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By means of Monte Carlo computer simulation and scaling theory, we study the domain growth
kinetics associated with a weak first-order transition between two non-symmetry-related ordered
phases, exemplified by martensitic transformations, surface reconstructions, or magnetic transitions.
The model studied has two kinds of domain walls: sharp, straight stacking faults, and broad, curved
solitonlike walls. The domain wall motion after a deep quench to low temperature is found to fol-
low the Allen-Cahn theory; nonetheless, the growth exponent for the excess energy AE(t) —t " has
an exponent n ——', distinctly lower than the expected n = —', but in agreement with simulation re-

sults for some other models. A theoretical scaling analysis gives exactly n = —' and shows that the

slow growth is a consequence of the fact that finite-size stacking faults cannot move until their ex-
tent is sufficiently small. The new universality class for domain growth is proposed as a s&ngular

Allen-Cahn class with n =
4 for nonconserved order parameter, with domain walls of both exactly

zero and finite curvature (whereas the domain-wall width or softness is not important as such).
Since stacking faults and twin boundaries are common and have exactly zero curvature, we expect
that many experimental systems belong to this- class. The simulation results are also analyzed in

terms of a soliton model as well as the Ginzburg-Landau theory; finally, a fast algorithm for domain
growth studies is described.

I. INTRODUCTION

Many crystals, both metallic and insulating, which
have a P-cubic (bcc) structure, undergo at low tempera-
tures a structural phase transition to a closed-packed
structure, in particular the hcp or fcc structures. This is
called a martensitic transformation. ' The low-
temperature phase may consist of the simple AB-
(hcp) or ABC . (fcc) stacking of closed-packed planes,
or exhibit more complicated long periodic sequences, e.g. ,
the 9R structure given by . . ABA BCB CAC-
However, it often also exhibits random stacking faults or
domain walls, which model random twin faults. During
the process of formation of the closed-packed phase, it
breaks up into domains, which in the majority of cases
are related to each other by the operation of twinning.
This is also found for the ordering process of solid solu-
tions. The theoretical description of these questions is
often made using the one-dimensional axial next-nearest-
neighbor Ising (ANNNI) model. Another theoretical
approach, within the framework of strain-induced in-
teraction theory, pioneered the use of Monte Carlo simu-
lation of the kinetics of the martensitic transformation.
Recently, a two-dimensional magnetic analog model with
the martensitic transition symmetry has been developed
and the static behavior close to the transition point ana-
lyzed by computer simulations.

Here we are concerned with the dynamics of this mod-
el and, in particular, with the nucleation and growth of
the domains of the low-temperature closed-packed phase,
which takes place after a thermal quench to well below
the phase-transition temperature. With the two-

dimensional model it is possible to study the important
interplay between the extent and the movement of the
stacking faults, which is not possible in the one-
dimensional models. Furthermore the model gives a fair-
ly realistic description of the dynamics of the phase tran-
sition. The kinetics of domain growth by itself is a funda-
mental problem in a nonequilibrium statistical mechan-
ics. The problem is also of practical interest in the fields
of surface science, metallurgy, and earth sciences. '

When a system is quenched from a high-temperature
disordered state to a state below the transition tempera-
ture, the ordered phase appears by the nucleation of p
types of small ordered domains separated by walls of dis-
order, when the order parameter has a degeneracy p. As
the time t after the quench increases, these domains coar-
sen and the unfavorable excess free energy due to the
walls is reduced. In the late stages the domain sizes are
much larger than all microscopic lengths, and in analogy
with critical phenomena one expects a scaling behavior"
and expects the growth law for the domain size R (t) to
have a power-law form R (t) ~ t", where n is some
"universal" exponent. In case R (t) is the only relevant
length, the excess free energy must decrease with the
same exponent EE(t) —t ". The universal character
means that many different systems exhibiting a wide
variety of growth processes, fit into a few classes with
difT'erent characteristic growth exponents. The number of
classes and the characteristic physical features of these
are currently under active debate. A main feature is es-
tablished to be the character of the order parameter. If it
is a nonconserved quantity, the Allen-Cahn theory' pre-
dicts that the domain growth process is driven by the lo-
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cal curvature of the walls giving rise to a late-time behav-
ior characterized by an exponent n =

—,'. If instead the or-
der parameter is conserved, the late-time behavior is ex-
pected to follow the Lifshitz-Slyozov law' with n =

—,'; we
will not consider this case here.

In several investigations of systems with nonconserved
order parameter one has indeed found n =

—,'. These in-

clude low-energy electron diffraction (LEED) experi-
ments on the growth-dynamics of oxygen superlattice
structures on a W(112) surface, computer simulations on
discrete order-parameter models such as the Ising' '
and p-state Potts' models, and on continuous variable
systems as the P model' and the nonconserved
Ginzburg-Landau model. ' These studies establish an
universality class with n =

—,', which is independent of the
discrete or continuous character and the degeneracy of
the order parameter. Yet, slower growth with n & —,

' has
been observed in certain anisotropic systems with a con-
tinuous order parameter' as well as in anisotropic Potts
models with large p. Based on such observations,
Mouritsen has suggested ' that it is the potential of the
walls to soften in response to the curvature, which leads
to a slowing down of the growth rate, and could break
down the basic assumptions of the Allen-Cahn theory. '

This point has been disputed in several works ' arguing
that the width of the walls becomes irrelevant when it is
much smaller than the radius of curvature. Nevertheless,
slow growth is found in simulations and the general
reason is not conclusively found.

In the context of this scenario of the universality
classes for domain growth, our model for the martensitic
transformation is described by continuous variables and a
nonconserved order parameter with p =4 (or p =2) and
the model is anisotropic. We find the Allen-Cahn law is
fulfilled in the sense that the movement of the boundaries
can be described as a curvature-driven process which
covers a constant area per unit time. Nonetheless the re-
sulting growth exponent does not fit with the Allen-Cahn
exponent n =

—,'. We find two markedly different regimes
in the time evolution of the excess energy which can be
fitted to 5E(t)-t ". The first regime, which we do not
attribute to a true power-law decay, gives an "apparent"
exponent of n =0.45, whereas for later times the evolu-
tion slows down with an n =0.24. The regimes are
separated by a sharp crossover which is proven not to be
due to finite-size effects.

The model has the special feature of simultaneously
supporting both "hard" and "soft" walls or boundaries.
The domain structure is formed in such a way that broad,
curved boundaries are connected by sharp, straight boun-
daries. The sharp, straight boundaries represent stacking
faults of finite extent. At the ends the stacking faults are
joined with other stacking faults by broad, curved boun-
daries. The latter are well described as soliton wall's. We
can separately follow the movement of both kinds of
boundaries and find their behavior remarkably different.
The sharp boundary disappears following t ' whereas
the broad boundary disappears as t '~ . We can show
that for the t ' process the driving force is contained
in the intersection point between the sharp, straight

boundary and the broad, boundary. The broad boundary
moves with constant velocity inversely proportional to its
curvature. This movement covers a constant domain
area per unit of time. This feature is also, implicitly, of
key importance in the Allen-Cahn theory. However, in
their case the curvature changes in time, whereas in our
case it remains constant. For the t ' process the driv-
ing force is contained in the curvature of the broad
boundary in agreement with the basic assumptions under-
lying the Allen-Cahn law. We will show that the tenden-
cy to reduce the curvature does not determine the
relevant energy for the process because the energy associ-
ated to the curvature is negligible relative to the energy
stored in the "effective" length which is the projection on
the direction perpendicular to the straight boundaries. A
measure for this projection is simply the number of soli-
tons forming the broad boundary. This number can only
decrease after the sharp, straight boundary has been elim-
inated and two broad boundaries meet. Consequently, we
find that the sharp boundaries (i.e., the stacking faults)
can only move when the extent becomes very small. This
slows down the growth process and gives the t ' be-
havior.

The plan of the paper is the following. In Sec. II we re-
view the relevant features of the model and describe its
characteristics in the context of the present work. Sec-
tion III is dedicated to the Monte Carlo simulation of the
kinetics of domain growth. After a brief description of
the numerical procedure in Sec. III A, we describe how
the system relaxes to the equilibriuro state in Sec. III B.
In Sec. III C we present the results obtained from Monte
Carlo simulation. In Sec. IV we give an extensive
theoretical analysis of the results. In Sec. IV A we use a
relaxation model to describe the early times of the pro-
cess. In Sec. IV 8 we modelize the domain wall structure
by using a soliton-domain-wall model. In Sec. IV C we
analyse the scaling behavior of the system. Finally in
Sec. U the results are discussed and the conclusions sum-
marized.

II. THE MODEL

In order to study the dynamics of a displacive transi-
tion from a bcc to a closed-packed structure (hcp or fcc),
it is convenient to represent the atomic motion by a spin
located at the average position in the bcc structure. The
model thus excludes atomic diffusion which as a charac-
teristic fact is found not to play a role at the martensitic
transformation (MT). ' To simplify further let us consider
only a projection on the (001)b„plane, which we call the
xy plane, shown in the lower part of Fig. 1.

The model system then consists of a square array of
size N of classical spins. A ferromagnetic order, in the z
direction perpendicular to the plane, corresponds to the
bcc phase which we have called the square or cubic phase
(or simply z phase) and an antiferromagnetic order corre-
sponds to the closed-packed phase, which we have called
the triangular phase or closed-packed structure (or sim-
ply the +x phase). The following Hamiltonian stabilizes
the ferromagnetic and antiferromagnetic order according
to the relative strength of the Ising interaction K and the
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FIG. 1. The upper part shows characteristic three-
dimensional parts of the bcc and closed-packed structures. The
arrows indicate the direction in which the neighboring planes
are displaced under the martensitic transformation. The lower
part shows the two-dimensional projection along the bcc [001]
direction of this pattern. A spin model representing the atomic
displacements, with the spins in the z direction corresponds to
the cubic bcc phase (z), and with the spins antiferromagnetical-
ly orderd in the xy plane corresponds to the closed-packed hcp
phase (+x). In two dimensions it is natural to refer to these as
the square (z) and triangular phases (+x ).
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FIG. 2. The calculated phase diagram for the model Hamil-
tonian [Eq. (1)], solid full line. TM is the martensitic transition
temperature. The dashed phase boundary is calculated for the
model with the spins restricted to the upper half of the xz plane,
it is of first order. The quenches studies in this paper are per-
formed along the horizontal line at K/J=2. 3 from high tem-
peratures to T =0.02J lk&.

two-dimensional pseudodipolar interaction J:

H= g [
—KS,,S,+J[S, S P(r, S;)—(r," S )]J

&i,j &

Dg(S;—„+S; ),

where r; is a unit vector connecting nearest neighbors
and we use P =3.

The anisotropy term with D )0 (D =2J), in combina-
tion with the dipole interaction, breaks the continuous xy
degeneracy and stabilizes at low temperatures an antifer-
romagnetic order of aligned spins chains in either the x
or y direction. This is convenient in computer simula-
tions, since it reduces the number of possible antiferro-
magnetic domains to four. The number of ferromagnetic
domains is two. This model for the MT was introduced
previously by Lindgard and Mouritsen and the static
properties and the dynamics near such transition temper-
ature discussed for the choice P =2 and p =4. Here we
shall study the nonequilibrium dynamics of the domain
formation of ordered regions after a rapid quench from
high to low temperature. A preliminary study of this
showed that the kinetics was much slower than expected
for a curvature-driven growth process. ' The reason for
this could be that the interplay between the four kinds of
antiferromagnetic domains and the two kinds of fer-
romagnetic domains creates a number of pinning centers,
which effectively hinder the motion of the domain boun-
daries. Therefore the excess energy stored in the domain
boundaries can only very slowly decrease and the system
is trapped in a long-lived metastable state. This interest-
ing self-pinning aspect of our model will be discussed in
more detail elsewhere.

For P =2 the interaction along and between chains is
the same and the system exhibits an isotropic domain
structure of sharp boundaries with no preferred direc-

tions. For P &2 the interaction along chains is (P —1)
times stronger than between chains. This favors the for-
mation of sharp, straight boundaries between chains
(stacking faults) and broad boundaries along the chains
(soliton walls via the cubic phase). The interesting aspect
of the sharp boundaries, that they can be regarded as
stacking faults in the sequence of closed-packed planes, is
an essential feature of the martensitic domain structure.
For this reason and because of the interesting diversity
exhibited by the domain-wall structure, we have chosen
P =3 for this study.

First, we now simplify the model even further by
studying the subspace of the phase space in which only
two antiferromagnetic domains and one ferromagnetic
domain compete. This is done using the model [Eq. (1)]
by restricting the spins to only be allowed to take con-
tinuous positions in the upper half of the xz plane. This
means a transition between a polarized but disordered
p = 1 state to an ordered p =2 state. The results for the
full model, i.e., for a disordered or ordered p =2 state to
an ordered p =4 state, will be discussed elsewhere. The
phase diagram (Fig. 2) for the full model (solid line) is
apart from a simple scaling identical to the one obtained
previously for P =2. The phase diagram (dashed line)
for the restricted model is simpler since there is only a
transition between the cubic and the closed-packed
phase, but there is no true disordered phase. We can,
with this restricted model, study the transition from a
high-temperature single-domain cubic phase to the
closed-packed phase. We perform temperature quenches
along the path indicated, which crosses the first-order
transition line between the cubic and closed-packed
phases, i.e., the martensitic transformation.

III. KINETICS OF DOMAIN GROWTH

In a typical temperature quench experiment, a system,
initially in equilibrium at a temperature TH, is suddenly
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assigned a new lower temperature T~. Just after the
quench, the system is very far from its equilibrium
state —which may be an other ordered state —and the
question of interest is to investigate how the system re-
laxes and cools in order to reach the new heat-bath tem-
perature TI . This is a fundamental problem in statistical
mechanics of nonlinear phenomena far from equilibrium,
and it is as well of considered practical interest.
Theories for situations far from equilibrium are extremely
dificult and therefore the Monte Carlo method is a very
useful tool to investigate the time evolution.

A. The Monte Carlo numerical procedure

Using Monte Carlo simulation techniques ' we have
calculated the time evolution of the domain growth that
follows a quench from high temperature to T=O. Our
system is a set of N particles arrayed on a two-
dimensional square lattice subject to toroidal periodic-
boundary conditions. To reduced boundary effects, the
main results have been obtained for a large lattice with
N =200 X 200 sites. We also report results for a
N =100X 100 lattice. The Hamiltonian of the system is
given by Eq. (1). The spin variable S; takes continuous
values on the upper-half xz plane, when the z axis is per-
pendicular to the square lattice. Starting from an initial
configuration in which the individual spins are oriented
totally randomly in the upper half of the xz plane, the
dynamical evolution is described by the optimized spin-
Aip algorithm described in the Appendix. The unit of
time, one Monte Carlo step per particle (MCS), is defined
as N attempts to Rip individual spins for the system of
size N. In order to average over both initial
configurations and dynamical evolutions, we have per-
formed several quenches into the triangular phase (the
final temperature is k~T/J =0.02) using difFerent ran-
dom number sequences.
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and 93+2 clusters of, respectively, the x and —x kind,
with a mean-square deviation of only 2. The average dis-
tance is about 21 lattice spacings. The cluster distribu-
tion does not show scaling behavior at this stage with all
sizes and distances present at the same time.

(ii) The domains of the z phase also cool down and be-
come well ordered, and simultaneously the +x clusters
grow and broad, curved domain boundaries are formed.

(iii) The z domains shrink and the domain boundary
width is optimized by creating two kinds of connected
domain boundaries separating the +x domains. A new
sharp and straight boundary (abbreviated as S boundary)
in the x direction emerges and a broad curved solitonlike
boundary (abbreviated as C boundary), predominantly in
the y direction, is established. The two kinds of boun-
daries are illustrated in Fig. 4. The soliton in the C
boundary is a soliton in the xz plane but in the figure and
all the following displays we have drawn this in the xy
plane for illustrative purposes. The sharp S boundary is
straight because a curvature (a kink) costs a high energy.
In comparison the energy difference between curved and
straight C boundaries is negligible. This is the reason for
the S boundaries (stacking faults) being straight, but the
soliton C boundaries being curved.

(iv) The system now is fully phase separated and con-
sists of only +x and —x domains separated by boun-

B. Description of the approach to equilibrium

During the cooling process, it is characteristic that the
system evolves through several transient "states" which
can grow up and later die, when overtaken by other tran-
sient states. A transient "state" is not energetically the
most favorable, but is the fastest accessible of a number
of states which are energetically more favorable than the
st;ate at a given time.

The behavior of our model is illustrated in Fig. 3,
where the white areas correspond to the +x phase, the
grey areas to the z phase, and the transition regions are
indicated by the darker regions. The system evolves
through the following stages when it is quenched from
the highly-disordered, high-temperature cubic state to a
very low temperature inside the closed-packed phase re-
gion of the phase diagram.

(i) In the matrix of the highly disordered (- high-
temperature) cubic phase (z), small clusters are nucleat-
ed, which are of the highly ordered (-low-temperature)
closed-packed phase of two kinds (+x) with an even dis-
tribution both in number and relative distance. We find
in 12 cases of N =200X200 systems an average of 91+2

'¹
F515.J"

.iI:

r;-. . "~ieepeF, :" iri~k~: ~~"
:sP

i@:i' "

-:...up. '~

1000 MCS 3000 MCS

p-:-:

~
.

FIG. 3. Snapshots of the evolution of the ordered domains
and the domain walls during a quench (we show one quarter of
a 200X200 system). The white areas are the +x domains, the
grey areas the z domains, and the darker regions and single dots
disordered spins, drawn as —0 indicating their deviation. At
early times t =100 MCS one sees nucleation of +x domains in a
disordered z matrix, at later t =3000 MCS one sees two kinds of
domain walls have evolved; see Fig. 4.
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FIG. 5. The configuration of a 200X 200 system at very later
time t =42000 MCS. The position of the domain walls at ear-
lier times in units of ~= 1000 MCS are indicated ( —"—3~,—

~ —6~, ——12~, and —27m. , and the actual boundary at 42~).
From this it is possible to follow the domain growth and elim-
ination of smaller features and domains. In particular it is in-
teresting to follow the typical domains indicated by A, 8, and
C. This is discussed further in Fig. 9.

FIG. 4. The upper part shows s sharp S boundary separating
a +x (dotted) and a —x (dashed) domain. The circle indicates
the displaced atom or the spin, i.e., —0= —+. The lower part
shows a broad, solitonlike domain wall, a C-boundary between
the +x and —x domains with the atomic displacements in the
xz plane. However, for the purpose of illustration we show this
displacement in the xy plane for the configurations. A broad
C-boundary in Fig. 3 is a sequence of such solitons.

and 27 (1000 MCS), are indicated by dashed-dotted lines.
We notice that the S boundary connecting two C boun-
daries has to disappear before the C boundaries can be re-
duced in length.

(v) Finally, for very long times, one might expect that
only the C boundaries remain and then the energy is min-
imized by reducing the curvature. This stage —as a glo-
bal stage —has not been reached in our Monte Carlo
simulations.

Of principal interest is not the topology of a particular
case —such as that shown in Fig. 3—but it is the behav-
ior of a thermodynamic ensemble of such cases. To study
the approach to equilibrium, several statistical quantities,
which could be monitored, have been suggested such as
excess energy, domain radius, moments of the structure
factor, etc. Let us focus our attention of the excess ener-
gy defined as

b.E(r) =E(r) ET( ~ )—, (2)

where E(t) is the nonequilibrium energy at time t At.
t = ~ the system is supposed to reach the equilibrium
with the energy ET( ~ ), at the temperature T towards
which the quench is directed. b,E(t) is a good quantity
in the sense that is a self-averaging quantity' which mea-
sures the total nonequilibrium internal energy associated
with the entire domain-boundary network. That means it
is a measure for the distance to the equilibrium state with
the lowest free energy.

We have found that our model system [Eq. (1)j shows a
slow decay of b.E(t)-t "with n =—,

' at later times and a
markedly different power law —let us call it—the ap-
parent power law at earlier times. Such a low-
temperature behavior for the nonconserved case has been
reported earlier' ' ' ' and it was attributed to the pres-
ence of soft domain boundaries. Later' this observa-
tion was disputed and it was suggested that a different in-
terpretation of the data could give n =

—,
' in agreement

with the Allen-Cahn theory. In our case it is definitely
excluded, in this way, to provide agreement with the
Allen-Cahn predictions for the excess energy exponent.
In order to gain understanding of the reason for the slow
approach to equilibrium, we shall analyze the process in
detail, focusing our attention on the mechanism through
which it takes place.

C. Monte Carlo results

In this section we present the statistical analysis of the
results obtained from Monte Carlo simulation of the
quench experiments from a high-temperature cubic phase
with (S, ) =0.50 to a low-temperature closed-packed
phase at =TO. 20Jlk~ with two kinds of domains (see
the Appendix). In Sec. IV the interpretation of these re-
sults will be discussed in more detail.

Figure 6 shows a log-log plot of the time evolution of
the excess energy b,E(t) for both N= IOOX100 and
N =200X20 size systems. The number on each curve in-
dicates the best fit to an exponent n for b,E(t)-t ", cor-
responding to the slope. Figure 6 shows that for early
times a regime, that after a transient, obeys a power-law
decay with an exponent of n

&

—
—,'. At t =t* the evolution
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crosses over to a slower decay characterized by an ex-
ponent of n2-4. Both regimes are clearly separated.
For the N = 100X 100 size system r "= ( 2000+200 ) MCS
and for the N=200X100 size system t*=(2500+400)
MCS. The crossover point does not significantly depend
on the size of the system and cannot be attributed to
finite-size effects. The sharpness of the crossover shows it
is not due to an additional faster decay process with a
power law of the type t ' . This would give a crossover
region of several decades in time. Rather, it is indicative
of an additional exponentially fast decaying process. The
exponent n, is therefore an apparent exponent. We have
performed 14 quenches for the N =100X100, and three
quenches for X =200 X 200 systems, approaching the
equilibrium single-domain state. The exponents and t*
agree within the statistical error bars as indicated in Figs.
6(a) and 6(b).

It is important to distinguish and separately discuss the
quenches which do not develop into a single-domain

state. For the N=200X200 system we have observed
that a very significant fraction of quenches ( —,', ) evolve

into two kinds of two-domain "slab" configurations (see
Fig. 7) which are long-lived metastable states that can
only decay via very unlikely thermal fluctuations. This
gives rise to lower apparent exponents in both regimes if
ET( ~ ) is simply taken to be the single-domain equilibri-
um value. These effects are an artifact of the finite-size
and periodic-boundary conditions for the system and
have been discussed before in the context of domain-
growth process. As we will show, it is possible to calcu-
late the final energy of the slab configuration ET( ~ ),~,~
when we know the domain-wall energy. In Fig. 6(c) the
dashed-dotted lines are the corrected excess energy rela-
tive to the slab configuration energy ET( ~ ),~,~ for the
case of two straight boundaries either along x ( ———)

or y ( "—"—) directions. In Fig. 7 we show two
representative examples of such a configuration: (a) corre-
sponds to a quench which evolves into a S-slab
configurations, whereas (b) evolves into a C-slab
configuration. Notice that in Fig. 6(c) the correction
( —~ —) refers to a perfect S-slab configuration. In the real
example [Fig. 7(a)] the boundary will also include some
pieces of C boundary and the corrected energy must be
placed between the two ideal cases. The conclusion is
that after this correction the exponents are in agreement
with the n i

=
—,
' and n2= 4 found for the quenches to the

single-domain state. Therefore, all the performed
quenches give consistent results, violating the Allen-Cahn
law.

At very late times one can in Fig. 6(c) notice another
crossover (at t -20000 MCS) to a faster decay. We sup-
pose this is due to a lack of proper statistical distribution
of domain sizes because of the finite-size and periodic-
boundary conditions of the system. This is a finite-size
crossover effect.

In the lower part of Fig. 8 we have plotted the evolu-
tion of the S-boundary-length I., and the projection of
the C boundary length on the y direction, L.„measured
in the number of solitons, and also the number of parti-
cles belonging to a z domain (cubic phase). These quanti-
ties clearly show a transient state at early times [stage (i)
described in Sec. IIIB, t ~500 MCS] where the z phase

0.1 0.2

! I I

0.5 1.0 2.0 5.0

TIME (1000 MCS)

I I

10.0 20.0 50.0

FIG. 6. The average excess energy. EE(t) relative to the
stable, single-domain ground-state energy ET( ~ ) is plotted for
two system sizes (a) 100X100 for 14 runs and (b) 200X200 for
three runs. Consistently, an early regime is found with an ex-
ponent n —

2
and a sharp crossover to a second regime with a

smaller exponent in ——'; (c) shows the excess energy for nine

difterent 200X200 systems which develop into a metastable slab
configuration. The signatures indicate the excess energy relative
to ET( ac ) as above, yielding too low exponents. The excess en-

ergy relative to the relevant, higher slab energy ET( ~ ),~,I, is be-
tween the limits indicated by —- —and —"—.Both ex-
ponents and crossover for the corrected excess energy agree
with the stable cases (a) and (b). At very later times t )25000
MCS finite-size effects are detected for separate runs ('7).

FIG. 7. Two metastable slab configurations for a
N = 100X 100 system, (a) slab in the x direction with the lowest
possible energy per particle (2J)2/&N, corresponding to two
straight S boundaries, (b) slab in the y direction, with lowest en-

ergy (4J)2/&N, corresponding to two straight broad C boun-
daries.
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grows and very broad domain boundaries separating the
+x domains are formed. At this stage it is di%cult to
measure the length of domain boundaries.

At stage (ii), the length of the S boundary increases and
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FIG. 8. Analysis of the average properties of the 200X200
systems [Fig. 6(bi]. The lower part shows the counted total
number N, of spins in z domains (larger than three connected z
spins), the total length L, of the S boundary (the number of
steps), and the total length L, of the projection of the C bound-
ary on the y direction, i.e., the number of solitons. Notice the
di6'erent exponents n = —' for L, and n = —' for L, . Further-
more, the maximum of L, and the disappearance of the z
domains coincide with the crossover time found in the excess
energy show on the upper part (0). The calculated partial con-
tributions E„E„and E, due to L„L„and N, show first that
the calculated total energy (o ) agrees with the simulation ( )

and secondly that E, is the dominant contribution. The dashed
line indicates E, extrapolated into the first regime. ( ———+ )

is the total energy ( ) minus the contribution from L, and N,
( —V) includes the conversion of C- to 5- boundaries. Conse-
quently the maximum in L, is responsible for the crossover.

at the same time the z domains are being eliminated (the
system realizes that the z phase is not optimum). The el-
imination of the z phase allows to the boundary width to
become more narrow and to be optimized. This process
is finished at t* =2500 MCS which corresponds to reach-
ing the maximum of the S-boundary length. For all indi-
vidual quenches it is found that the crossover time t* for
the exponent coincides with the maximum of I., and the
disappearance of the z domains.

After this we reach stage (iii) with a regular pattern of
S and C boundaries of optimized with (Fig. 5) with an
evolution characterized by a decrease of the length of
both boundaries. The decrease follows power laws, but
with exponents n, =0.50+0.03 and n, =0.24+0.03, re-
spectively, for the I., and L, lengths.

We can estimate the associated energy quite accurately
as follows. The energy of each step of the S boundary is
exactly 2J and the average energy for each soliton of the
C boundary is close to 4J as will be justified in Sec. IV.
Although I, is not the real length of the C boundary it
gives the correct energy and it is much easier to measure.
This neglects insignificant energy changes due to curva-
ture effects. We show in the upper part of Fig. 8 the cal-
culated partial energies E, (Q'), E, (4), and E, ('7), the
last only for t ) t' and the total energy calculated as a
sum of the partial energies E, +E, +E, (0) and compare
it with the corresponding Monte Carlo result ( ). The
agreement is very good, which means that the neglected
curvature energy for the C boundary is indeed negligible
in the considered time interval. Most importantly we
find that the contribution from E, (V) is dominant. For
t & t* we can easily define and calculate E, and E, but
not E, . However, we can estimate E, by subtracting
E, +E, from the total Monte Carlo excess energy. This
gives the extrapolated E, curve ( s ). At early times this
value contains extra contributions due to not optimal
domain-wall widths. If one, for t close to t*, assumes
that all boundaries are S or optimized C boundaries and
that the most horizontal C boundaries become converted
into the energetically cheaper S boundaries, we can also
calculate the length of the C boundaries for t ~ t'. This
gives the straight-line extrapolation (V).

Now let us summarize the main conclusions from Fig.
8: the S-decrease process, during which only the S boun-
daries decrease, gives a power-law decay of the excess en-—n
ergy E, -t ' with n, =

—,
' in agreement with the Allen-

Cahn law. The C-decrease process, during which only
the projection of C-boundary decrease is a slower process,—n
giving E, -t ' with n, =

—,'. The energy calculated as
E, +E, and the Monte Carlo result for the total excess
energy b E (t) agree for r ) t*. The exponent for the total
energy of the decay is determined by the dominant ener-
gy E, because the energy of the unit of the C-boundary
length, a soliton, has twice the energy of a unit of the S
boundary, a step. An interesting fact is that changes of
the curvature energy, which are not considered in the
definition of I.„are negligible relative to both E, and E, .

We shall now demonstrate that the decrease of I-, is a
curvature-driven process and that in both processes the
domain area decreases linearly in time. Let us analyze
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typical single S-decrease and C-decrease processes. In
Fig. 9 we present the time evolution of L, and L, for two
typical processes involving S- or C-boundary movements,
using examples 2 and 8 of Fig. 5. Figure 9(a) shows that
the single C process (see upper part of the inset) on aver-
age follows the square-root behavior expected for a
curvature-driven process given L,+ —(to t)'~—, where it
disappears at t = t pa It is important to notice that the de-
crease in domain area is linear in time and most impor-
tantly that two broad boundaries, i.e., L,+ can only de-
crease if they are not separated by any straight boundary.
The inset shows the considered domain at the initial time
t —10000 MCS. The length of the lower part L, is
prevented from decrease until t-25 000 MCS when the
sharp boundary has vanished. The evolution of L, and
that of the lower part L, is then similar. The steps indi-
cate creation of S boundaries which subsequently disap-
pear. Figure 9(b) shows the time evolution of the S-
boundary length L„ in the configuration shown in the in-
set. This follows a significantly different law. Namely,
for each S process L, —(to t) is —linear in time, disap-
pearing at t =to. The area change is again linear in time

C BOUNDARY LENGTH LC (Sotitons)
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FIG. 10. The speed of C boundary U is a linear function of
the inverse length L, '. The decrease of the area is linear in
time and independent of L„ in accord with a curvature-driven
process.
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as above. The velocity v of the decrease of L,, depends on
the length of the interconnecting broad boundary L„but
the area change is constant. This indicates that the S-
decrease process can as well be considered to be curva-
ture driven.

In Fig. 10, for different values of L„we have plotted
the velocity v with which L, decreases when the C bound-
ary moves towards its center of curvature. We accurately
find a linear relation between v and I, '. Since L, ' is a
direct measure for the curvature of the broad C bound-
ary, this is in agreement with the Allen-Cahn assump-
tion' which states that the interfacial velocity is propor-
tional to the curvature. The special feature of the S pro-
cess is that the velocity is constant in time, since L,„and
thus the curvature, does not change during the process.
In fact, a general consequence of the Allen-Cahn assumpee

tion is that the decreasing domain area does evolve linear
in time. With this formulation, the assumption can be
applied even for the special case where the curvature in a
given direction is zero, as for the S boundary in our case.
As a test of this we have plotted in Fig. 11 the time evolueo

tion of the domain area for three different cases, 3, B,
and C from Fig. 5. In all the cases we find a linear time
dependence in agreement with the more general Allen-

FIG. 9. (a) time evolution of the C-boundary length L, for
the typical case 2 in Fig. 5 (inset). The upper part L,+ de-
creases as (to —t)', whereas the lower part of L, decreases in
this way only after the S boundary has disappeared at t -27 000
MCS. The decrease of the area is linear. (b) time evolution of
the S-boundary length L, for the typical case B in Fig. 5 (inset)

for two di6'erent separations L, . The area decrease is, again, ob-

viously linear.

10 20 30
T~«(1000 VCS)

40

FIG. 11. The decrease in area of the three typical domains
2, B, and C in Fig. 5 is approximately linear and the speed
(slope) is almost identical for the C decrease (C and A for
t &25000 MCS and the S decrease (B and A for t (25000
MCS), the S decrease being marginally slower.
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Cahn assumption. ' The conclusion from the Monte Car-
lo simulations is, therefore, that S and C decrease as sin-
gle processes, follow the basic assumptions of the Allen-
Cahn theory in the sense that they are curvature-driven
processes, with the domain area decreasing with linear
time dependence. For the single processes the time
dependences are L, -(to t—)' and L, —(to r)—Th. e L,
follows the normal Allen-Cahn behavior and I., the
anomalous, but still Allen-Cahn behavior; namely, for
zero curvature.

The global processes, which depend on the statistical
distributions of I., and L„give for the excess energy a
decrease of AE, —t ' and AE, —t ' . Here the S-
decrease process is in agreement with the Allen-Cahn
theory in spite of the anomalous single-process behavior.
However the C-decrease process violates the Allen-Cahn
theory and is much slower, in spite of the fact that the
single process obeys normal Allen-Cahn behavior. Final-
ly the total global excess energy follows b,E (t) —t '~ be-
cause it is dominated by the C-decrease process.

IV. THEORY AND ANALYSIS
OF THE APPROACH TO EQUILIBRIUM

In this section we analyze what we have presented in
Sec. III. In Sec. III A we used a Langevin equation with
a Ginzburg-Landau free energy to theoretically explain
the first regime found in the time evolution of the energy.
In Sec. IIIB we explain the relevant features of the
domain-wall structure by making use of a soliton-
domain-wall model. Finally, in Sec. III C we apply the
scaling concepts to our system in order to understand the
energy exponents found in our simulations.

A. Relaxational model

The simplest theory for the relaxation in the
nonlinear-ordering process is the Ginzburg-Landau
theory. This does not consider the domain competition
problem at all, but applies for the time dependence of the
order parameter. Suppose the free energy is written sim-

ply as

In our case, where T & T,"& T;, we find from Eq. (5) that
the z order develops fastest simply because
I/~y, ~

) I/~y„~. This explains the fast evolution of the
order in the z matrix in stage (i).

The description of the evolution of the x droplets re-
quires a theory of nucleation, which predicts that drop-
lets above a critical size grow exponentially. Neglecting
the domain aspect, how does the system approach the
equilibrium value M =Mo = 1? Suppose the system
(with Auctuations) in a short-time reaches the free energy
at t =0 corresponding to M =Mo/+2, which still corre-
sponds to a high temperature -0.9T, . The excess
Ginzburg-Landau free energy AI'&L can then by use of
Eqs. (3) and (4) be written as

EFoL=F(t) F( ~ —)
Mo

cosh
16IX. I

This is an exponentially fast approach towards a fully or-
dered single-domain state. However, at later times this is
hindered by the competition between equivalent domains
and the formation of domain boundaries. Supposing the
excess energy due to the boundaries decreases algebrai-
cally like t; then the total excess free energy is

AF =AI'GL+at

The first term represents the optimization of the order in-
side the domains and of the width of the domain boun-
daries. This behavior is the one found in stages II and III
of Fig. 3. Figure 12 shows that the optimization process
terminates abruptly and gives rise to a sharp crossover
behavior with an apparent exponent. In contrast,
the transition between two algebraic behaviors
AF=at +bt ~ with P=2a would give a very broad
crossover, as also shown in Fig. 12. The Ginzburg-

100
F=t + 2t-- F=t ' +2cosh (t/500)

F= M„+—'/3M + M, + —'yM,"+C,1 1

2X. ' 2X,
(3)

where P and y are constants and C involves a coupling
between M and M, and higher-order terms, but it is here
neglected for simplicity.

The inverse susceptibilities have the form
1/g —( T —'1, ) and are negative at small T since
T & T, & T,'. The time evolution is given by the Langevin
equation

10

JD

U

LL ~0

0.1

-~;~ 0.25'
l

dM

dt
(4)

Using Eq. (3) we find

M'(t)= —' 1+tanh
2 Ix. l

assuming that at saturation the order parameter is one.

0.1 1.0 10
TIME (orb. units)

100 x1Q

FIG. 12. Example showing that a sum of two algebraic de-
cays ( ) exhibits a very broad crossover region and wrong
effective exponents. A sharp crossover is provided by a sum of
an exponentially fast decaying process and an algebraic decay
(—~ —). The behavior appears to be algebraic also below the
crossover, with an apparent exponent. This is qualitatively the
behavior observed in Fig. 6.
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Landau theory could be considerably refined by taking
into account the competition between the development of
z and x order. However it might not be worthwhile since
it neglects the domain aspect. Let us now turn to this
problem.

B. Soliton domain-wall model

We now discuss the regime where the domains com-
pete and the excess energy is all stored in the domain
walls. It is important to estimate the domain-wall energy
in order to find the dominant features. We have tested
that the domain wall between the two +x domains is very
accurately described by a soliton function. The m soli-
ton in the x-z plane is given by

S„(r)=—tan exp
4 +(r—ro)

with S,(r)=1—[S,(r)] . Here ro indicates the position
of the soliton maximum in either the x or y direction in
units of the lattice parameter a =1 and m is the width of
the soliton.

For the domain walls shown in Fig. 4 the S boundary,
which we call a step, is a soliton of zero width and a posi-

tion ro=(O, yo) with an arbitrary yo dift'erent from zero,
but less than 0.5; whereas the C boundary, which we call
a soliton, has finite width and it is drawn for the position
ro=(xo, O) with xo=0. The domain walls consist of a se-

quence of such steps or solitons and their energy depends
on ro and w. The S boundary is straight, but the C boun-
daries are curved. In the real simulation the broad soli-
tons may accommodate their width and position slightly
when they are relatively displaced; this is, however, a
small effect and is neglected in the following. The calcu-
lated energy surface per soliton or step of the soliton
domain walls are shown on Fig. 13 at T =0 K as a func-
tion of the width and displacement. Figure 13(a) shows
the energy surface for a soliton in the x direction
r=(r, O), i.e., along the chains. It has two minima as a
function of the width w; one for m =0 and one for
m =wo =0.38a corresponding to ro=(xo, O) =(0,0) in
Fig. 13(a). During the process of width optimization the
initially very broad walls become rapidly more narrow
and trapped in the minimum corresponding to mo. The
system remains there at low temperature because it can-
not jump across the high barrier which separates it from
the minimum with w =0. For w =uro there is only a
small preference for the x position of the minimum. This
is shown on the projection of the magnitude and position

ENERGY ( J) ENERGY (J)

C BOUNDARY S BOUNDARY

- 4.0 3.0

3.0

0.2 0.6 1.0
WIDTH (a)

0.2 0.6 1.0
WIDTH (aI

FIG. 13. (a) The energy surface for a m soliton with a width m and the x position x of its maximum between two lattice sites in the
x direction (solitons in a C boundary, see Fig. 3). The absolute minimum is E =3.85J for (xo, mo)=(0, 0.38a). The line in the hor-
izontal plane indicates the projection of the energy minimum, the vertical projection is the corresponding energy. (b) Same for a soli-
ton with a width w and position y in the y direction (solitons in a S boundary; see Fig. 3). Here, there is a narrow valley with a
position-independent minimum at E =2J for m =0. Notice the large, sharp barrier E =3.7J at y =0 for this valley. There is lower
energy pass via the local minimum E =3J at (yo, wo) =(0,0.3a).
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of the energy minimum in the (x, w) plane. The result is,
therefore, that a broad C boundary can easily move along
the x direction. A typical curved wall will consist of soli-
tons more or less randomly distributed along the (x, to)
minimum path and the average energy per soliton is
therefore about 4J. The energy gain for having a straight
C wall is only about 0.2J. Figure 13(b) shows the energy
surface for the wall energy for soliton with r propagating
in the y direction, i.e., perpendicular to the chains. The
energy surface exhibits again two minima, but now the
finite width minimum is a local minimum at
(y, w)=(O, wo) which along the projected minimum path
is separated by a tiny energy barrier from the absolute
minimum of E =2J at zero width. However, very impor-
tant is that there is a large barrier at (yo, wo ) = (0,0)
preventing the step from moving in the y direction, also
the energy cost of two displaced steps (called a kink) is a
very high 4J. During the width optimization process the
system can remain for a short while in the local minimum
for w =0.3, but it will rapidly find the absolute minimum
corresponding to w =0. These are the reasons for the S
boundary being sharp and straight and further why the
sharp S boundary (i.e., at the stacking fault) cannot move
in a perpendicular direction. The different behavior for
walls breaking chains and walls between chains arises
from the anisotropy in model [Eq. (1)] through P =3.
When P =2 the interaction strengths along and between
chains are the same giving rise to "sharp" boundaries
both between and along the chains. The simple soliton
domain wall model therefore explains the two different
kinds of boundaries appearing in our Monte Carlo simu-
lations of the [Eq. (1)] model.

Now we want to study the coupling between the sharp
S and broad C boundaries. Figure 5 shows that the inter-
section between boundaries forms an unique angle. Fig-
ure 14 sho~s the energy of the con6guration with two
sharp S boundaries in opposite directions and a broad
straight boundary as a function of the intersection angle
y. The energy of the configuration can decrease by elim-
inating steps of the S boundary. As the angle increases
from y=O, the length of the S boundary decreases and
therefore the energy E, decreases, whereas E, increases
in such a way that the total energy, E, +E„exhibits a
minimum for a certain angle yo and the configuration is
trapped in a local "metastable" state with y=yo. We
find that go=33' is independent of both boundary lengths
L, and L, . From our Monte Carlo simulations we evalu-
ate an "experimental" value of cpa=30'. We attribute this
small difference to the fact that in the model calculation
the solitons are rigid, whereas in the simulations they can
relax and accommodate to the skew stacking.

The energy per soliton of a C wall as a function of L, is
given at the top (c) of Fig. 15. Next, in Figs. 15(a) and
15(b) we show the coupling of two S boundaries in the
same direction with a broad C boundary. In the simplest
case (a) the broad straight boundary is chosen to be per-
pendicular to the S boundary. The energy of such a
configuration as a function of L, is between the continu-
ous lines which correspond to the most favorable solitons
[position ro=(0, 0), width =0.38a and energy =3.86J]
and the most unfavorable [position ro=(0. 5,0), width
=0.53a, and energy =4.20J]. The initial decreasing is
due to the corner energy, the relative contribution of
which decreases as L, increases. Although this
configuration is the optimum from the point of view of
the energy, it will be curved when the corners are moving
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FIG. 14. Boundary energy for a C boundary (of ideal soli-
tons) and two S boundaries in opposite directions (inset) as the
function of angle y. The corners move in opposite directions
until the optimum angle go= 33 is reached.
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FIG. 15. Boundary and curvature energy. (a) No curvature
( ), the di6'erence between the lines indicates energy varia-
tion due to the soliton position [see Fig. 13(a)], the increase at
small L, is due to the contribution from the corner energy. (b)
Same for a circle-segment-shaped C boundary of ideal solitons.
(c) See inset and Fig. 14.
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to the right. Figure 15(b) shows the result, assuming the
broad C boundary follows a perfect circle segment. The
energy of such a configuration gives an asymptotical E,
value of 4.7J which is slightly higher than for (a). For
each value of L, the minimum of E, +E, determines an
optirnurn radius for the C boundary as well as an op-
timum angle defined by the tangent to the C boundary in
the intersection point. We find that, even though the
minimum of E, +E, for each L, determines an optimum
radius R —L„ the optimum tangential angle
arcsin(L, /2R) is always the same. One may say the an-
gle determines the radius of curvature. Determined in
this way the angle is 45', which is slightly higher than the
one found in the simulation y=30, presumably because
of the neglected accommodation effects and furthermore
because the curvature of a real case is not exactly a per-
fect circle segment. If the relaxation of the soliton width
and position under the curved condition were taken into
account we expect that the relevant absolute energy for a
C boundary is close to the average for the minimum path
-4J [Fig. 12(a)] as calculated for the single soliton. We
use this value for the evaluation of E, in Fig. 8. The cur-
vature energy can be estimated from the difference be-
tween a and b, to be about 0.5J, which is much smaller
than the energy for having a soliton, namely 4J. This is
in agreement with the conclusion drawn from Fig. 8.

C. Scaling behavior

During the growth process, domains of all sizes con-
tribute to the excess energy via their domain walls. As-
sume for simplicity a two-phase system, where the minor-
ity phase, which will disappear, forms only spherical
domains. The excess area is the total area of these
domains. The Allen-Cahn theory then predicts a de-
creasing domain radius, R;, for each domain "i" accord-
ing to a square-root behavior since the process is assumed
to be driven by the curvature, which is inversely propor-
tional to R, ,

dR;
R, (r)-+r, r. —

dt R;
' (9)

For this to hold we need not require pictorial scaling, i.e.,
self-similarity under magnification as we have in the
above simple spherical case. It is clearly sufficient that
the excess area distribution is constant when measured in

The smaller domains disappear first (at t = t; ), but an im-
portant consequence of [Eq. (9)] is that all domains de-
crease by the same area per time unit. The system there-
fore can remain invariant if the area unit A is increasing
proportional to the time A —t and, consequently, the
length unit L increases as L —t ', since A =L . The ex-
cess energy b,E(t) for a large distribution of domain sizes
is proportional to the total wall length, i.e.,
bE(t) —g; R;(t). Assuming scale invariance, this length
is constant when measured in the time-dependent unit L,
i.e., g; R;(t)=const/L —t ' . From this follows the
famous Allen-Cahn exponent n =

—,',

EE(r) -r

the unit A, which is increasing linearly in time.
Let us now apply the same scaling idea to our results.

Consider first the S-decrease process. This is a singular
Allen-Cahn situation in which one curvature is zero,
namely for the S boundary and for each process "i" the
S-boundary length L„(t)-t; t is—linear in time and van-
ishes at t; . This is contrary to the square-root behavior
[Eq. (9)]. We found, however, as in the Allen-Cahn
theory, that the excess area associated with the S bound-
ary decreases linearly in time [Fig. 9(a)]. The excess ener-

gy associated with the S-decrease process is proportional
to the total S-boundary length b,E,(t)-g, L„(t). As-
suming scale invariance with respect to the excess area
for S-decrease processes (as above) we find again

in agreement both with the Allen-Cahn theory and the
computer-simulation results in Fig. 8. In fact this
confirms that the area scaling is fulfilled although there is
no pictorial scaling (simple magnification). It also proves
that the width of the soliton C boundary is not relevant.

Next we consider the movement of the S boundaries
{the stacking faults) along the perpendicular y direction
thereby giving rise to a C-decrease process. We now
must distinguish between two cases. A dormant C-
decrease process in which the movement is completely
prevented and an active C-decrease process, which we
found will start only when the S boundary between two C
boundaries has diminished to a length comparable to the
lattice distance a, i.e., when the stacking fault has a
sufficiently small extent.

Let us first discuss the active C-decrease process. The
single process is shown in the upper part of Fig. 9(a),
where it is proved to be a standard curvature-driven
Allen-Cahn process with the area decreasing linear in
time and the linear dimensions in particular L, decreas-
ing as +to t. A new fea—ture is that the excess energy is
not proportional to the total boundary length, but is to-
tally dominated by the linear dimension L, which is the
projection along the y direction. This is because one
gains 4J by removing a soliton, but the curvature energy
is only of the order 0.5J as illustrated in Fig. 15. The to-
tal excess energy for all the active C-decrease processes is
then AE;(t) —g; L;;(r) Assuming . as before scale invari-
ance for the area we then find bE;(t)-t '~ . The new
feature, the dependence only on the projection, can there-
fore not explain the observed small exponent.

Finally, let us consider the dormant C-decrease pro-
cess. A single process is shown in the lower part of Fig.
9(a), where it is proved to be dormant until the S bound-
ary disappears at t-25000 MCS. For a scaling argu-
ment for this process we must consider the probability
that the intervening S-boundary length L„. diminishes to
a fixed length of the order of the lattice constant a. When
we consider larger and larger scales, the probability P for
this to be the case diminishes inversely as the length scale
increases as

P(L„—a)=a/L —t.
Out of the increasing unit area A, only a fraction A, of



KINETICS OF DOMAIN GROWTH, THEORY, AND MONTE. . . 5081

the area is available for the active C-decrease process

(l3)

The area unit for the subsequent active C-decrease pro-
cess therefore increases more slowly, and consequently
also the corresponding length unit L, = 3,' . The de-
crease in the total excess energy for the dormant C pro-
cesses, including the subsequent active C processes, is
then b,E,(t)-g; L„(t)=const/L, . We, therefore, find
that, because it has to wait for the S boundary to disap-
pear, the dormant C-decrease process gives an excess en-
ergy decrease as

(l4)

This agrees with the observed small exponent. Any ac-
tive C-decrease process already in operation at early
stages will disappear faster than the dormant one, which
will dominate the late-time behavior. It is interesting,
however, that the equally fast S-decrease process will
continue to play an important braking role for the dor-
mant C-decrease process. This is because the prohibitive
S-boundary length is to be compared with the atomic
scale. The excess energy is dominated by the dormant C
process for energy reasons. The slow time evolution with
an exponent exactly equal n =

—,
' is therefore now ex-

plained, not as a consequence of the soft boundaries, but
as a consequence of a hierarchy of the boundaries, where
the decrease of one kind depends on the other. Such an
hierarchy is in fact present in the model systems' ' ' in
which the slow growth was first discovered. We believe
these model systems and our model indeed form a new
universality class with n = —,'. The growth is, in many
respects, in agreement with the Allen-Cahn theory, but it
is the special case with zero curvature boundaries. Im-
portant examples of such boundaries are stacking faults
and twin boundaries in crystals and we expect the class to
have many members.

V. DISCUSSION

We have localized and studied a number of crucial as-
pects determining the kinetics of a quench across a first-
order transition line between two ordered structures. Ex-
amples could be martensitic transformations, surface
rearrangements, or magnetic transitions. We have used a
general, yet simple, anisotropic magnetic model with con-
tinuous order parameter. This allows a study and a com-
puter simulation of the most important features of a
displacive, diffusionless transition —more realistically
than the discrete order-parameter models (Potts,
ANNNI) —and more economically in computer time
than fu11 molecular-dynamics simulations.

A quench from one phase at high temperatures to the
low-temperature phase with a number of equivalent
domains can be described as fo11ows. As a consequence
of the sudden drop in temperature the order parameter of
both phases increases exponentially fast according to the
susceptibility to form the particular phase. The different
domains of the low-temperature phase are nucleated
spontaneously and randomly, yet with a very uniform dis-

tribution in space. This is important since this distribu-
tion determines the domain-boundary network formed
after the initial exponential growth is stopped by the
competition between domains. The further growth kinet-
ics will now proceed by the decrease of the length of the
boundaries. The nature of the boundaries is therefore po-
tentially important for determining growth universality
classes. The boundary energy between two crystalline
domains will in general depend on the relative orientation
of the domains and the orientation of the boundary. The
difference in energy of such boundaries is found not to be
important. For discrete order parameters the boundaries
are always piecewise straight, possibly "curved" with
kinks. However, for a continuous order parameter a
boundary can both be continuously curved or be straight.
If a kink on a straight boundary is energetically or proba-
bilistically very unfavorable to create we have the in-
teresting situation with a mixture where all boundaries
are either perfectly straight or continuously curved. Our
model shows this feature. Experimental examples of such
straight boundaries are stacking faults or twin faults ter-
minated by smooth, curved boundaries. In agreement
with the Allen-Cahn theory the straight boundaries can-
not move as there is no driving force. This prevents a de-
crease of the length and hence of the excess energy stored
in the connecting curved boundaries. The straight boun-
daries represent a kind of time dependent pinning effect,
which systematically disappears. This gives rise to a sys-
tematically slower decrease of the excess energy t " with
an exponent n =

4 instead of the expected Allen-Cahn ex-

ponent n =
—,'. Our model shows this behavior and led us

to define the new universality class with n =
—,
' first

discovered by Mouritsen, ' ' ' as a singular limit of the
Allen-Cahn theory, namely for the case of mixed boun-
daries with finite and exactly zero curvature and no
kinks. Several different examples of this class have been
found in computer simulations, but previously the effect
was attributed to some effect of the softness or finite
width of the boundaries. ' This was difficult to under-
stand and much disputed. ' We find that the width is
not a crucial feature as such, in agreement with the care-
ful study by Mouritsen and Praestgaard. '

However, here we have pointed out that the crucial
feature in the models is the pinning effect of straight
boundaries and the interrelated decrease of the length of
domain boundaries. The effect of this pinning should
weaken at higher temperature. ' We suggest this is due
to higher probability for formation, of kinks on the
straight boundaries (roughening), thereby providing a
mechanism for these to move. It is interesting that in the
isotropic discrete order parameter models (Ising, Potts)
one finds n =

—,'. This is because in this case there is no in-
terrelation between the boundary movements, which
proceed by independent random walks of kinks along the
boundaries, and the kinks cannot accumulate themselves
in curved boundaries.

We conclude that the growth kinetics for noncon-
served order parameter must be subdivided in at least two
classes with algebraic time evolution t " with different
exponent n =

—,
' and n = 4. The first represents indepen-

dent domain-wall movements, the latter hierarchy
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domain-wall movement where the slower domain growth
is due to time dependent self-pinning, operative at low
temperatures. There are additional features which can
slow down the approach to equilibrium even further, ex-
perimentally, in particular for p &d +1. These are pin-
ning centers, either intrinsic ones formed by the domain
boundary network itself, or for the model extrinsic ones
formed by impurities, lattice faults or other defects. It is
possible one could define a further classification for these
cases. We will discuss this further in a subsequent publi-
cation.
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APPENDIX: FAST MONTE CARLO METHOD
FOR STUDYING DOMAIN GROWTH

In this Appendix we describe an optimized eSciency
Monte Carlo algorithm for simulating the dynamics of
the domain-growth process. It is very time consuming if
every spin in the system is being asked to Aip in every
Monte Carlo step, even a spin well inside an ordered
domain where the Rip probability is extremely small. We
utilized this observation. The method is very close to the
original scheme introduced by Metropolis et al. , but is
optimized to study the late-time stages of the ordering
process which follows a deep quench through the transi-
tion temperature from T = ~ to a very low temperature.

The dynamics of the model is given by a stochastic in-
teraction with a heat bath via single-site Glauber-type ex-
citation with a probability W;. to change from the state i
to the state j. Given the continuous nature of the spin
variable S, we have updated spins sequentally in order to
allow spin-wave-type excitations to occur more easily at
low temperature. In a standard Metropolis procedure
W,- is defined in such a way that a spin i changes depend-
ing on the Boltzman factor. That is

—AE, /k~T
e ", hE;. )0

W;J—

where AE, is the change in energy due to the randomly
chosen change of the state of a spin from S;~S . An at-
tempt is accepted when AE;~ &0. When 6; 0 the at-
tempt is accepted only if W exceeds a random number
between 0 and l. One Monte Carlo step (MCS)—the
unit of time —is then defined as N attempts to change the
state of all X individual spins. After the domain struc-
ture is formed, we have tested that for a spin mell inside a
domain the probability for an accepted change of state is
only 1%. To utilize this we proceed in the following way.
Only for one MCS out of 100 MCS, we ask and update all
spins with the standard Metropolis procedure described

above, whereas during the other 99 MCS we will visit all
the spins but ask and update only those found to be in a
disordered surrounding, called nonordered spins. This
allows us to keep the same definition for the unit of time
MCS. All such nonordered spins are plotted in the
figures (3, 5, 7, 9, 10) of the configurations. They are
those close to a boundary, those having an x component
~S„~ (1—b, and also those for which the four neighbors
are slightly disordered so that g; ~S„;~

(4 3b„h—ere b, is a
parameter measuring the deviation of the order parame-
ter (S (T)) from the saturation value (S,(T=0))= l.

We call this method a "deviating-spins-algorithm"
(DSA) and it is at least twice as fast as standard Metropo-
lis algorithm, yet having the same Monte Carlo time unit
(MCS). We have performed several test runs using the
full Hamiltonian [Eq. (I)] and the results are shown in
Fig. 16. In all the cases the evolution starts from the
same random, disordered configuration.

The cases are the following: (a) Metropolis, corre-
sponding to asking sequentially all the particles and up-
dating them according to the standard Metropolis
scheme; (b) Metropolis, all particles corresponding to the
case (a), but the random number generator is called every
time even when not used for AE;J &0. Therefore, the
used sequence of random numbers is different from the
previous case (a). This is done to assure strict compar-
ison with the following fast DSA method. In case (c) the
same initial random configuration evolves according to
the deviating-spin-algorithm and with exactly the same
sequence of random numbers as used in case (b). We
have plotted these three evolutions until 2000 MCS.

Any difference between (b) and (c) is then due to the
optimization of the updating process. The difference be-
tween (a) and (b) is due to the different sequence of ran-
dom numbers for the standard Metropolis algorithm. In
all the cases the agreement is very good. There is no sys-
tematic deviation between the fast DSA and the full up-
dating method. Furthermore the maximum deviation ob-
served between them is smaller than the spread found us-
ing different random numbers for the standard Metropo-
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FIG. 16. Monte Carlo calculation of the excess energy using
diff'erent algorithms as indicated, see text. 0 and E represent re-
sults of the fast deviating-spins algorithm, compared with the
standard Metropolis algorithm 0 and o.
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lis algorithm. We have analyzed the effect on the evolu-
tion of the choice of the 6 parameter, which defines the
nonordered spins. In case (d) for t )2000 MCS the
deviating-spins algorithm is tested to be identical for
three slightly different values of the 5 parameter
5=0.015, b, =0.017, and b, =0.020, starting from the (h)
configuration at t =2000 MCS. We compare these runs
(b, ) with the standard metropolis algorithm (O). The

agreement is very good. %'e have in this study always
used the value 6=0.015.

From this test we conclude that the deviating-spins al-
gorithm does not introduce any systematic change in the
evolution and can be used to reach very late stages in the
evolution of the domain-growth process costing less than
a half of the computer time required for the standard
Metropolis algorithm.
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