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We report on a numerical study of the two-dimensional Hubbard model and describe two new al-

gorithms for the simulation of many-electron systems. These algorithms allow one to carry out
simulations within the grand canonical ensemble at significantly lower temperatures than had previ-
ously been obtained and to calculate ground-state properties with fixed numbers of electrons. We
present results for the two-dimerisional Hubbard model with half- and quarter-filled bands. Our re-
sults support the existence of long-range antiferromagnetic order in the ground state at half-filling
and its absence at quarter-filling. Results for the magnetic susceptibility and the momentum occu-
pation along with an upper bound to the spin-wave spectrum are given. We find evidence for an at-
tractive effective d-wave pairing interaction near half-filling but have not found evidence for a phase
transition to a superconducting state.

I. INTRODUCTION

In this paper we report on a numerical study of the
two-dimensional Hubbard model. We present and make
use of two new algorithms for the simulation of many-
electron systems which make use of matrix-
decomposition methods to stabilize the calculation of fer-
mion determinants and Green's functions. One of the al-
gorithms allows simulations within the grand canonical
ensemble to be performed at significantly lower tempera-
tures than have previously been obtained. The other al-
lows direct calculations of ground-state properties of sys-
tems with fixed numbers of electrons. '

A major problem in the numerical simulation of
many-electron systems has been to carry out calculations
at sufIiciently low temperatures. The problems is essen-
tially one of energy scales. The collective phenomena of
interest, such as magnetism or superconductivity, have
characteristic energy scales 10 to 1,000 times smaller
than the bandwidth or Coulomb interaction strength.
The difhculty in achieving temperatures low enough to
probe these energy scales is the need to evaluate repeated-
ly the determinant or inverse of a fermion matrix that be-
comes increasingly ill-conditioned as the temperature is
lowered. Indeed, the fermion matrix has eigenvalues
which grow exponentially with the inverse temperature,
P. These eigenvalues are associated with low-lying nega-
tive energy states which are rarely unfilled. On the other
hand, for the grand canonical ensemble the fermion ma-
trix has eigenvalues quite close to one, associated with
states having large positive energy, which are rarely oc-
cupied. Of course, such a wide range of eigenvalues
creates considerable difFiculty in the numerical evaluation
of the determinant or inverse of the fermion matrix.

Recently, algorithms have been developed which allow
simulations to be carried out within the grand canonical
ensemble at low temperatures. In these approaches the
original fermion matrix, which has dimension equal to
the spatial volume of the lattice, V, is replaced by a
larger, but generally better conditioned matrix. Since the
computer time needed to calculate the determinant or in-
verse of a ferrnion matrix grows rapidly with its dimen-
sion, these algorithms tend to be slow at low tempera-
tures. In this paper we describe a new algorithm for the
grand canonical ensemble which allows us to work direct-
ly with the V-dimensional fermion matrix. Through the
use of matrix-decomposition methods, this algorithm
deals directly with the causes of the ill-conditioning, and
remains stable at arbitrarily low temperatures. For tem-
peratures 10 to 10 times the bandwidth, it is
significantly faster than the algorithms of Ref. 2, and it
has allowed us to perform simulations at significantly
lower temperatures than have been previously reported.
We also present a Monte Carlo algorithm for calculating
ground-state properties which uses the same stabilization
methods. This algorithm uses a fermion matrix of dimen-
sion equal to the number of electrons being simulated,
and may have a significant advantage for low-density
band fillings. However, for higher densities within the
parameter regions we have studied, it is faster to obtain
zero-temperature results using the grand-canonical en-
semble at low temperatures, than it is to use the ground-
state algorithm.

Our development of these algorithms was stimulated
by the work of Sugiyama and Koonin and of Sorella
et al. , who recently reported on simulations of ground-
state properties of the two-dimensional Hubbard model.
Their algorithm uses Langevin dynamics to project out
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the ground state from a trial state with a fixed number of
electrons. A key elements in their algorithm is the use of
an orthogonalization procedure to separate the diverse
energy scales that are present in the fermion matrix, and
thereby stabilize their calculation. We use a similar or-
thogona1ization procedure to stabilize the calculation of
the fermion matrices. Our zero-temperature approach
differs from that of Sorella et al. in that it makes use of
an exact updating, Monte Carlo method which avoids the
finite step-size errors inherent in the Langevin equations.
The grand-canonical algorithm furthers differs from the
approach of Sorella et ah. in that it allows calculations at
finite temperature.

In Sec. II we introduce our algorithms by applying
them to the two-dimensional Hubbard model. In Sec. III
we give results for energies, momentum occupation, and
various equal-time correlation functions for both half-
filling, ( n ) = 1.0, and quarter-filling, ( n ) =0.5. Low-
temperature limits of the grand canonical ensemble are
compared with zero-temperature results for fixed num-
bers of electrons. For the half-filled band our simulations
are performed on large enough lattices to allow an extra-
polation to the infinite system. We find evidence for
long-range antiferromagnetic order in the ground state,
in agreement with previous work of Hirsch and Tang.
Near half-filling we find evidence for an attractive
effective d-wave pairing interaction, but not for a phase
transition to a superconduction state. The problem asso-
ciated with the sign of the fermion determinants for the
non-half-filled band is also discussed. With the low-
temperature stability of the new algorithm, this is the
only major problem remaining in the simulation of
many-electron systems.

II. THE ALGORITHMS

A. The grand-canonical ensemble

The basic approach for simulating the grand-canonical
ensemble was formulated some time ago, but we outline
it here in order to make this paper reasonably self-
contained. The expectation value of a physical observ-
able, 0, is given by

Tr(Oe ~ )

Tr(e ~ )

where P is the inverse temperature, and I is the Hamil-
tonian. For the Hubbard model

H= t g —(c,tc +etc; )
(ij ),o.

+ U g (n, + —
—,
' )(n; —

—,
'

)
—p g (n, ++n, ) .

Here c; and c; are the creation and annihilation opera-
tors for electrons with a z component of spin o. at lattice
site i, and n; =c,"c; . The sum (ij ) is over all pairs of
nearest neighbor lattice sites. t is the hopping parameter,
p the chemical potential, and U the Coulomb coupling
constant, which we take to be positive.

In order to perform a numerical simulation, we must
first carry out the traces over the fermion degrees of free-

dom. To this end we introduce a small imaginary-time
step, hr by writing 13=3.rL. The partition function can
then be written in the form

Z = Tr(e ~~ H) Tr(e a~~e ~~
) (3)

with

and

K= t g—(c; cj +circ; )
(ij ),o

—p g (n, ++n, )= g ct k,"c,
i (ij ),o

V=UQ(n, + —
—,')(n, —

—,') .

(4)

at each lattice point, i, and each imaginary-time slice, l.
A. is defined by the relation cosh(brA, )= exp(AALU/2).
The transformation reduces the quartic self-interaction of
the electrons to a quadratic interaction with the
Hubbard-Stratonovich spin field, s;1. As a result, the
trace over electron degrees of freedom can be performed
yielding

Z = g detM+ detM
s,. =+1

with

and

M =I +BLBL i, . . . , B i

~ + b, wk, v(1)e —6~k
1

—e

I is the VX V unit matrix and v(l);J. =5;~s; &. There is, of
course, an analogous expression for the trace in the
numerator of Eq. (1). The physical observable, 0, ordi-
narily can be expressed in terms of Green's functions for
the electrons propagating through the field s;1, that is in
terms of the matrix of 1/M .

Once the trace over the electron degrees of freedom
has been performed, we can use standard Monte Carlo
techniques to evaluate the right-hand side of Eq. (1). We
wish to obtain a sequence of spin configurations, (s; & I,
with a probability distribution Z ' detM+ detM . To
this end, we sweep through the lattice many times updat-
ing one spin variable at a time. Notice that the deter-
minant of M is unchanged by a cyclic permutation of
the B1 . So in order to update the spins on the I'" time
slice we write

The Trotter formula used in Eq. (3) introduces errors in
measured quantities of order b,H. This is the only
source of systematic error in the calculations other than
that caused by roundoff errors. The interaction terms,
exp( —hr V), can be made quadratic in the fermion
creation and annihilation operators by introducing
Hirsch's discrete Hubbard-Stratonovich transformation

—b, wU(n. ——)(n. ——)
1 1

8 i+ 2 i—

—b~U/4 ]
—Z&s, X(n,. + —n,. )=e e
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detM = det(I+BP, . . . , B&BL, . . . , B~+~)
= det[I+ A (I)] . (10)

+2h~ks. ((i, l)p—, =5;5q;(e "—1) . (12)

The ratio of determinants after and before the spin Aip is
I

R = de™= d et[I +6 (l)A (i, l)A (l)]
detM

= 1+[1—6 (I),, ]b, (i, I);; .

6 (l) is the equal-time Green's function for an electron
propagating through the field produced by the s; &.

6 (I);.=(T[c; (lb')ct (lb')]}
=[I+A (l)],"' . (14)

Thus the calculation of the determinant ratios needed to
carry out an individual Monte Carlo step is trivial pro-
vided one can evaluate the equal-time Green's functions.

If the equal-time Green's function 6 (I) is known, and
the spin s; &

is fiipped, then its new value, 6 (I)', can be
evaluated through the relation

G (l)'=6 (l) —G (1)b, (i, l)A (l)G (l)'

Now in order to update the spin variable s; &
using any

standard algorithm, such as heat bath or Metropolis, we
must calculate the change in the fermiori determinants
when s,- &

~—s; &. Under this change,

A (I)-+ A (l)' =['I + b, (i, l)) A (l),
where 6 (i, 1) is a matrix with only one nonzero element,

—UoD 0R 0'
1 1 (17)

where U& is an orthogona1 matrix, D, a diagonal matrix,
and R

&
a right triangular matrix with diagonal elements

equal to one. The orthogona1 matrix U, is necessarily
well conditioned; a priori, R

&
need not be well condi-

tioned, but in practice it is. Only the diagonal matrix D
&

has large variations in the size of its elements.
We next form

date tens of thousands of spins without accumulating nu-
merical errors. On the other hand, the process of ad-
vancing the equal-time Green's function to a new time
slice given in Eq. (16) does introduce numerical errors, so
one must periodically recompute the Green's function
from scratch. In order to do so, one must compute the
matrices A (l) to sufficient accuracy to incorporate in-
formation concerning its small eigenvalues. This be-
comes increasingly dificult as the temperature is lowered.
For example, for the two-dimensional Hubbard model
with U =0, the A (1) have eigenvalues as large as
exp(4tp} and as small as exp( —4tp}. Since we are in-
terested in performing simulations for p at least as large
as 20/t, it is clear that we must separate the contribu-
tions from the large and small eigenvalues, or else the
latter will be completely swamped by round-off errors.

This problem can be dealt with in a relatively straight-
forward manner using matrix factorization methods. '"
Suppose that one can multiply m of the B& without los-
ing numerical accuracy. We then use the Gram-Schmidt
orthogonalization procedure to write this product in the
form

a, (I)=By+ BP+ i, . . . , BP+

6 (I )b, (i, l)[I—6 (I) ]
[1+[1—G (l),, ]h (i, l);;]

(15) a~ (l) =Bp+2, . . . , B(+,

Since b, (i, I) has only one nonzero element, there is really
no matrix multiplication in Eq. (15), and it takes V
operations to update the VX V matrix, 6 (l), after a spin
is Aipped.

After all the spins on a given time slice have been up-
dated, we can obtain the equal-time Green's functions on
the next time slice through the relations

6 (l +1 ) = 8~+6 (l)B~ ~,'

Since the B& are sparse matrices, ' this operations takes
of order V numerical operations.

We have now assembled all of the ingredients neces-
sary to carry out a simulation. Indeed, this a1gorithm has
been used to study a wide variety of many-electron mod-
els. Since the computing time scales as V, its use has
been restricted to one- and two-dimensional systems, and
small three-dimensiona1 ones. In past applications of the
algorithm, numerical instabilities have prevented its use
at low temperatures. For example, in the case of the
two-dimensional Hubbard model, one is restricted to
p~ 4/r for moderate values of U. In order to remove
these instabilities, we must first understand their cause.
They are not associated with the updating of the equal-
time Green's function given in Eq. (15). Indeed, we have
found that by staying on the same time slice one can up-

/+2m& ' '
& /+~+} & ]

U0 D c7R 0'
(18)

The order of operations in Eq. (18) is important. We first
multiply U, by B)+2, . . . , B(+ +, . By assumption, m
is small enough so that this matrix can be computed ac-
curately. We then multiply it on the right by D&. This
only rescales the columns of the matrix, and thus does no
harm to the numerical stability of the next step, a UDR
decomposition of this partial product. We then multiply
the resulting triangular matrix on the right by R

&
to ob-

tain the last line of Eq. (18). This process is repeated
L/m times to obtain

A (I)=aL
& (I)= UL t DZ I RL& (19)

=ULi (ULi 'RL) '+DL) )Rr i
=UD R (20)

In order to go from the second to third line of Eq. (20),

To form G (I) ', we must add the unit matrix to
A (l). Care must be taken to isolate the diagonal matrix
DL &, whose elements have large variations in size. We
therefore write

6 (I) '=I+ A (I)
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we have made a final UDR decomposition of the quantity
in square brackets. This decomposition is numerically
stable because the large and small matrix elements are
again separated. The formation of G (l) from the last
line of Eq. (20) is, of course, trivial. We have tested the
numerical stability of our method for evaluating G (I)
for values of tp as large as 100 without encountering
problems.

We conclude this discussion by examining the scaling
of the simulation time with respect to lattice size and
temperature. The most time consuming step in the
Monte Carlo process, aside from the occasional ab initio
calculation of the equal-time Green s functions, is their
updating via Eq. (15), which requires of order V opera-
tions. Therefore, the computer time required to update
each of the VL, spin variables is proportional to V L.
Just as it is possible to multiply m of the B& matrices
without losing numerical accuracy, it is also possible to
advance the Green's functions to a new time slice, using
Eq. (16), m' times without introducing unacceptable er-
rors. Thus, one must completely recalculate the Green's
functions L/m' times per lattice sweep. Since the UDR
decomposition requires V operations, the ab initio calcu-
lation of the Green's functions takes of order

V (L/m')(L/m)= V (L/m)

operations per sweep. We find that m and m ' are roughly
equal and relatively independent of temperature; requir-
ing them ~1.5 provides a good margin of safety on a
computer with 64-bit precision. As a result, if for U =4
we set br=(8t) ', which results in a systematic error

- from the Trotter approximation of a few percent, the
times spent updating the spins and the time spent in the
recomputation of the Green's function are comparable
for p of order 20/t. For inverse temperatures less than
this, the V L term dominates and the computer times
scales approximately linearly with p. Of course at very
low temperatures it will scale like p, but as we will now
discuss, we would then use a rather different approach.

B. Zero-temperature algorithm

It is possible to use the techniques just described to
directly calculate the ground-state properties of systems

(21)

In order to evaluate the right-hand side of Eq. (21) sto-
chastically, we write y+y'=E~L, and use the Trotter
approximation of Eq. (3) and the Hubbard-Stratonovich
transformation of Eq. (6) to again integrate out the fer-
mion degrees of freedom. We take the state

~ go & to be ei-
ther one in which the electrons with z component of spin
o. are localized on sites i, , . . . , i or a filled Fermi sea,
the correct ground state for U =0. Then we can write

&fo~e '"+r ' ~go&= gdetA+ detA (22)

where

~jk (BL»B1 ljk (23)

and the indices j and k are restricted to run over
i &, . . . ,i, so the A are N XN matrices.

In order to carry out the simulation we must generate
a set of spin configurations distributed as det A + det A
The procedure is basically the same as for the grand-
canonical ensemble. Let us imagine updating spins on
time slices nm +1 to (n +1)m. Again making use of suc-
cessive Gram-Schmidt orthogonalizations, we can write

A =Lr Dr Ur B(„+))~,. . . , B„~+iURDRR (24)

where U~ is a VXN matrix whose columns are mutual-
ly orthogonal, and U~ and N X V matrix whose rows are
mutually orthogonal. Dz z are N XN diagonal ma-
trices, and Rz and L~ are N XN right and left triangu-
lar matrices with unit diagonal elements. Once more, the
diagonal matrices are the only ones with large variations
in the size of their matrix elements. Suppose we update
s; &, where (n + 1)m ~ l ~ nm+ 1. If this spin is fiipped,
then A -~A with

with a fixed number of electrons. Let us denote by ~ %o &

the ground-state wave function for N+ spin up electrons
and N spin down ones, and by ~$0&, a trial state that
has a nonzero overlap with ~%0&. Then the ground-state
expectation value of a physical observable, 0, can be,
written in the form

I

+L~Dr Ur. B~„+&~~, . . . , BP+, 6 (i, l)BP, . . . , B„~+&UÃ DZFRR

+Lr Dr Wr b, (i, l) Wg Dg Rg

b, (i, 1) is again given by Eq. (12). The determinant ratio needed to make the decision on fiipping the spin is

d tAR = = det[I+ j Wr Wg J 'Wr 6 (i, l)Wg ]detA

(25)

(26)

Notice that R is independent of the matrices Dr z, Rg, and Lr . In addition, note that the last line of Eq.(26) cannot
be simplified further because the 8'z ~ are not square matrices.

With the use of Eq. (26) the updating steps can be performed trivially if one knows [ Wf Wg ) ', which plays a role
analogous to that of the equal-time Green's function in the simulation of the grand-canonical ensemble. If s,- &

is Ripped,
then S'z remains unchanged and
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Wg ~[I+6, (i, l)]Wg= Wg

We then see that

[WI. Wii I '=[Wl WgI
' —

I Wl Wg I 'Wl 6 (i, l)W [W W ]

(27)

(28)

The updating of I WI JYg J can therefore be carried out in
(N ) steps. In moving from the l to the l+1 times slice,
8'~ ~B)+,8'~ and 8'L ~ 8 I.B)+]', while W~ W~ and
its inverse remain unchanged.

Suppose we begin on the first time slice and update
spins in the direction of increasing /. After updating the
first m slices we must make a UDR decomposition of
B, . . . , B, . After updating the next m time slices we
make a UDA decomposition of B2, . . . , B, , and so
forth. We save each of these. After updating all time
slices we work back in the direction of decreasing l.
As we do so, we make I.D U decornpositions of
BL, . . . , BL +, , etc., and store these also. At any one
time we need to store a total of L jm decomposed ma-
trices. However, we need only make one decomposition
for each block of m time slices that we update. As a re-
sult, we use of order

[(N+) +(N ) ](L jm)

numerical operations per sweep of the lattice in perform-
ing I.DU or UDA decompositions. We also use of order

[(N+) +(X ) ]L

operations in the updating process including the updating
of the inverse matrix via Eq. (28). Thus, the operation
count for this algorithm truly scales linearly with P.

order in t/U the Hubbard model is equivalent to ari anti-
ferromagnetic Heisenberg model with Hamiltonian

(29)

where ( ij ) denotes nearest neighbors and J=4t jU
Even for moderate U, simulations have shown strong an-
tiferromagnetic correlations. For the Heisenberg model,
recent Monte Carlo simulations strongly support the
view that there is long-range order in the ground state. '

Simulations also suggest that the ground state of the
Hubbard model with finite U has long-range order. '
Our present results confirm this. For example, staggered
spin correlations are clearly visible in Fig. 1(a), which

10x10, U=4, (n)=1, P=10

0.5

III. NUMERICAL RESULTS

The one-band Hubbard model represents an excellent
testing ground for new Monte Carlo algorithms. Not
only are the physical properties of this model of great
current interest, but in addition there are a variety of re-
sults available for comparison. Here we apply the algo-
rithms described above to the two-dimensional Hubbard
model at half-filling, (n) =1.0, and at quarter-filling,
(n &=0.S.

A. Half-filled band

l I l I

(0,0)
1

I

f I I I I I l

(4.4)

8xB, U=4, (n)=0.5, P=10

(0,0)

As has been noted in previous studies, ' ' for some
configurations the determinants detM+ and detM in
Eq. (7) can be negative. In the half-filled Hubbard model,
however, particle-hole symmetry implies that the product
detM+ detM is never negative. ' Off half-filling the
product is negative for some configurations, and one
must use

~

detM+ detM
~

as the probability distribution
for the Monte Carlo simulation. As we show in the next
section, this can limit the temperatures that can be
reached at some fiHings. However, at half-filling with the
algorithm described above, computer time appears to be
the only limitation to the size of the lattice and the tem-
perature that can be simulated.

At half-filling, in the strong coupling limit, to second

E

(o,o) (4,o)

(0,0) (4,0) (4 4) (0,0)
FIG. 1. Spin-spin correlation function c {l, l~ ). The horizon-

tal axis traces out the triangular path showing in the center of
the figure. Strong antiferrornagnetic correlations are visible in
{a), which is for a half-filled band, but are nearly absent in {b),
which is at quarter-filling.
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shows the spin-spin correlation function

1 I„+I
«x~l« =

N g( —1)" «((n, +it n—, +i.t)(n;t n—;t))
I

I I I I I I I I I I I ) I I

U=4, &n&=i

(30) 10

S(q)= ge'q'c(l, l ),
I

(31)

which is plotted in Fig. 2 for (n ) =1.0 with q„=q . For
a half-filled band, S(q) peaks at q=(m, m ), and S(m., m. ) is
plotted in Fig. 3 versus P for various sized lattices. The
zero-temperature canonical ensemble results are shown as
the symbols at P=22. From the figure we see that for the
attice sizes shown, by the time the inverse temperature P

is 10 to 15, the system has very nearly reached the
ground state. In the zero-temperature algorithm the
effective temperature y+y' in Eq. (21) needed for the
system to be in the ground state depends on the trial state

roug yused, but is typically —30. The value of P rou hl
twice that of the grand-canonical method because the ex-
pectation value of the operator 0 in Eq. (21) is evaluated
in the state e r ~~), and projects out the ground state
with an efFective temperature y. The strengths of the
zero-temperature method appear to lie in doing low-
density calculations and in problems where it is necessary
to precisely set the number of particles. In practice, over
the range of temperatures and band fillings we have stud-

for a 10X 10 lattice withU=4, t =1, and P=16. (In all
our results t = 1.) Except where otherwise noted, the cal-
cu ations were done using the grand-canonical algorithm
with 5~=0. 125, which resulted in systematic errors of a
few percent. At P=16, the correlation length is clearly
much larger than the 10X10 lattice. In contrast, stag-
gered spin-spin correlations are nearly absent in the
quarter-filled results shown in Fig. 1(b). The Fourier
transform of this correlation functions is the structure
factor

O
0 5 10 15 20

FIG. 3. The antiferromagnetic structure factor S(~,~) as a
function of inverse temperature for a variety of lattice sizes
The pomts at P=22 were done with the zero-temperature, fixed
particle number algorithm, while the rest were obtained with
the grand-canonical algorithm.

ied, it is faster to obtain zero-temperature results by using
the grand-canonical method at low temperature than the
zero-temperature method. For the rest of the results
present here the grand-canonical method was used.

From Fig. 3 it is clear that the zero-temperature extra-
polation of S(rr, rr) increases with lattice size. Within
spin-wave theory,

S(nn) m 1

N 3
(32)

with m the antiferromagnetic order parameter. This or-
der parameter can also be obtained by extrapolating to
infinite lattice size the zero-temperature limit of the spin-
spin correlation function between the two most distant
points on a lattice c(N /2, N /2). Again, according to
spin-wave theory,

2

c(N /2, N /2)= +0
&N

(33)

10

0
q„

FICi. 2. The magnetic correlation function S(q) for q =q„at
half-filling. The function is sharply peaked at q =(~,m).

with N=N„. Using these forms, Eqs. (32) and (33), re-
sults for S (m, m )/N and c (N„/2, N /2) are plotted
versus N ' =X„' in Fig. 4. The values of m which
are obtained agree with each other (within statistical er-
rors) as well as with the results reported in Ref. 13.

In Fig. 5 we show the total energy per site as a function
of P for lattices ranging in size from 4X4 to 12X12.
These lattices are of sufficient size to allow us to obtain
the ground-state energy of the infinite system by extrapo-
lation. The statistical errors for the energy are
sufficiently small that systematic errors associated with
finite h~ become important. For that reason, we repeated
some of the calculations shown in Fig. 5 for b,~=0. 167
and 0.083. To a very good approximation, the error in
the energy behaved as b~, as expected. Furthermore,
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U=4, &n&=-1 8/N

0.1

0 I I I I I I I I I I I I'0 0.1 0.2 0.3

FIG. 4. Plots of S(m., m)/N (circles) and c(N„/2, N /2) (tri-
angles ) vs 1/N . The data was taken from grand-canonical
runs at P~ 16. The lines are least-squares fits to the data. The
extrapolation of these fits to the infinite system are shown as the
solid symbols.

vertical axis by 0.03. The vertical axis on the right is la-
beled with this correction, and the extrapolated infinite-
system result is indicated. A similar fit was performed
for the kinetic energy alone. The extrapolated kinetic en-
ergy was Ek(0, ~ ) = —1.368+0.001.

For moderate values of U, the staggered order parame-
ter m is reduced by both the zero point spin Auctuations
and charge fluctuations. The charge fluctuations also
reduce the size of the local spin moment. The squared
local moment ((n, + —n. , ) ) is plotted versus U in Fig.
6(a), and the related double occupancy (n;+n; ) is
shown in Fig. 6(b). Clearly, as U increases, a local mo-
ment is formed and the double occupancy of a site de-
creases. At the same time, we expect the effective one-
electron transfer to decrease. A measure of this reduc-
tion is given by the ratio of the ground-state expectation
values of (c; c +cj c, ) in the presence of the interac-
tion U to its noninteracting value for U=O. A plot of
this ratio versus U for P= 16 on a 4 X 4 lattice is shown in
Fig. 7. This matrix element can also be obtained from

the coefficient of the A~ term did not appear to depend
on lattice size. From spin-wave theory' the finite-size
correction to the energy from the infinite-system limit is
proportional to N at T=O. By performing a least
squares fit to the form

1
I I I I I I I

E(br, N, )=E(0,~)+a, hr +a2N (34)

we extracted the ground-state energy per site for the
infinite system. The extrapolated energy was

E(0, ~ )= —0.864+0.001,
with a, = —1.95+0.04 and a2 = 1.59+0.13. Assuming
the A~ errors vary slowly with temperature, using these
results to correct for finite A~ in Fig. 5 would shift the

0.82 0.5
10
U

20

-og ~ ~ ~ | I ~ ~ ~ ~ I ~ ~ ~ ~ Lt -oar
5 10 15 , 20

p

Tot» energy & =Eq+ U(n+n ) vs p for a variety
of lattice sizes at half-filling. The runs shown have 6~=0. 125,
and these finite A~ results correspond to the vertical scale on the
left. Correcting the results to 6~=0 gives the scale on the right
(see the text). The point at p=21 is the extrapolation to T=O
for an infinite system.

0 I I I I I I I I I I I I I I I I

0 5 10 15 20
U

F&G. 6. (a) The squared local moment c (0,0) = ( (n;+—
n; ) ) and (b) the double occupancy ( n, + n, ) as a function

of U. As U increases, a local moment is formed and the double
occupancy of a site decreases.
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= 0.5—

to lead to an insulating state with a divergent compressi-
bility. The compressibility varies inversely with
B(n ) /t)p, which within our simulations appears to van-
ish at half-fiHing as T—+0. A second class of particle-hole
excitations involves fluctuations of the spins. In this case,
as T goes to zero, we expect these excitations to become
the spin waves of the insulating antiferromagnetic state.
A useful upper bound for the dispersion relation of these
excitations can be obtained from S(q) using a procedure
similar to Feynman's treatment of the density Auctua-
tions in 4He. '6

Consider the trial excited state

p
0 5 10 15 20

U

FIG. 7. Reduction in effective hopping as a function of U on
a 4X4 lattice for P=16. The solid line is a strong coupling re-
sult. The dashed line is obtained from perturbation theory.

the ground-state energy Eo by use of the Feynman-
Hellman relation

~y, & =s; ~y„&/& q, fs', s; ~q, ),
with

~ Po ) the exact ground state and

S'= g e'q'(n, t
—nit) .

1

Then the excitation energy of this state is

(q)=&q, IHIP', &
—&q Hlqo&

2 Eo
1 — /S (q),

3 X 4

(39)

(40)

(41)

1 ~Eo
(c; cj +cj. c; )=

2X Bt

Second-order perturbation theory gives

ff (c~cja+cj~ci cr ) U 'U AE2
'2

=1—

with

(35)

(36)

with (Eo/X) the ground-state energy per site and S(q)
the structure factor, Eq. (31). Figure 8 shows co(q) versus
q for a 10X10 lattice with U =4. As the size increases,
S (vr, ~) increases, driving the excitation energy co(rr, m ) to
zero and generating the expected spin-wave dispersion re-
lation.

We have also calculated the temperature dependence
of the q =0 magnetic susceptibility

2«o= —X Ek
k

y(T)= —g (n, t n, t) —T .1

I

(42)

1
b, sz=

kkq

Here,

f (Ek )f (Ek )[1 f (Ek+q )][1 —f (Ek.
q
)]-

~k +k' k+q k' —
q

4 [~(S, S, &~+-,']
(38)

Using the value for ~(S; SJ ) ~

=0.335 obtained for the
two-dimensional (2D) Heisenberg model by Reger and
Young, ' one finds the solid line plotted in Fig. 7. These
results clearly show that a repulsive Coulomb interaction
reduces the one-electron transfer and at the same time
gives rise to local moments.

In the half-filled Hubbard model, the particle-hole
charge-density Auctuations involve the creation of doubly
occupied and empty sites. These excitations involve an
energy gap set by U and at zero temperature are expected

Ek = —2t ( cosk„+ cosk~ )

and f is the Fermi factor. This result for t,ff/t is shown
as the dashed curve in Fig. 7. In the strong coupling lim-
it where (29) applies, the local moment (m,2) ~ 1 and

Figure 9 shows g versus T for 8X8 lattice with U=4.
The behavior of y( T) is similar to that expected for a
two-dimensional Heisenberg antiferromagnet. However,
for U/t =4, the moment is not fully developed [see Fig.
6(a)] and the itineracy and charge fiuctuations still play a
role.

B. Non-half-6lled band

( 0 sgnP ) ~p~0 (43)

where the subscript P and
~
P

~
indicate averages taken in

the distributions P(IsI ) and ~P((sI )~, respectively.
However, if the average sign, ( sgnP ) ~t ~, is close to zero,
this estimator for (0)j is very noisy. Figure 10 shows
the average sign versus (n ) for a various lattice sizes and
temperatures. The dramatic fall ofF'of the average sign as

As discussed above, when the Hubbard model is doped
oQ' of half-filling, the finite-temperature simulations be-
come more dificult because of sign problems. In cases
where the (unnormalized) probability distribution P( Is I )
is not positive-semidefinite, one uses ~P(Is])~ as the
probability distribution, and the expectation value of an
observable 0 is calculated as
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1.0

8X:8, U=4, &n)=1

represent the noninteracting Fermi distributions at
P=10. Qualitatively, the distribution for (n ) =1.0 is
broadened more by the interaction than for ( n ) =0.5

We have also studied the equal time d-wave pair-field
correlation function

(44)

with

0.5 —X citci+s& ~
5

2&N

0
0

q

FIG. 8. Spin-wave energy ~(q, q ) for a 10X10 lattice with
U=4. This dispersion relation is generated using a procedure
similar to Feynman's treatment of the density fluctuations in
4He.

Here, 5 sums over the four near neighbor sites of l and
( —I ) gives the + —+ —sign alternation characteristic
of a d-wave pairing amplitude. White et al. ' found that
by comparing susceptibilities with uncorrelated suscepti-
bilities (susceptibilities with the interaction vertex
moved), one can determine whether the eff'ective pairing
interaction is attractive or repulsive. The full and un-
correlated susceptibilities exhibit the same dressed
single-quasiparticle eAects: di6'erences between them are
due to the two-particle effective interaction. White et al.
found that near half-filling the d-wave susceptibility was

the system is doped away from half-filling makes it
diScult to calculate in the interesting filling regime
0.7((n ) (0.95. As shown, in this region the average
sign decreases as the spatial and temporal size of the lat-
tice increases. The peak at a filling of 0.625 for the 4X4
lattice is striking. This filling corresponds to the presence
of 10 particles, which for the noninteracting system just
fills the five lowest k states, leaving a gap to the next emp-
ty k state. '

Clearly, from Fig. 10 one finds that there is a negligible
sign problem for a quarter-filled band, (n ) =0.5. As
shown in Fig. 1(b), the staggered spin-spin correlations
are nearly absent for (n ) =0.5 and U =4. It is also in-
teresting to compare the single-particle momentum occu-
pation ( nk, ) = ( ck, ci„) for half-filling and quarter-filling.
Figures 11(a) and 11(b) show (nk, ) versus k=(k, k) for
an 8X8 lattice with U=4 and P=10 with fillings of
( n ) = 1.0 and 0.5, respectively. The dashed lines

R,

bQ
0 5N

V

0 0.5
&n)

Bx8, U=4, &n)=1

o
o 0.5

R.

p5
V

U=4. P=6

6w6
8x8

0
0.5

T

FIG. 9. The q=0 magnetic susceptibihty, y, as a function of
Ton an 8X8 lattice with U=4.

0 0.5
&n)

FIG. 10. (a) and (b) Average sign as a function of band-filling
for various lattice sizes and temperatures.
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FIG. 11. The momentum distribution n(k) for an 8X8 lat-
tice with U =4 and P=10 at (a) half-filling ((n ) =1.0) and (b)
quarter-filling ( ( n ) =0.S). The dashed curves are the U =0 re-
sults.

significantly enhanced. One can also compare the pair-
correlation functions D with their uncorrelated counter-
parts D. The uncorrelated pair-correlation functions cor-
responding to Dd is

IV. SUMMARY

In this paper we have introduced two algorithms which
use matrix-decomposition methods to remove the nurner-

Dd= g g (
—1) + G(l'+5', 1+5)G(l', I), (46)4~

where G(l', l)=(cI c& ). In Fig. 12 we show both D
and D versus ( n ) for a 4 X4 lattice. As in the case of the
d-wave pair-field susceptibility, Dd is enhanced over D
near half-filling. Unfortunately, the fillings where there is
enhancement correspond to the region where the sign
problem is worst for the simulation, so that very low tem-
peratures cannot be reached (except exactly at half-
filling). Hence, the question of whether the attractive in-
teraction ever leads to superconductivity remains open.

FIG. 12. d-wave pair correlation functions as a function of
band-filhng. The solid symbols show the full correlation func-
tions, while the open symbols show the corresponding uncorre-
lated form for which the interaction vertex is removed.

ical instabilities which have plagued simulations of
many-electron systems at very low temperatures, and we
have used these algorithms to study the properties of the
two-dimensional Hubbard model. The first algorithm
gives grand-canonical, finite-temperature results. The
second gives ground-state results for a fixed number of
electrons. Both algorithms can give ground-state results
at half-filling. The grand-canonical algorithm is useful at
all fillings, although sign problems, the biggest remaining
obstacle to simulations of many-electron systems, can
limit the temperatures which can be reached at some
fillings. Away from half-filling the ground-state algo-
rithm appears to have more limited usefulness, since sign
problems may become overwhelming before the ground
state is reached. The main benefit of the ground-state al-
gorithm may lie in problems where the number of parti-
cles must be set precisely, such as in determining energy
gaps. In addition, at very low fillings the ground-state al-

gorithm may be faster than the grand canonical, because
the dimension of the fermion matrix used is the number
of particles rather than the number of sites.

Our numerical results on the single-band Hubbard
model support previous conclusions concerning magnetic
properties. In particular, our results support the ex-
istence of long-range order in the ground state at half-
filling and the absence of long-range order at quarter-
filling. The magnetic susceptibility for a half-fi11ed band
with Ult =4 shows a temperature dependence similar to
that of a two-dimensional antiferromagnet. We have
determined the ground-state energy, and obtained an
upper bound to the spin wave excitation spectrum. At
one-quarter filling, the system appears to be nonmagnetic.
Near half-filling, fluctuations in the sign of the fermion
determinant make it difficult to perform simulations on
large lattices at low temperatures. We have given some
results showing how the average sign of the determinant
varies with filling, temperature, and lattice size. The be-
havior of the d-wave pair-field correlation function is
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consistent with an attractive d-wave pairing interaction
near half-filling.

ACKNOWI. KDGMKNTS

We would like to thank A. Moreo for discussions and
for providing most of the data on the 10X 10 and 12 X 12

lattices shown in Fig. 3. This work was supported in part
by National Science Foundation Grants Nos. PHY86-
14185, DMR 86-15454, and DMR 86-12860, by Depart-
ment of Energy Grant No. DE-FG03-88ER45197, and by
the San Diego Supercomputer Center. S.R.W. gratefully
acknowledges the support of IBM.

An initial report on this work was given by E. Y. Loh, J. E.
Gubernatis, R. T. Scalettar, S. R. White, and R. L. Sugar, in
Workshop on Interacting Electrons in Reduced Dimension,
edited by D. Baeriswyl and D. K. Campbell (Plenum, New
York, in press).

S. R. White, R. L. Sugar, and R. T. Scalettar, Phys. Rev. B 38,
11695 (1988);J. E. Hirsch, ibid. 38, 12023 (1988).

G. Sugiyama and S. E. Koonin, Ann. Phys. 168, 1 (1986).
4S. Sorella, S. Baroni, R. Car, and M. Parrinello, Europhys.

Lett. 8, 663 (1989); S. Sorella, E. Tosatti, S. Baroni, R. Car,
and M. Parrinello Int. J. Mod. Phys. B 1, 993 (1989).

5J. E. Hirsch and S. Tang (unpublished).
R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev.

D 24, 2278 (1981).
7M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).
R. M. Fye, Phys. Rev. B 33, 6271 (1986); R. M. Fye and R. T.

Scalettar, ibid. 36, 3833 (1987).
J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).

I We use the Trotter approximation to write exp( —A~E) as a
product of four sparse matrices. In the "checkerboard"

breakup we use, one of these matrices allows hopping be-
tween sites (i,i~) and sites (i + l, i~) with i even, a second
with i odd. The third and fourth matrices allow for hopping
between sites {i„,i~ ) and (i~,i~ + 1) with i~ even and odd.

' A detailed discussion of the use of matrix factorization
methods to compute fermion Green's functons for both the
grand-canonical ensemble and zero-temperature problems is
planned to be given by E. Y. Loh, J. E. Gubernatis, R. T. Sca-
lettar, S. R. White, and R. L. Sugar (unpublished).
J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).

. S. R. White and J. W. Wilkins, Phys. Rev. B 37, 5024 (1988).
~J. D. Reger and A. P. Young, Phys. Rev. B 37, 5978 (1988).

~5D. A. Huse, Phys. Rev. B 37, 2380 (1988).
R. P. Feynman, Phys. Rev. 94, 262 (1954).
S. Sorella has suggested that the sign problems appear to be
reduced at fillings corresponding to nondegenerate ground
states of the noninteracting systems (private communication).
S. R. White, D. J. Scalapino, R. L. Sugar, N. E. Bickers, and
R. T. Scalettar, Phys. Rev. B 39, 839 (1989).


