponentially
small.

If there is frustration, the phase transition occurs at
T=0, and the specific heat is linear in our model. It is
further shown that the behavior on the triangular lattice
is very close to the behavior on the square lattice, the
main difference being a redefinition of relevant parame-
ters.

The approach of the present paper may be extended to
systems where the random value of the couplings in a cer-
tain rom is correlated to the value in the previous row.
This would describe a crystal grown from one side by at-
taching new layers, which themselves are homogeneous
but may differ at random from the previous layer. An ex-
actly soluble form of the correlation probabilities exists
and can be studied with exactly the same methods.

The square lattice with layered disorder has also been
studied by Shankar and Murthy. These authors discuss
in particular Griffiths singularities. An exact calculation
of these quantities was performed by Forgacs et a/. in a
2D Ising model with infinite pinning fields pointing up or

down and fully correlated along lines at random posi-
tions. A full understanding of these singularities in gen-
eral 2D Ising models with correlated disorder is still lack-
ing, however.

Since the original work of Onsager on the two-
dimensional Ising model, ' physicists have devoted a lot of
effort to finding exactly solvable 2D systems. Three ma-
jor methods have been successful in this goal, namely the
transfer matrix techniques developed by Baxter, the
Coulomb gas technique of Nienhuis, and the conformal
invariance.

On the other hand, two-dimensional disordered systems
have resisted much more exact solutions, and only few
models have been successfully investigated. First, the
McCoy and Wu (denoted MW in the following) model is
a model where all vertical bonds are identical, whereas
horizontal bonds within the same row are random vari-
ables. The main result of M%' was that disorder
smoothens the transition, transforming the standard
power-law singularities of usual phase transitions into
smooth exponential essential singularities. Second, the
presumably exact critical behavior of the 2D random-
bond Ising model was derived by Dotsenko and Dotsen-
ko; they showed that for weak disorder, at criticality, the
system is equivalent to a zero component Gross-Neveu
model, which can be exactly analyzed by perturbative re-
normalization group calculations. Their conclusions are
again that disorder smoothens the critical singularities,
e.g. , transforming the log singularity of the pure Ising
model into a weaker log(log) singularity. Furthermore, it
was shown that the other critical exponents are modified
by logarithms.

In both cases, since it is bond disorder, according to
the Harris criterion, the relevance of the disorder to the
critical behavior is governed by the exponent a of the
pure system. Since ct is zero in the 2D Ising model (with
a logarithmic singularity), the disorder is expected to be
marginally relevant, which is indeed verified in these
models.
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It should be noted that in the latter example, the tech-
niques make extensive use of replicas, small momentum
expansions, and thus although very plausible, the results
of Refs. 6 and 7 should be taken with caution.

On the field of 1D random-field Ising chains (RFIC)
many solvable models have been found and solved (Derri-
da and Hilhorst, Nieuwenhuizen and Luck, ' denoted
NL). The basic technique developed by one of the au-
thors is to solve the corresponding Dyson-Schmidt in-
tegral equation, " and exact solutions were found' at all
temperatures for diluted exponential distributions of the
disorder.

The exact location of the critical point for layered Ising
models has been studied by various groups. The result
for 82 random was first found by McCoy and Wu. "The
situation where both 8, and 8z are random was solved by
Barouch' and by Au-Yang and McCoy. ' The critical
point of systems where disorder occurs periodically in ar-
bitrarily large unit cells was studied in detail by Wolff,
Zittartz, and Hoever. '

The aim of this paper is twofold. First we recalculate
the MW operations in the more elegant way of RFIC of
NL: We show at first that these two problems are identi-
cal, except for an extra angle 0, over which one has to in-
tegrate at the very end (Secs. II and III). This angle is the
remnant of the direction along which the system is
translationally invariant. Also, we show that one of the
shortcomings of MW, namely the necessity of a
temperature-dependent bond distribution, can be over-
come. We show in Sec. IV that there exists a
temperature-independent distribution of bonds (diluted
exponential) for which the model can be solved exactly.
A similar exact solution is also found on the triangular
lattice (Sec. V). In the case of a ferromagnetic transition,
we find a slightly different essential singularity at r, (see
Secs. III C and III D).

The second aspect of this study is the case when frus-
tration (and disorder) is present. Then, the analytic prop-
erties are much more intricate, but we find that the criti-
cal temperature is displaced to T=O. Furthermore, as
often occurs in disordered systems, the specific heat is a
linear function of T at low temperature (which signals the
absence of a gap in the excitation spectrum of the system)
and the zero-temperature entropy vanishes, as one ex-
pects in systems with quasi-one-dimensional frustration. '

(See Sec. IV C.)

Similar work was initiated by Shankar and Murthy, '

who also noted the mapping to NL (Ref. 10) and present-
ed results on Griffiths singularities, the ferromagnetic
transition, and correlation functions.

= —g [g, ( n) o„o„.+,+8&(n)cr„o„+, ] . (2.1)

The partition sum can be written as

Z y PH—
(a)

g 2 coshPP&(n)coshPcP (n) Z
n, m

(2.2)

where Z has only contributions from closed polygons

Zp =2 g g [I+z)(n)a„o„+i]
[o.) n, m

We have defined

X [1+z2(n)o „o.„+) ] . (2.3)

z, (n) =tanhPot, (n),
z2(n)=tanhpot2(n) .

(2.4)

In order to calculate Z we do not follow the method of
McCoy and Wu, but use the method of Grassmann vari-
ab1es, see Berezin, ' Samuel, ' and Dotsenko and Dotsen-
ko. We introduce four anticommuting variables at each
site (n, m) according to Fig. 1.

The function Z can be shown to be equal to

Zz = D,D 2D 3D 4expB, (2.5)

where

Dg; = g ditj;(n, m)
(n, m)

A. The square lattice

We consider an Ising model on a square lattice with
sites (n, m) with 1 ~ n ~ N and 1 ~ m ~ M, with periodic
boundary conditions in the m direction. It is assumed
that couplings depend on n but not on m. The Hamil-
tonian therefore has the form

II. PARTITION SUMS AND GRASSMANN VARIABLES 2

In this section we shall calculate explicit forms for the
partition sum of finite lattices with a one-dimensional
type of disorder. We use Grassmann variables for
evaluating the spin sums. In later sections we will study
these results in the thermodynamical limit, thereby
confining ourselves to diluted exponential distributions of
the random couplings.

FIG. 1. Labeling of Cxrassmann variables on the square lat-
tice.
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and

B= g [z l(n)$4(n, I)1t2(n, m +1)
n, m

The equivalence between (2.3) and (2.6) can be established
by expanding in powers of z& and zz. Since the problem
is translationally invariant in the I direction one per-
forms a Fourier transformation

+z2(n)$3(n, m)g, (n + I, m)

+ ( Pl P2+ 1304+01 f4+ P2 f3+ e4e2

+$3/, )(n, m)j . (2.6)

P;(n, 8)= g P;(n, m)e™,1
(2.7)

where 8=2vrl/M with integer I ( —
—,'M (l &

—,'M). It
leaves the integration measure invariant, and 8 becomes

B = g g Iz, (n)[e ' 1(4(n)$2(n) —e' gz(n)lt4(n)]+z2(n)[1(l3(n)ltj, (n+ I)—g*, (n+1)$3(n)]
n 0&0

+ [41 42 l 2 01+43 tt4 P4 03+01 P4 P4 Pl +P2 P3 P3 P2+ 44 f2 644+ P3 l 1 Pl 43](

where the argument 8 of the it; has been omitted.
For 8) 0, g;(n, 8) and itl,*(n, 8) are independent variables. One can verify that

f dg3dg2e ' ' '=e" ~

In other words, the $3 integral yields 5(g —$2). Using this we obtain from (2.8)

Z = D iD 4expBi

(2.9)

(2.10)

B,= g g(z, (n)(e ' e' )$4(n)—$4(n)
l9&0 n

+$4(n)[z (ln)e ' [z (2n)g (nl+1)+ital(n)] —g ( ln) +z (2n)g ( in+ 1)I
—Iz, (n)e' [z2(n)f*, (n +1)+pl (n)] —g*, (n)+z2(n)g*, (n +1)I/4(n)

+z (2n)[g*(ln) tl(lnl+1)—gl (n +1)gl(n)]) .

The next step is to perform the integrations over g4 and P4. The final result is

Z = g g z, (n)(e ' —e' ) fDQ*, Dg, exp —g g hatt*, (n)A„„(8)g,(n)/(e ' —e' )

(2.11)

n 0&0

g z, (n)Alv+, (8)
0&0 n

0&0 n, n'

(2.12)

where

A„„+l=A„+l „=+z2(n)[zl(n) —1/zl(n)],

A„„=z2(n —l)[zl(n —1)+1/zl(n —1)+2cos8] (2.13)

+z, (n)+1/z, (n) —2 cos8,

all other elements being zero. Further

6~+ l(8) =det A ( 8) (2.14)

+ g Q(8),
8&0

(2.15)

Combining (2.2) and (2.12) one finds for the free energy
per site

pF =—g [In2 co—shX2(n)+ —,'In —,'sinh2Kl (n)]
1

n

where

O(8) = lllklv+ l(8)
1

N=—g In[A, „+,(8) /b, „(8)]
n=1

(2.16)

holds because 4, =1. The A„satisfy the recurrence rela-
tions

b,„+,= Iz2(n)[z, (n)+1/z, (n)+2 cos8]

+z, (n + 1)+1/z, (n + 1)—2 cos8I b,„
—z2(n)[z, (n) 1/z, (n)] —b.„ (2.17)

The expression (2.15) is very complicated because it de-
pends on all couplings 8,( ),F2(n). In Sec. III we shall
proceed by going to the thermodynamic limit and assum-
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ing that the couplings are independent random variables
with common distribution functions.

B. The hexagonal and the triangular lattice

In this section we use Csrassman variables for calculat-
ing the partition sum of a layered random Ising model on
a hexagonal lattice. Via a duality transformation' ' this
determines also the result on a triangular lattice.

We start considering a brick lattice, such as depicted in

Fig. 2. The lattice sites are present on sites (m, n) and

( m + ,', n —+—,
'

) with 0 ~ m ~ M, 0 ~ n ~ N, and has 2%M
sites. This lattice is topologically equivalent to the hex-

agonal lattice. The Ising Hamiltonian to be considered is

&=—g [8,(nm)S „S
n, m

+82(nm)S „S
+83(n, m)S „S,/2 „,/2]

It leads to the partition sum

ZN, M
nm ' n +1/2, m +1/2I

g [coshK, (nm)coshK2(nm)
n, m

X coshK3 (nm ) ]Z

where Z is the polygon sum,

(2.18)

(2.19)

mn m + I/2n +i/2zi(nm)][1+S~„S~ i/2 „+i/2z2(n, m)]
mn ' m + 1 /2, n + J /2 I

[ +S „S —i/2, —i/2z3(n, m)], (2.20)

where

—2L. (, n, m)
z =tanhK (n, m)—= e (2.21)

with K.=P8. as usual, and L denote the couplings on the dual triangular lattice. The polygon sum can be written as
the following Grassmann integral:

Z~= D e~p 3 ]+ 4 2+ ~ 2+ 3 4+ ] 4+ 2 3

X exp g (g3g, +$4/2+ /, $2+ g3p4+ fiit/4+ $2/3)(m + ,', n + —,
'

—)

Xexp g[z, ( mn)g (m3+ ,', n +—,')g—,(mn)+z2(nm)$4(m —
—,', n +,')$2(mn)

+ 3z( nm)g (3mn)g, ( m—,', n —
—,
' )]-

where Dg denotes integration over g, P4 at all sites. Next it is useful to define

x (m, n)=g (m, n), y (m, n)=itj~(m + ,', n+ —,') . —

As a first step the integrals over x4 and x2, and also over y2 and y3 can be performed using (2.9). The result is

Z = Dx]Dx3Dy&Dy4

(2.22)

(2.23)

Xexp g ( ,xx3y+, 4y)( mn)exp +Iz, (n m)[y, (mn) y+4(mn)] x( m)n+z ( 2nm) y( 4m—l, n)[x, (mn)+x3(mn)]
m, n

+z3(nm)x3(mn)y, (m —l, n —1)I, (2.24)

where Dx, = g „dx, (m, n), etc. Now we specialize to the situation where the couplings z~(n, m):zj(n) only—vary in

the vertical direction. Then a Fourier transformation can be made in the m direction, like in (2.7). This introduces
x;(n, 8) and y;(n, 8) with n(8(rr. We—shall again omit the 8 variable and write x;(n) when 8(0. In this notation
(2.24) takes the form

Z~ = Dx, Dx2Dy &Dy4e~p8

with
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8 = g g [[x,"(n)x3(n) —x 3 (n)x, (n)+y; (n)y4(n) —y4 (n)y, (n)]

+z, (n)[y*, (n)x, (n) —x*, (n)y, (n)+y4 (n)x, (n) —x*, (n)y4(n)]

+zz(n)[e' yf(n)x, (n) —e '
x& (n)y~(n)+e' y4 (n)x3(n) —e ' x3 (n)y„(n)]

+z3(n)[e' x3 (n)y&(n —1)—e ' yt (n —l)x3(n)]) (2.25)

The integration measure is invariant under Fourier transformation,

, =gd, (, ) =g ff d, (,8)d *, (,8) . (2.26)
m, n n 0&0

Now the integrations with respect to x *, and x 3, and with respect to x, and x 3 can be performed, yielding

Z = Dy&ay4expB&, (2.27)

with

8, =g g ([z,(n)z2(n)gq(n)y4(n)]
n (9)0

q4 I [1——z, (n)z2(n)e' ]y, (n) —[z, (n)e' +z2(n)e ' ]z3(n)y, (n —1)I

+ I[1—z&(n)zz( n)e
'

]y& (n) —[z&(n)e ' +z2(n)e '
]z3(n)y& (n —1)Ir)4(n)

+2i sin8z, (n)z3(n)[e' y,*(n)g, (n —1)—e '
y f (n —1)g,(n)]) . (2.28)

Here we introduced

g4 =y4 2i sin8, g, =y, /(2i sin8) . (2.29)
I „„=z,(n)z2(n)+ —2cos81

z) nz2 n

Also the y4 and g4 integral and then the final y& and g&
integrations can be performed. The result is

z, (n +1) zz(n +1)
+z32(n + 1) + +2 cos8

z2 n+1 z, n+1

Z = Q b,~(8) g z, (n)z~(n) (2.30) (2.31)

with

0&0
)fc

~n, n —I ~n —1, n

A„=detI „ = —z3(n)e' 1 —zz(n)
z~(n)

where I is a tridiagonal matrix with elements
I +e" 1 —z, (n)

z, (n)
(2.32)

As usual Az+, satisfies a recurrence relation

=m
(2.33)

It is useful to define a variable R& which only depends on
random couplings K~(n ) with n ~ N

R~=
2~N —1

—e ' [cosh[2L, (N + 1)—2L2(N + 1)]

+cos8], (2.34)

FIG. 2. Labeling of lattice sites and couplings on the brick
lattice (topologically equivalent to a hexagonal lattice).

where L is related to K by (2.21). The recursion for Rz
1S



THERMODYNAMICS OF ISING MODELS WITH LAYERED. . . 5099

R~ =cosh[2L, (N)+2L2(N)] —cos8 —e
4L, ,~~~ »nh 2L, (N)+sinh 2L2(N)+2cos8sinh2L, (N)sinh2L2(N)

e '
t cosh[2L, (N) —2L&(N) ]+cos8 I +Rz

(2.35)

The free energy per pair of sites follows from

PI'"—= lnZ&M= —gin[sinh2E&(n)sinh2K2(n)coshE3(n)]+ g [A(8)+ln2]1 1 1

NM 2 3 (2.36)

with

Q(8) =—in', ~(8)1

(8)
N „, b,„,(8)

%+1 4L3(,n)=—g ln(R„, +e '
Ic osh[ 2L&(n) —2L2(n)]+cos8I ) .

n=2
(2.37)

The partition sum on a triangular lattice (Fig. 3) is related to the one on the hexagonal lattice by the duality relation

and

Z&, (LJ ) =Zh, „(&~) g ( —,
' sinh2L, sinh2L2sinh2L3 )

'~"
triangles

(2.38)

1
PI' t, = P+h,„+ g ln( —,

' sinh2L, sinh2L 2sinh2L3 )
triangles

(2.39)

h relations (2.21). The notation g, ,~ & (g„,,„&„)means a sum (product) over ail triangles of the triangular lattice.

III. INTEGRAL EQUATIONS AND THEIR SOLUTIONS

The recurrence relations for b,z(8) derived in the previous section have the same structure as in random one-
dimensronal problems. In the thermodynamical limit one can derive a Dyson-Schmidt integral equation for distribu-
tion of the ratios b,z(8)/&~, (8). This equation is analogous to the Chapman-Kolmogorov equation in stochastic pro-
cesses, the role of time in our problem being played by a space variable. The method we shall follow is very close to the
one introduced by Nieuwenhuizen and Luck' to be referred to as NL.

A. The square lattice

We start with Eq. (2.17) and define

S„=b,„+,/b, „—z, (n+1)—1/z, (n +1)+2cos8 .

It satisfies the recurrence relation

(3.1)

S„,zz(n)[z&(n)+1/z, (n)+2cos8]+4zz(n)sin 8S„=
z, (n ) + 1/z, (n )

—2 cos8+S„ (3.2)

and depends only on random variables at site n or to the left of site n. In order to study its distribution function we
define

D„(u)= (ln(S„—u ) ) . (3.3)

We assume that all 8,(n) are independent random variables with a common distribution p, (8, ); similarly P2(82) for
o2(n). Then using (3.2) D„can be expressed in terms of D„,. It is an integral equation because the integrals over
o,(n) and 8z(n) still have to be performed. In the limit n ~ oo the limit function D (u ), therefore, satisfies

D (u) =fPi(+i)d+1P2(+2)d+2

u (z, + 1/z, —2 cos8) —4z2sin 8

z2(z, +1/z, +2 cos8) —u
D(2cos8 —z, —1/z, )+ln[—z2(z, +1/z, +2cos8) —u] (3.4)
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FIG. 3. The triangular lattice and its couplings. The cou-
plings L3 depend on. n).

However, the dual couplings are temperature depen-
dent, and so is the distribution of disorder (3.6). This un-
physical property led McCoy and Wu to study the limit
of weak disorder (N ~~), where this temperature depen-
dence can be neglected close to the critical point. In the
next section we shall show that for random couplings in
the vertical direction a temperature-independent distribu-
tion of disorder can be solved exactly.

The way to proceed was introduced by one of us see
also Ref. 10. One writes Eqs. (3.4) and (3.5) as

D(u)=q f e dx[D(+(u, x))+in+(u, x)]
0

+pD(C&(u, O) }+pIn+(u, O) —0, (3.10)

where z i 2
= tanhp4i 2. The quantity of interest is

defined in (2.16) for a given finite system. In the thermo-
dynamic limit it has a chain-independent value with
probability one (the free energy is a self-averaging quanti-
ty}. Hence we calculate its average

Q(8) = lim (1nb, „+i(8)/b, „(8))
p7~ co

= fp, (cf, )dP, D(2cos8 —z, —1/z, ) (3.5)

according to (3.1). This integral is just the constant term
in (3.4).

where

C'(u, x) = [2u (cosh2K2 —cos8)
—4K( —4K„x4e " »n 8]/0'(u, x),

—4K
I
—4K x0'(u, x) =2e ' ' (cosh2K2+cos8) —ii .

(3.11)

Next one performs a partial integration with respect to x.
It gives a boundary term at x =0 and an integral involv-
ing BC&(u, x)/Bx. It follows that

B. Exact solutions: the McCoy-Wu model
(3.12)

In order to study Eq. (3.4) one has to specify the distri-
butions p, (ui, ), pz(8z). We first consider the situation
studied by McCoy and %'u, and show that their results
can be obtained in a rather elegant manner with methods
introduced in NL.

McCoy and Wu consider the problem where z& is fixed

[p,(Zi)=5(8, —o",)] and where zz is random with a
power-law distribution. We will slightly generalize their
choice by allowing that only a fraction q =—1 —p of the
horizontal bonds is random:

Therefore the latter integral is proportional to a deriva-
tive with respect to u of the integral occurring in (3.10).
Hence it may be eliminated, yielding a difference-
diFerential equation equivalent to (3.10):

(1 4K„uB—„)[D(u) pD(u) —p iniu]—

=qD(u)+q iniu —4qK„—0, (3.13)

where

r(z2)=q2Nz2 'zo +p5(z2 —zo) (0~z~ ~zo) u =4(0, u}, w =4'(u, O) . (3.14)

=0 else

with X)0. If we define dual couplings IC~ by

(3.6) This equation can be cast in a standard form by going to
new variables. The computation is lengthy, and we only
give the results. One defines parameters p~0, v, and g

—2K2
z, =tanhPP, =e coshp = (cosh2K2cosh2K, —sinh2K, cos8) /sinh2K2,

(3.7)
z2

——tanhPPz, —=e

it follows that the dual couplings are distributed exponen-
tially

K) =K(+K„x

sinhv= (cosh2K, cos8 —sinh2K, cosh2K2 ) /sin8,

coshv= sinhp sinh2K2/sin8,

g =2K„/coshv .

(3.15)

with K& 0=—E] and x having the density

p(x)=qe +p5(x) (x ~0)
=0 (x &0)

provided one identifies

(3.8)

%"e note that 0 is in the interval 0 ~ 0 & m.
Further one introduces a new variable and a new func-

tion
4K

u =2e '(cosh2Kz +cos8)
—2K I—2e '

sinh2K2 ( e"+ye " ') /( 1+ye ),
(3.16)

K„=(4N)-' (3.9) G(y)=D(u)+in(1+ye ),
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[I+g(e +y)(e —y)B~][6(y)—pG(ye ~)]

=qG(ye ") qr—/y —qge' —0„,
where

(3.17)

Q„(8)=Q(8)—0 „„(8)
=Q(8) —(p —2K i + ln2 sinh2K2 ) (3.18)

with QpUpe denoting its value in the model without disor-
der, that is to say, for q =0 or for K, =0. In both these
limits 6 =0„=0solves Eq. (3.17) in a trivial way. In the
general situation one inserts

oo qCk6 (y) =6 (0)—y 3'
, k (1 —pe "") (3.19)

where relation between D (u) and 6 (y) is such that G (y)
is regular at y = —e'. In these units Eq. (3.14) takes the
form

For an algorithm which can be used numerically in cases
where v and q have the same sign, see NL. ' An analyti-
cal method for v —++ ao, g) 0 is described in the next
section.

C. Critical behavior of the McCoy-Wu model

The main result of the detailed study by McCoy and
Wu was that the free energy has an essential singularity
at the ferromagnetic phase transition. This showed ex-
plicitly that the usual power-law critical behavior of or-
dered systems may be suppressed by disorder.

In the present section we give an elegant derivation of
this singular behavior, starting from Eqs. (3.20) and
(3.24). It is caused by the behavior at small 8. According
to Eq. (3.15) the parameter v goes to plus infinity for
0~0. The leading behavior of Ck is obtained from a
singular perturbation expansion, introduced in Ref. 10.
One defines

in (3.17). One finds the recursion relations C =ekv~
k k (3.25)

—2kp

Ck, +2 sinhv Ck —Ck, =
2k Ck

ilk(1 —pe "") (3.20)
and drops all terms of relative order e -0 from
(3.20). One gets

for k=1,2, 3, . . . , and where CO=1. The terms propor-
tional to y give a simple expression for 0,

~k+1 ~kak + ~k —1
2v

with

(3.26)

Q„=qg(C, —e ) . (3.21)

Assuming that one knows how to solve the recurrence re-
lations (3.20), one only needs the expression for the free
energy. The ensemble average of Eq. (2.15) is

PF= (In2c—oshP/2)+ —,'ln —,'sinh2Pcfi+ I Q(8)
mdg

1 e 2k'
X =1-

k(1 —pe kP) (3.27)

The first step is to consider these equations for all com-
plex k and to define a (k)=ak and X(k)=Xi, . Then the
solution of (3.26) with e '=0 is

pF pure pFr (3.22) ao(s)=C g X( )n/X( +sn) .
n)0

(3.28)

where

PF „„=—,'ln2—sinh2Kz 0+ f p(8)
~dO

0 277
(3.23a)

is the Onsager expression for the pure system and where

However, the term e a(s —1) cannot be omitted if
s =so is such that X(so)=0. Since the normalization is
defined by CO =a0 = 1 the problem shows up for the first
time when, for 19=0,

sinh(2Ei ) X(0)=1— =0 .2'„ (3.29)

+q j il(8)[C, (8)—sinhv(8)]
0 277

—= —pF„i pF„2 . — (3.23b)

Here p is needed for 8=0. From (3.15) it follows that
@=2~Pa,—K, ~

at 8=0. [Note that in the present sec-
tion Ki denotes the dual of the coupling rit2, see (3.7)].
For our situation with K, )0 the relevant sign leads to

The second term occurring in (3.24) is exactly the angular
average of the expression for the random part of the free
energy for the closely related random-field Ising chain,
see Eq. (4.12) of Ref. 10.

In the case that v and g have opposite signs Eq. (3.20)
can be solved in terms of an infinite continued fraction

E, +qE„= (K, „)=PS, . (3.30)

This condition is just the average of the Onsager condi-
tion for the critical temperature; it has a simple form for
lattices with 1D type of disorder. '

In order to proceed with the solution of (3.26) we
define

1 1 1 1
Ci =1/(Co/C, ) =

P1+ P2+ P3+ P4+
(3.24a) b (s) =a (s)C 'e ' + X(n)/X( +ns)

n)1
(3.31)

where
—2kp

pk = —2 sinh&+
i)k(1 —pe "") (3.24b)

and substitute (3.28) in the lhs, because this does not be-
come singular in the region of interest. It is found that
b (s) satisfies
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2

b (s)+b (s —1)=L (s) =e
X(s) „,X(n +s)

and its solution is

b(s)= . L(s+t) .dt
0(Ret(1 2i sinmt

(3.32)

(3.33)

This quantity is needed for s =0 (in order to fix the nor-
malization) and for s = 1. The leading contributions
come from the pole at t =0 and from the zeroes s. of X.
The latter ones are irrelevant for b(s =1). We end up
with the following expression for the second term in
(3.23b)

—PF„2——qK„+2qK„f ~d0

e 'X(0) X(n)
sin~sl X'(s~) „&i X(n+s )2

(3.34)

where the prime denotes difFerentiation. It will turn out
that zeroes of X(n +s) can be neglected.

To leading order the variable 8 only occurs in
v- ln 1 /0. It can be checked that the zeroes s
( —~ &j & ~) occur in complex conjugate pairs
(s~ =s* ) and that only so =so —T —T, may have a posi-
tive real part. The real part of the other s~ is bounded by
a negative constant, also for T=T, . Hence only the
j =0 term determines the leading ferromagnetic singular-
ity in (3.34). In later sections we will consider situations
where all terms are relevant.

For studying the leading critical behavior of (3.34) we
insert

d g
—soX'(0)

PF„~=——qK„+2qK„f0 7T ) e I 2 0

A change of variables gives

(3.41)

PF„2= qK„+ —qK„(1+—p)sinh2qK„

where

Xsinh2K2 e ' 'I(5), (3.42)

With these definitions the j =0 contribution to (3.34)
may be written, to leading order in so,

p(8=0) =—2qK„(1 r)—
where

r = ( T —T, )(qK„—T, )

X(8,+82/sinh2Pdz)+0((T —T, ) )

(3.35a)

(3.35b)

(3.43)

=(T—T, )[(1 p)K„T, ] '(cj—, +4 /sinh2PQ )

is the deviation from the critical point. It is twice as
large as the variable 5 defined by MW [Ref. 5(c); see Eq.
(4.19) of Chap. XIV]. This is useful for having a simple
argument in the function I

is a temperature variable. It is then found that X(so)=0
for I(5)=f dq&

0
(3.44)

4r(q +3p)
2K„(1+p) 3(2p +q)2

We further need

(3.36) The upper limit yo is small (yo «1) but independent of
so. The nonanalytical behavior of the free energy is total-
ly contained in I(5). It was noted by McCoy and Wu
that I has the same singularities as

X(0)
sinmso X'(so)

X(so —so), X"(so)

X"(0)
0

I(5)=f dg) s+
0 J —y lny

=5+I(—5)
—= —(1+2a,so), (3.37)

where equality signs hold up to order so and where
=,5+ y a,„(5'"

2n

a, =K„(2q /3+4p)/(q+2p) . (3.38) =ln5 —it (1/5), (3.45)

We also introduce 0.'2 by

X(n) = I +2a2so+ O(so )
„&i X(n+so)

so that

a@=—g X'(n)/X(n) .
n=1

(3.39)

(3.40)

where B2„are Bernoulli numbers. So all derivatives of
the free energy (3.42) are finite at T, . Nevertheless the
free energy is nonanalytic at T —T, or so =0. This can be
seen, for instance, from the fact that the series (3.45) is
divergent for all 5%0.

Our result for the free energy follows from (3.22),
(3.23), and (3.42). It will not confirm the expression for
the specific heat derived by McCoy and Wu. %'e have a
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D. Relation to the results of McCoy and Wu

From (3.22), (3.23), and (3.42), the singular part of the
free energy is

PF„—„=—(1—p )K„sinh2qK„
4.

Xsinh2Kze ' 'I(5) . (3.46)

We can compare it with the prediction for the specific
heat, derived by McCoy and Wu in Chap. XIV of their
book on the 2D Ising model. These authors study the
case of no dilution of randomness (p =0) and define pa-
rameters

a = —2sinO/c, b =(1/zi —z, )/c,
c =1/z, +zi+2cos8,
N =(4K„) ', B =e

(3.47)

prefactor e ' ' arising from the correction terms in (3.37)
and (3.39). Nevertheless, both results show an essential
singularity in the free energy at the ferromagnetic phase
transition.

X [H'(y ) pe —"H'( ye ") ] . (3.52)

[Our parameter il, defined in (3.15), should not be con-
fused with the MW variable ri.] In the limit p~O Eq.
(3.52) reduces to the MW equation (3.24) for X(il ).

McCoy and Wu assume that the distribution of disor-
der has a narrow width, viz. N=(4K„) '»1. They
derive the singular behavior of the specific heat near the
critical point by expanding the nonlocal term
H[y exp(2p)] of (3.52) in a certain way. This is done in
the region of small angles 0, where @=2K„is also small.
Instead of (3.52), a first-order difFerential equation is ob-
tained, which is solved by quadratures. The final MW re-
sult involves the singular part of the specific heat in the
limit N~oo, (T —T, )N =fixed. Note that our variable
5—:—2so, defined in (3.43), remains fixed in this limit.
We write the MW result as

C„„g= (cFi+8z 0/sinh2P/p p)
16P 2

It can be verified that the range of the Y„ is 0~ Y„~e .
Consequently, X ( il ) vanishes unless 0 & il & B2

=exp( —2p), in agreement with MW. From Eq. (3.17)
we find an exact equation for H:

K(ye ") H—(y)= —il(y+e ')(y —e )

X (sinh2Pai, ) 'I"(6) . (3.53)
and variables

A,„=z2(n), x„=acA,„/S„ (3.48)

G(y)=G(0)+ lim (ln(l —y Y„)),
n~oo

(3.49a)

where

with S„defined in (3.1). The recursion (3.2) for S„ leads
to the MW recursion (2.17) for x„. MW define a distribu-
tion function X (il ), which is a transform of the stationary
distribution of the x„. This function X(ii) is closely relat-
ed to our function G(y). We show this by noting that,
from the definition (3.16), (3.15), and (3.3), it follows that

X'(n) p ~d X'(n)
(3.54)

It follows from Eq. (4.40) of MW, after replacing the in-
tegral I(5) by I(5) (see also previous section) and after in-
serting

(T, )„„d, =(T, )p„„+&( I/N)

in the prefactor. Note that (3.53) is finite in the limit un-
der consideration. For comparing Eq. (3.53) with our Eq.
(3.46) we set p =0 and also take K„—+0. In this limit the
parameter ui, defined in (3.38), vanishes. From (3.40) we
calculate

6 (0)= lim ( ln[S„+zoc (be" zo )])—(3.49b) where we choose N &&1, E,N ((1 and use that @=2'„
in the region of interest. This leads to

and ai=ln[2(1+p)K„] —y, (K„~O), (3.55)

Y„=e
—S„+zoc(zo be ")—
S„+zoc(—zo+ be" )

(3.49c)

—2K)Here zo:—tanhpaizo=e ' is the maximal value of z2,
cf. Eqs. (3.6) and (3.7). From (3.49a) the stationary distri-
bution function of F„can be obtained as

where Euler's constant y, appears as the finite part of the
logarithmically divergent sum in (3.54). Inserting this in
(3.46) and calculating the singular part of the specific
heat we find the exact result, for any value ofp,

C = (4i+ 82 0/sinh2p/i 0)
16P 2

H(y)= lim Prob( Y„&y) X (sinh2Po i ) 'I"(5 )e (3.56)

1=1——ImG(1/y iO) . —
7T

The MW function X(il ) is related to H as

(3.50)

(3.51)

in the MW limit K„~O, (T —T, )/K„ fixed. Note that
our exact result differs from the MW prediction by a fac-
tor exp( —y, ). It has probably disappeared from the
MW calculations because of going to the continuum limit
in an analogon of (3.52). MW suggested an improvement
of their method at the end of Sec. XIV. Indeed, it is to be
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expected that the factor exp( —y, ) will be approximated
the better, the more derivatives are taken into account in
their analysis. Note that our analysis, on the other hand,
solves the problem exactly.

We conclude that, in the limit of narrow distributions,
we find the MW result up to a prefactor. For general
power-law distributions, the singularity still involves the
function I(5); its prefactor is more complicated, but still
explicit. This confirms the claim of McCoy ' ' that the
singular behavior of the free energy will be proportional
to I(5) for general distributions of disorder.

IV. EXACTLY SOLUBLE MODEL WITH
TEMPERATURE-INDEPENDENT DISTRIBUTION

OF DISORDER
In the preceding section we have considered the singu-

lar behavior of the free energy in the original McCoy-%'u
model. In the present section we shall consider a n1odel
on a square lattice where the vertical bonds are random,
instead of the horizontal ones. In doing so we will find
out that for this case a temperature-independent, diluted
exponential distribution of vertical couplings allows for
an exact solution. The reason is that we are considering
the dual of the problem in Sec. II B. There it was found
that the dual of the horizontal couplings is distributed ex-
ponentially; this corresponds to the vertical bonds in the
present case.

In terms of the notation of Sec. III A we shall consider
the case of sure'' couplings cFz [pz(y)=5(y —8z)]. The
couplings 8, decompose as

A. Derivation of the free energy from the integral equation

In this section we derive the exact solution of the in-
tegral equation (2.4) for the distribution (4.1). We follow
the ideas of Sec. III B and write (3.4) and (3.5) as

D (u) =q J e "dx[D(N(u, x))+In+(u, x)]
0

+pD(4&(u, O))+pineal(u, O) —0, (4.6)

where now

+(u, x) =
I u [tanh(K, +K„x)+cath(K, +K„x)—2 cos8]
—4tanh Kzsin 81/%(u, x),

%(u, x)=tanh Kz[tanh(K) +K„x)

+coth(K, +K,x)+2cos8] —u .

(4.7)

Straightforward algebra shows that this integral equa-
tion may be reduced to the following differential-
difference equation:

where —PFMw is given by (3.22).
This duality transformation is not perfectly satisfactory

if couplings are negative. The second way to derive (4.5)
is to start from the integral equation for D ( u ); see Sec.
III A. This by far more laborious method will be treated
in detail in Sec. IVB. The physical content of Eq. (4.5)
for the case of only ferromagnetic couplings or mixed
ferro- and antiferromagnetic couplings will be discussed
in Secs. IV C and IV D, respectively.

=8, 0+8„x
with x distributed by

p(x)=pQ(x)+qe (x ~0)
=0 (x &0) .

(4 1) [1—A (u)B„][D(u) —pD (U) —p lnw)

=qD ( v) +q 1nw +qK„( —u coth Kz +2 cos8)

(4 2) where U =4(u, O), w =0'(u, O), and where

(4.8)

LJZZ2 —NMg
coshPP;&

(4.3)

where (ij ) denotes all different bonds and P,*J is the dual
of 8;

We shall take

haft

0 positive and 8„either positive leading
to a ferromagnetic phase transition or negative leading to
frustration and therefore causing a transition at T=O.
We denote Pcf ) 0 by K (, P/„by K„, and Pgz by Kz every-
where in Sec. IV.

There are two ways to calculate the free energy for the
present model. The simplest way is to use a general con-
nection between the partition sums on original and dual
lattices

The appropriate change of variables now is

u =tanh Kz(tanhK&+cothK, +2cos8)
—tanhKz(cothK, —tanhK, )f (y)

with

f (y) =(e"—ye )(1—ye" )

and

(4.10)

sinh( 2K, +2K„x )Q=0, +q e "dx ln . —2'„,
0 sinh2K&

(4.9)3 (u)=K„coth Kz[(u —2tanh Kzcos8) —4tanh Kz] .

—2',e "=tanhPP;. . (4.4)
6 (y) =D (u)+ln(1 —ye" ) . (4.11)

(4.5)

The partition sum Z& is the one which occurred in Sec.
III B. From (4.3) one gets

PF = PFMw+ (K, ) +K—z
—ln c—oshK',

—(ln2coshKz )

p+ 0„+qK, + —,'ln2 sinh2E2,dO

The parameters p and v* are defined by

coshp = ( cosh2Kzcosh2K, —sinh2K
&
cos8) /sinh2Kz,

sinhv* = (cosh2K &* cos8 —sinh2K
&

cosh2Kz ) /sin8,

(4.12a)

coshv* =sinhp sinh2Ãz /sinO .
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We recall that K, +qK„=(P~„&=K; . (4.21)
—2E) —2E2

e ' =tanhK2, e ' =tanhK& . (4.12b)

[ I + il(e +y)(e —y)B&][6(y) —pG (ye "]
=qG(ye ")—qi)(e'+y) —0„, (4.13)

where v and g are defined by

Lengthy calculations yield a simple equation for G (y),

Another point of interest is the behavior at small tem-
peratures. From Eq. (4.14) one sees that v~ —oo as
T~O. Hence one can use the simple continued fraction
expansion (3.24), and the first approximant C, =1/p,
gives

PF—=K, +qK„+K i + [p +q /( 4K„+I ) ]e

(4.22)
sinhv = (cosh2K i cos8 —sinh2K i cosh2K2 ) /sin8,

coshv= sinhp sinh2Kz /sin8,

il =2K„/coshv .

(4.14)

The relations for v are dual to the ones in (4.12a), and p is
self-dual. In the same way (4.13) is dual to (3.17). The
solution to (4.13) is

which is just the average

PF=—(Pa, „)+Pe,+(e
with respect to the distribution of disorder (4.1).

C. Square lattice with frustrated layered bonds:
Linear speci6c heat

(4.23)

qCk
G(y)=G(0) —g 3'

k=i k(1 —pe "")

and results in the recursion relations

1 ——2k@

Ck, +2 sinhv Ck —CI +,=
ilk(1 —pe "")

(4.15)

(4.16)

with C0 =1. The relation to the free energy follows from
(2.15), (4.9), and

A=A „„+0,+2qK, .

The result is

(4.17)

PF= PF—„„PF—„, —

where

PF „„=—,'ln—2 sinh2K2+ f p(8)
~dO

0 2&

and

(4.18)

(4.19)

PF„=qf —il(8)[C, (8)—sinhv(8)] .
0 2&

(4.20)

B. Ferromagnetic disorder

In this section we consider the case 8i o) 0, cP„)0,
82)0, so that all couplings are ferromagnetic. Conse-
quently one expects the very same exponential singularity
near the phase transition as in the McCoy-Wu model of
Sec. III B. Indeed, the description of the present case is
fully analogous to the problem analyzed in Sec. IIIB.
The final result (3.42) holds for pF„defined in (4.—20).
We conclude that the .McCoy-Wu conjecture that their
nonanalytic behavior near T, be valid for broad distribu-
tions of disorder, is correct in the situation under con-
sideration. Here we only note that the phase transition
occurs at temperatures such that

These equations are equivalent to Eq. (4.5), because
Q„=qi)(Ci —e ). In conclusion, we have verified (4.5) by
derivation from Eq. (3.4). The method used here did not
depend on the sign of K, and therefore is valid both for
K„&0and K„&0.

2ps

X(s)= 1+
4K„s ( 1 —pe "') (4.24)

From (4.14) it follows that p, =2Ki for T~0. Hence
X(s) may be written

X(s)= 1+4K„s
„x, [1 f(Ps)], —

14K„s(1—pe
(4.25)

where

f (s) =e "(I+4pcf„s)/(1+4+„s)

is nothing but the average

f(s)= fp, (+, )d+, e

(4.26)

(4.27)

with respect to the distribution of disorder (4.1) and (4.2).
The special role of f (s) was noted by Derrida and
Hilhorst. Nieuwenhuizen and Luck' observed that the
low-temperature behavior of some frustrated random-
field Ising chains is governed by all (complex) solutions of

Since we have an exact solution for a temperature-
independent distribution of disorder we can study the in-
teresting low-temperature behavior of frustrated two-
dimensional lattices. We now consider the situation
where clio) 0, 8„(0,82) 0, so that part of the vertical
bonds are antiferromagnetic. It was already noted by
Shankar and Murthy' that frustrated loops are present if
one row of vertical bonds has ferromagnetic bounds,
while an adjacent row has antiferromagnetic bonds.
Thei'efore the ferromagnetic phase is destroyed, and there
is only a phase transition at T =0.

The behavior for low T can be studied with the tools of
preceding sections. From Eq. (4.4) it is clear that
v~ —~ for T~O, but q &0 has the same sign. Hence
the continued fraction (3.24) does not converge, and one
needs the singular perturbation expression (3.34) for

PF„define—d in (4.20). There are some minor
di6'erences, however. Because v~ —~, contrary to
v —+ + oo in Sec. III C, the equivalent of (3.25) is

Ck = ( —1)"e "'ak. This introduces



5106 THEO M. NIEUWENHUIZEN AND HENRI ORLAND

2(8io+qd„)

X I 1 —g A~(2sin8)
0 7T

(4.28a)

where

si nira~T J „,+2(n +a.T)
(4.28b)

depends on T also through X(x)=1—Tl(48„x) for the
arguments needed, and involves a temperature-
independent factor,

BJ = (4io+q8„)clio [1+q+(1+p)48„a.

+p(48„a~) ] 'e ' ' . (4.28c)

Expanding (4.28) in powers of temperature one finds for
the free energy

the equation f (s) = 1. The very same aspect shows up in
the present two-dimensional case. For a related problem
where the relation f (s) = 1 determines quantities of phys-
ical interest, see de Calan et al. '

From (4.25) it is seen that the zeroes of X(s) occur at
s~

= Ta wh.ere aj ( —~ &j & ~) is a complex solution of
the equation f (a)=1. These solutions occur in complex
conjugate pairs, a =a*, except for ao, which is real.
We obtain from the analogon of (3.34)

F„=—qcf„

d ~x 1

dx~ sinirx

2=—j d 8[in(2 sin8) ] =
0 6

(4.33)

From (4.29) it follows that the specific heat is linear at
low temperatures

C = 2F2 T—+0 ( T2) . (4.34)

F= bio q(f„P2 A—~ exp—( —44—2ao)— (4.35)

with

This linear behavior of the specific heat was already
found in the frustrated Ising chain with exponential dis-
tributions of random Gelds' and also in the van Hemmen
mean-field spin-glass model, with a constant density of
the random couplings g and il~ at /~=i'~. =0. Note that
also in our model the density of couplings 8i(n) is con-
stant at cPi(n)=0. The question of what happens if this
density is linear is the topic of current investigations.

In order to elucidate the structure of (4.29)—(4.32) we
consider the limit of strong ferromagnetic coupling
82»1. The equation of f(aj ) =0 determines the values
of a . There are two situations: (8,„)=d",o+qd„&0
and 8,o+q8„&0. In the first case (weak disorder) all a~
have a negative real part, except for a0&0. Hence the
leading behavior of (4.28) for d"2 —+ ~ leads to

F=F +TF +T F +.
with

(4.29) &+ = 2(+io+qd )—(2 e ' ') ' f (2sin8)
0

(4.36)
Fo= Bio q8 82+2(d io+qcP ) 1 gB

J

The coeScient F& is proportional to

f d8ln(2sin8)=0
0

(4.30)

(4.31)

The first terms are equal to —( 8i„)—cF2 and the correc-
tion is exponentially small. A similar behavior was found
in the random-Geld Ising chain by Derrida and Hilhorst.
In the second case ((8i ) &0, strong disorder), all roots
n have a negative real part and u0 still has the largest.
Hence from (4.28) it follows in the limit 82 —+ ~

and vanishes. This implies that„ in general, the zero-
temperature entropy vanishes. Finally, F2 is given by F=

+io+ q &, +2 ~ —e—xp[ —4(+io+ +p)

lao

l�
] (4.37)

m2
F2 =4(d,o+ q cP„)y (4.32a) with

y=+B a. a + 1 —+B. d8
(2

. 8)zl~olT (4.38)

+ QB,a, '
1 —QB, (4.32b)

Here we note a surprising conspiracy of mathematics,
yielding the familiar' factor ir /6 in F2, arising here
from three diQ'erent origins

Again, this is equal to —l(8i ) l

—82 plus an exponen-
tially small correction. Finally there remains the more
subtle case (8i ) =cfio+qcP„—+0. Then Ao and ao in
(4.28) approach unity, the other A going to zero. The
result is

1+p m d8 1

1 —p o m 28,o+28z —T ln(2sin8)+(a, +a2)T (4.39)
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with

X"(0)
X'(0)

(4.40)

both proportional to T. Equation (4.33) behaves linearly
for dz~ oo but is also valid at finite Pz and small T.
Equations (4.29)—(4.34) all behave like F=Fo+FzT
+0 ( T ) for low T. In fact, they are closely related to re-
sults for the random-field Ising chain. '

In that study also resonances were found, where the
zero-point entropy is finite, that is to say, the factor F

&
in

(4.29) is nonvanishing. In the present model there is an
infinity of values of 8 for which the integrand in (4.28a)
has a finite contribution proportional to T for low T.
However, upon integration this vanishes: In the present
two-dimensional model on a square lattice, there is no
zero-point entropy, with or without disorder. The
specific heat is linear in T, see (4.34), and (4.32), because
of the presence of frustrated bonds.

V. EXACT SOLUTION FOR THE TRIANGULAR
LATTICE

The Ising model on the triangular (and hexagonal) lat-
tice was solved and studied by Houtappel. In the frus-
trated antiferromagnetic case, he found that the critical
temperature drops to zero as soon as two of the couplings
become equal. Furthermore, in the case of three identical
couplings, there is a finite-zero-temperature entropy
(which vanishes when the couplings become unequal), but
the specific heat has an exponential essential singularity,
of the type e ", indicating that there is a gap between
the ground states and the first excited states of the sys-
tem. It is interesting to study how these results translate
in the case of the frustrated MW model on a triangular
lattice.

In Sec. II B we have derived the expression for the free
energy of hexagonal and triangular lattices. This was

done for arbitrary values of the layered random cou-
plings. In the present section we investigate the question
whether in the thermodynamic limit exact solutions are
present for appropriate distributions of disorder for these
lattices.

It turns out that such solutions are only present on the
triangular lattice, if the couplings o"3 have diluted ex-
ponential distributions

83(n)—:cP3o+ 8„x(n) —= 83 ~„~ (5.1)

with all x (n) distributed by Eq. (3.8). The related hexag-
onal system with random couplings K3 ( n ) has exact solu-
tions for temperature-dependent distribution of disorder.
This is totally the same as in the McCoy-Wu case of the
soluble systems on the square lattice, see Sec. III.

In order to derive the solution for the triangular lattice
we follow the method of Sec. III. %'e define
tanhpcF3O—= exp( —2L3) and introduce the function

D~(u) = (In(R~ —u) ) (5.2)

with p defined in (3.8) and

4r, [u cosh(2L, —2Lz) —sin 8]
U(u)=e

[cosh(2L, + 2Lz ) —cos8 —u]
(5.4)

and 0 equal to the ensemble average of the n =X~~
term of (2.37). Of course, the free energy of a given sys-
tern is self-averaging, so we can safely calculate its aver-
age. The diiferential-difference equation related to (5.3) is

[1—A (u)B„][D(u) pD(v) —lnw]=qD—(u) —0, (5.5)

where

and use (2.35) to express it into Dz i. The limit function
D satisfies

D(u)= J p(x)dx D(e ' U(u))

+in[cosh(2L, +2Lz ) —cos8 —u] —0 (5.3)

4L„[u +cos8 —cosh(2L, +2Lz)][u cosh(2L, —2Lz)+u cos8 —sin 8]
A(u)= zsinh 2L &+sinh 2L2+2 sinh2L &sinh2L2coso

w =cosh(2L, +2L z )
—cos8 —u .

(5.6)

Again the main problem now is to find the adequate
transformation of variables. The connections are

u =cosh(2L, + 2L z ) —cos8
—2L3—e ' W(1+ye ')/(e "+ye" ),

and

cosh@ —( C, Cz C3+S]SzS3 S3cos8) /W

sinhv = —( Ci CzS3 +SiSz C3 —C3cos8) /sin8,

g =2L„/coshv,

W'=(Sf +Sz+2SiSzcos8)'

(5.7)

[I+r)(e +y)(e —y)B ][G(y)—pG(ye ")]
=qG(ye ")—qual(e +y) —0„

with

(5.8)

D (u) =G(y) —ln(1+ye " ),
where C =cosh2L, S—:sinh2L . This transforms (5.5)
into
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(5.9)

Equation (5.8) has exactly the same form as Eq. (3.17).
The free energy follows from (2.39) as

(5.10)

near the ferromagnetic transition are again exactly the
same as in Sec. III C. The difference between the square
and the triangular lattice only shows up in the precise
definition of the parameters p, v, and q in terms of the
original couplings, cf. (5.7) and (4.14). In the same way
the frustrated square lattice behaves like the frustrated
triangular lattice. In particular the linear specific heat
(4.34) also occurs in the latter model. It seems of interest
to investigate the various possibilities (there are four cou-
plings cF, , Pz, 83, ot„, each of which may be positive or
negative) in more detail.

with Q„determined by (3.20) and (3.21).
Again there are at least two limits of interest: the be-

havior near the phase transition in the ferromagnetic case
(ot )0, 8„)0) and the low Tbehavio-r if the phase tran-
sition occurs at T=O due to frustration in the system
(some or all couplings are negative). The calculations
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