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A three-dimensional (30) generalization of the two-dimensional Kosterlitz real-space scaling pro-
cedure yields scaling equations for the 3D XY vortex-loop fugacity yl and loop coupling K&. These
agree with the equations obtained by Williams from helium phenomenology. A dominant diverging

loop diameter a —=e'=g = ~e~
' [e=(T—T, )/T, j controls the exponents for the helicity modulus

p, =~e, spin-spin correlation length ~g, specific heat a=2 —3v, and magnetic field response
y=2v, 5= —'v, 5=5. v is found by linearizing about a fixed point. For a loop core size a, small

compared to the diverging diameter, a, /g —+0, a "Gaussian" value v= —' results. An ansatz

a, (l) ~ a is made to represent the onset of screening from crinkled loops: a, (l)/a =(Kl ) with 0 the
3D self-avoiding walk exponent =0.6. This divergent-core ansatz [a,(l —)/g =0.57] yields the ex-

ponents v=0. 67, y = 1.34, 0.= —0.015. Monte Carlo results of Kohring et al. on vorticity suppres-
sion are discussed.

I. INTRODUCTION

Topological excitations (vortex points) are known to
drive the phase transition in two-dimensional (2D) planar
XY ferromagnets' and Josephson junction arrays. Real-
space scaling methods have been developed for these in-
teracting vortex points.

Recent work indicates that topological excitations
could play a role in a variety of other transitions. Monte
Carlo simulations of the three-dimensional (3D) X1'mod-
el show that a suppression of vorticity suppresses the
transition out of the ordered phase. This is consistent
with Feynman's conjecture of a vortex-loop mechanism
for the equivalent 3D superQuid transition. Similar
Monte Carlo (MC) work on the suppression of topologi-
cal excitations in 4D U(1) lattice gauge theories (mono-
poles) and in 3D O(3) Heisenberg ferromagnets (spin
hedgehogs), also shows a supression of the transition.

Topological excitations have also been conjectured to
play a role in the 3D solid melting transition, and in
liquid-crystal transitions. Vortex loops have been in-
voked in 3D lattice superconductor models, and
porous-media helium models. They may also play a role
in (2+1)D capacitive Josephson junction arrays, ' or the
universal resistive transition of granular superconduc-
tors. " In the context of high- T, superconductors,
resonating-valence-bond models have been mapped onto
U(1) lattice gauge theories. ' Vortex loops and (field-
induced) vortex-line wanderings have also been con-
sidered. '

The extension of 2D XY vortex-point scaling methods
to 3D XY vortex loops is thus possibly both of intrinsic
and general interest. In this work we attempt such an ex-
tension, following earlier work. ' '

Nelson and Fisher' have used a D —2 expansion on
the XY model to obtain generalized Kosterlitz scaling
equations, with a correlation length exponent
v= 1/2(D —2)' +O[(D —2)'/ ]. Using 3D helium II
phenomenology, Williams' has obtained similar equa-

tions, but with logarithmic corrections that depend on
the ratio of ring diameter a to a finite core size a„with
a, /a ~0 as a —=e'~ ~. He finds numerically that
v=0. 526 (between the Nelson-Fisher' v= —,

' and accept-
ed values of v=0. 67) and finds a critical coupling
Ko, '=0. 174, Ko, =0.348 in our notation.

In this paper, we use standard dual transformations,
following Savit, ' and Banks et al. ' to map the 3D XY
partition function with spin-spin coupling Ko onto that
for interacting integer-valued vortex loops. This is just a
convenient reexpression of the original variables, ' each
loop representing a toroid of spins. ' The possibility of a
vortex loop description of 3D XY critical behavior was
raised by, e.g. , Savit' and Halperin. ' A generalized
Kosterlitz procedure is used to sequentially integrate out
tumbling loops of diameter a, a+da in a low-fugacity
expansion. Scaling equations for the loop fugacities yI
and loop coupling KI follow, and are in agreement with
those of Williams. ' A free-energy scaling equation is
also obtained. Scaling effects in a quasiuniform magnetic
field are also considered. Although the derivation is for
circular loops, the equations may be more general.

From linearizing about a fixed point dy& /dl =0
=dKildl at some l=l —+ ~, one finds a diverging di-

I
ameter for the largest loop a =e =g 0:

~
e

~

' as
e—:( T T, ) /T, —+0. T—he exponent v controls the
specific heat and magnetic exponents, 0.=2—3v, y=2v,
b, =5v/2, f3=v/2, while 5=5. The exponent relations
hold.

The spin-spin correlation function is dual-transformed
to a loop partition function with imaginary test charges,
yielding a decay -e ~ with g'ccrc: the loop size
determines the correlation length. The helicity modulus
(or spin-wave stiffness or superfluid density) is similarly
determined, p, -g —~e~ .

A short-distance cutoff for the loop self-energy or
"core size" a, enters the scaling equations as a parame-
ter. For a core size a, (I ) relatively finite at transition,
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a, (l)/a ~0 as a —+ ~, we find v= —,', consistent with the
leading' (D —2).

The self-energy per loop segment (per coupling con-
stant), EI/K& =EI-in(a/a, ) appears as a useful parame-
ter. The critical exponent v can be written as a series
v= —,'[1+0(1/E& )], with E& ~~ for finite cores as

T~T, , but a constant for a divergent core.
We consider a divergent-core ansatz, a, (l ) ~ a as

l —I —+ oo, intended to represent the crinkling and
screening of large loops, not included in the simple scal-
ing analysis. The scale dependence enters through the
coupling constant, a, (l )/a =E&, where 8=0.6 is the 3D
self-avoiding walk exponent. One finds then
v=0. 67, y =1.34, and cx= —0.015 close to theoretical
3D XY and experimental helium values. With this ansatz
the fugacity at transition remains small, yI —+0.062, the

coupling is parameter independent, El ~0.3875, and

the loops at transition are (just barely) well defined,
a, (l )/g =0.57, & 1. The 3D XY transition tempera-
ture coupling is estimated as Ko(T, ) =0.453, fortuitously
close to series solution values of 0.454+0.001.

The paper is divided as follows. In Sec. II we outline
the standard dual transform of the 3D XF spin model to
a 3D vortex-loop model on a dual lattice. A separation of
link variables J„' '(r)=+1 on different loops L yields
loop-loop interactions (LWL') and self-energy (L =L')
or fugacity factors. The scaling equations for the fugaci-
ty yI and coupling Kl are obtained. Section III follows
conventional critical-point procedure by linearizing the
scaling equations around a fixed point and determining
the loop size (or correlation) exponent v from the eigen-
values of the stability matrix. The Appendix considers
the scaling of the dual-transformed correlation function
and helicity modulus, and the (J~ '(R)J„' '(0)) loop-
segment correlation. In Sec. IV the scaling equations are
generalized to include an external gauge field, chosen to
orient the spins quasiuniformly. The free energy appears
in scaled form, yielding exponents y, 4, and 5. For
nonzero fields h, loops are suppressed beyond a size
a& -h . Section V makes a physically motivated an-
satz for the core-size to loop-diameter ratio a, (l)/a for
large I —l ~~ loops. Exponent values follow. Analo-
gies to 2D XF behavior are noted. The results are dis-
cussed in Sec. VI, in the context of other systems.

exp Eo icos(b, „8;)

exp[ V( In„; I ]exp 2mi g n„;b,„8,
In„,. I P, l

(2.2)

where the Fourier label n„; =0,+1,+2, . . . is on the
bonds of the original lattice. Integrating over 0; gives

Z= X e""''ll (2.3)

Xexp 2nig J (.r)P„(r) (2.4)

where (ebP)„(r)—:g i e„,ib, ,Pi(r) is a discrete dual-
lattice curl. Here P„(r) is a dual-lattice continuum field
and J„(r) are the integer-valued vortex-loop variables

3

g b,„J„(r)=0, Vr (2.5)

and we will neglect improbable J„ that begin and end on
the boundaries. Throughout the paper, variables labeled
with a subscript, like 01 and n„;, are on the original lat-
tice; those with an argument like J (r) are on the dual
lattice.

The transformation so far is exact, but in a low-
temperature Lo ' expansion the Fourier coefficient is

V( )
~'/2I(..0Gaussian expanded, e '"'=e . Doing the P„(r)

with a Kronecker 6 loop constraint on n„;. It is more
convenient to consider low-temperature variables, replac-
ing n„; by the curl of dual-lattice bonds (see Fig. 1) to
satisfy the constraint as an identity. ' With a Poisson
summation formula

Z= g f dg„(r)exp[V(tekel])]
IJ (r)I

II. THE SCALING EQUATIONS

The 3D XY ferromagnet partition function for X pla-
nar spins —m & 8; & m on a cubic lattice is. dO,Z= ff f exp +IDIO g cos(b, 8,. )

=1 m 2&
(2.1)

where 5„ is a discrete derivative, and p=1,2, 3 a direc-
tional label in the positive axis directions, for each origi-
nal lattice site i. This also corresponds to a 3D Josephson
junction array. A standard dual transform' maps (2.1)
onto a vortex-loop' ' ""' partition function.

A Fourier expansion yields, following Savit, '

FIG. 1. Original-lattice points (dots), dual-lattice points
(crosses), and some bond variables (arrows). An original-lattice
bond can be written in terms of dual-lattice bonds, on edges of
the dual plaquette it pierces.
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integration, one obtains' ' ""
KpZ= g 'exp vr— g g J„(r)U(r r—')J„(r')

I J (r)I p= 1 rWr'

conflg

(2.6)

3

A„U(r r') =—4vr5„—„. ,
p=l

and asymptotically,

(2.7)

where the prime on the configuration sum denotes the
(2.5) loop constraint and U(r —r') is the 3D lattice
Green's function

Z= g 'exp

I
J(L)

I

config

mal g J„' '(r ) U(r r')—J' '(r')
LWL' p,

(Williams' has considered the latter value; his coupling
Cpis half ours, Ko '= ,'K—o ).We define a, —=a,'e ', absorb-

ing the loop-geometry-dependent cp into an efFective core
size a, .

It is convenient to absorb the minimum loop size ap
into the coupling, Kpap~Ep. Then the partition func-
tion is, at a general scale a, with I—:ln(a /ao ),

U(r r') =—ap

r r'/— (2.8)
g& (a&/a) &

al aL
Xy& exp m. K& —g ln

a a

Here ap is bare scale, related to the lattice constant that
is set equal to unity. Equation (2.6) is then a Biot-Savart
law for "topological currents" J„(r) with a sign fiip com-
ing from the pure imaginary coupling of (2.4) to the "to-
pological vector potential" P„(r ).

Labeling the different loops by L„ the vortex variables
can be divided into those that belong to a given loop, i.e.,
I J ( )I I I

J' '(r=r' ')) I. Here r' '=R' '+p'
where R' ' is an origin attached to a given loop L, from
which the segment position p' ' is measured. Restricting
ourselves to J„(r) =0,+1 for low-fugacity reasons,
branched loops are forbidden. For circular loops, R' ' is
conveniently chosen as the loop center. Then the J-J in-
teraction in (2.6) splits into a self-energy J' ' —J' ' part
and a loop-loop J' ' —J' ' interaction part, L WL '.
Equation (2.5) is satisfied for each loop,

(2.11)

—HKpln(ap/a )
y e 0 0 (2.12)

The sum over loop configurations, for N„t circular loops,
is written as a configuration integral over loop centers
and extents,

where now U(r r')=1—/~r r', and a—ll distances are
scaled in a general minimum loop diameter a. At the ini-
tial step of the scaling procedure, a =ap, I=O, and the
bare fugacity that carried explicit scale dependence is

3

b J„' '(r)=0, VL, r .
p=l

(2.9)

For large, circular loops of diameter aL, the self-
energies are, using classical vortex continuum results, '

I
J(L)(r)

I
+ =p

config

1 "' dR dp'~, II
J(L) p + l tot a

(2.13)

VrKp

g J„' '(r)U(r —r')J' '(r')
rAr' L

2 aL=~ Ko g aI ln +co
L a

(2.10)

Here the first factor on the right -aL, comes from the
loop perimeter pL =aaL, each link ap contributing once.
The logarithmic factor -ln(aL /a, ') comes from the an-
gular integration of segments interacting through the
~r —r'~ potential, with aL and a,' the maximum and
minimum approaches. Here a,' is a short-distance cutoff,

ap in the bare case. cp is related to a core energy, and
(2.10) matches ' the energy per unit length of a straight-
line vortex. With a solid-vorticity core assumption, "'
i.e., the same vorticity enclosed for all encircling paths,
cp=0. 329. For a density variation set by the Ginzburg-
Pitaeveskii equation for helium vortices, " ', cp=0.464.

Here the J sum is over the two possible signs of Aow for a
given loop and the counting factor takes care of shufBing
the loop centers. (The loop segments are directed. )

Although we have considered circular loops for simpli-
city, the basic structure of the bare self-energy
—+pl Ko[ln(pI /a, ')+cL ] should persist (as can be
checked for square geometries, say). Counting factors
may differ, but will appear in the latter scaling equations
only through a constant, A p that is found not to affect the
critical exponents. Thus the final results may be more
general.

The problem (2.11) is the statistical mechanics of
current loops interacting through a (sign-fiipped) Biot-
Savart law, and with various self-inductances and mutual
inductances depending on loop size and separation. The
loop current ~J' '~ =1 is fixed, however. The partition
function may be evaluated within a Kosterlitz-Thouless
approximation, following the 2D XY prototype calcula-
tion closely.
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The Kosterlitz-Thouless approximation involves three
steps. ' (1) Identification of the simplest, neutral low-
temperature configurations of the topological excitations,
at a scale a. (2) Integration of the interaction of only
such configurations between scales a, a+da, with the
others that are treated as "far- off." This is based on low-
fugacity considerations, yo & 1. (3) Rescaling of all expli-
cit scale dependences in configuration integrations, in-
teractions, couplings, or self-energies. Absorption of all
changes of order dl —=da/a into renormalized couplings
and fugacities Kl, yl, recovering the old partition func-
tion form.

The 2D procedure is outlined, so we can compare
with the 3D case, later. The 2D Coulomb gas partition
function is

Z = g 'exp nK( g m (r ) U(r r—')m (r')
Im I

r&r'
config

g (m j2)(r)
X (2.14)

where U(r r')—=ln(Ir r'I/—a), g„m(r)=0, m(r)=0,
+1, and yl is the fugacity for a neutral vortex +pair of

—HEo
separation a. The bare fugacity is yo =e '. Follow-
ing step (2) above, the partition function is, symbolically,
Z =Z

I & (1+5Z/Z
I & ) where Z

I & includes only pairs
1,2 of separation greater than a+da, and 6Z includes
only pairs of a, a+da interacting with the larger ones.
Thus, with m(r, )+m(r2)=0,

5Z
z I.

dR dp
yI J f g I 1+2mKIm(r) )[U(r, r) —U—(r2 r)]m(r)I—+

m(rl )=+1 a a
(%1,2)

(2.15)

Here R locates the center of the pair and p is the position of one of them, a/2&p &a/2+da/2. Notice that, since
m(r, )+m(r2)=0, the interaction enters as a diff'erence, U(r, —r) —U(r2 —r)=(2p) V„U(r, r). P—artial integrations

from cross-product terms in (2.14) give -(p V) U- —,'p2V U factors, and b, U(r)=+2~5„O~+2na 5(r). The p in-

tegral restrictions give d p/a =ndl. Reexponentiating, K( —+KI —4m y)KI dl. Rescaling as in step (3) one has the 2D
Kosterlitz scaling equations

dKl
4S' glKl (2.16a)

(4 2mKI )y— (2.16b)

dFl 2~yl

dl a2

ff [1 ~K(J„"'—(r)U(r r')J„' '(r')+- . —],
(L@1)

where F is the free energy per area in units of kz T.
Repeating the procedure in the 3D case, with vortex loops around I.= 1 as the selected neutral configurations

5Z d R'" d p'"
g(l) a a

(2.16c)

(2.17)

where ZI & contains loops of diameter aL )a+da, for
L %1, and the loops around L = 1 have a /2 &p"'
&a/2+da/2. The term in curly brackets in (2.11) does
not contribute to the prefactor, to 0(dl). J„"' can be
written as J„"'(p"') described with respect to the L =1
loop origin R '".

Since J„"'(p)= —J„'"(—p) for a circular loop, we again
have an effective derivative acting on U(r —r') with

J„"'(r)U(r r')~J„((p)(—2p V)U(p+R —r') .

The procedure of partial integrations, angular averages,
(p.V) U~ —,'p V U, and (2.7), carry through with now

d p/a ~ 'ndl. Reexponentia— ting, K) ~K) —Roy)KI dl,
with L, =L, ' terms again to be separated in the correc-
tions, generating corrections to the self-energies (2.10).

The square of the charge in the 3D Coulomb case car-
ries dimension energy per length while in the 2D case it
has dimensions of energy. Thus step (3) above differs

I

from the 2D case. The coupling El occurs both in the
self-energy and the interaction. The self-energy term in
curly brackets in (2.11) has an explicit length scale
aI /a =[aI /(a +da )](1+dl) and so we can rescale the
coupling KI in the self-energy by (1+dl) to absorb this.
The geometric rescaling of the other El in the interaction
term, in fact, goes the same way. For general loops the
loop diameter aL and the minimum distance of approach
ao are the same only for the smallest loops. Large loops
can always approach closely, with the bare potential
U= Ir r'I ' & a—o '. Since we have decided to rescale all
distances in loop size a, the potential in these units is
larger at the real minimum approach scale, i.e., goes up
(1+dl) at each renormalization. Thus the self-energy
and interaction couplings are the same Kl, with a purely
geometric rescaling dKl =Kldh, and the 3D scaling equa-
tions are

dKl =El —AOylEl (2.18a)
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2 a
dl ' a,

=(6 —~'K, L, )y, ; L, = ln +1 (2.18b)
with dy, /dI l, =0=dK,*/disci defining a preferred loop

scale l that is later taken to go to infinity. Defining
linearization variables by

dI
dl a3

(2.18c) K, =K&*(1+K,), y&
—=y,*(1+yI ) (3.2)

Here AD=4m /3 and L& comes from the long-range in-
teraction contribution (2.10) and is essentially the self-
energy per segment (per coupling constant). Comparing
(2.18) and (2.16), the main difference is in (2.18a), that
leads to a fixed point, rather than a fixed line.

The first two (2.18) equations are those obtained by
Williams' for circular loops from helium phenomenolo-
gy and the rescaling procedure of Young"' and Jose et
al., ' but based on self-energy terms alone. He obtains a
factor 3o

=m /6, with the correspondence K& ~K&
=

—,'K1. Nelson and Fisher from D —2 expansion' also
find (2.18a) and (2.18b) but with LI a constant.

The argument could be repeated for square loops, say,
where also J„(p)=—J~( —p), with equations different
only in Ao. For general closed loops, a similar pairing
occurs, of oppositely directed segments at points some-
where on the closed perimeter. It is possible therefore
that the structure of (2.18) holds in general, for simple
geometries at least. Now consider approximate solutions
of (2.18).

Unlike the 2D case, the coupling K1 can carry a
"geometric" scale dependence -e' even if we neglect
possible weak scale dependence and set I.1 =Lo, say. For
infinite temperatures, K& =0, (2.18b) gives yI =yoe ', i.e.,
vorticity proliferates. For low temperatures, with
~ oK,y, && 1, and for large l,

K1 =Koe 1 (2.19a)

(2.19b)

Thus large loops are suppressed at low temperatures, to a
length gocc T that moves up with temperature. One
seeks, near T„ the instability of such a low temperature
or ordered form: K1 that scales "geometrically" -e+'
and y1 that falls off exponentially in a, but now controlled
by a diverging length scale g ~ oo as T~T, .

Existing scaling treatments of order-parameter func-
tionals involve linearizing about a fixed point for l~ oo

and finding eigenvalues of a stability matrix. The parti-
tion function is scaled up to some diverging correlation
length g, including the critical region of wave numbers
kg) 1, and capturing the critical singularities. For "dis-
order parameter" scaling, the size of the topological exci-
tations provides a geometric scale. The "fixed" point is
at a particular scale (d 1'&/dl )

~ I =0= (dKI /dl ) ~ &, with

I ~ ao, probing the stability of large loops.

one obtains, for l ~~, a fixed-point stability matrix for
large rings

0 —6

dl K1
(3.3)

(FI Fo )L i+1 1=e ' ' Z(A e~e+, A e ). (3.4)

We stop scaling at some divergent loop size
/=l =in(g /ao), where I —+~ as ~@~~0. This cap-
tures the "critical region" of fluctuation wave numbers

, +1
kg ) 1. Then, setting I=l —moo, Z(A ~e~e +,0) is
well defined only if

and

=a, ~e

v=X+' .

(3.5a)

(3.5b)

From (3.3), v= —,
' in agreement with the leading D —2 ex-

pansion. '

The diverging loop size g controls the fugacity falloff.
Following Williams' and removing the nonthermal or
geometric scale dependence of the coupling by defining

—1
P1 =e K1,

(2.18a) yields

dp ——A y1eP1.

(3.6)

(3.7)

where the geometry-dependent A 0 does not appear.
Note that y1, K1 are scaled deviations around l, and not
simple increments. K1*, y1* are at most logarithmically
varying in loop size, with zero slope at l

Expanding in eigenstates 3+(I ) =—2+e~ +—', as
yi= —g~6A+(1)/X+, Ki= ++3+(l), the eigenvalues
are A+= —,'( —1+&1+24) or A, + =2, A, = —3. This
defines fast-relevant and slow-irrelevant axes in the
y1-K1 plane, of scale dependences that become increasing-
ly or decreasingly important at larger distances. We as-
sume following the existing procedure that the relevant
scaling field 3 + is the temperature axis: A + = A

~ e~,
where ~e~—:~(T T, )/T, ~—, and 2 is a constant.

Then the free-energy scaling of (2.18c) implies carrying
out the partition function rescaling up to some l:

(FI Fo )L
Z(Ko, yo) =e ' ' Z(KI,y, )

III. LINEARIZED SOLUTIONS

The trivial high- (low-) temperature fixed point is
K&*=0, y,*=yoe ' (K&*=Koe', y&*=0). The nontrivial
fixed point is

o
P1 =P~+ 2 P~yt

m L1
(3.8)

A series solution for p& in y& gives, with (2.18b), p some
asymptotic value, and l ))I

6/m.
I

1 A oK1
(3.1)

Using (3.8) and (2.18b) the fugacity fall off confirms that
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only loops a ~ g are significant:
—6a/g (3.9)

The critical temperature can be estimated by setting
~
e~ =0 for fixed scale 1%1 in the linear solution

Here, from (3.1) and (3.6) the dominant loop size controls
the asymptotic p value; with a blow out of y& and a van-

ishing of p at transition

(6/~ ) bio

P~ =PI =+I. ~ =, ~ ~

~1
(3.10)

See Fig. 2.
For later use, we note that near I

K(=K(' e +0(l) . (3.11)

da —s zg 1

o 4 g3

so the specific-heat exponent is of the Josephson form,

(3.12)

[Note that (3.9) and (3.11) are like the low-temperature
forms (2.19).] In Sec. IV one finds the superfluid density
or helicity modulus p, o.p, so this also vanishes at the
loop-size divergence transition.

The free-energy scaling (2.18c) gives with the asymp-
totic solution (3.9)

A+(l)=allele
+ =:,'(A+' —A, ) '(yi+6Kt/k ) .

For l =0, the critical coupling is

(3.14)

similar in structure to the 2D result K„=E +4y,',
The weak scale dependence in LI prevents a sensible re-

sult, within linearization. But in Sec. V a finite LI an-

satz is used to estimate K„.
In obtaining (3.3) we have dropped terms in I/Lt ~0

for a fixed a, . It is useful to go back and retain these
terms, but for a general core assumption

Q
d

a
a, (l) 'Kie ' (3.15)

where do, p, and 0 are constants, and now
Li =Li (1—8K&/Lt ). The matrix of (3.3) is modified

[in particular, 6—&6(1 8/Lt )]—and one gets

ex=2 3v . (3.13) v= —1+1 p 3 0+—
2 5L, 5L, +0 1

L
(3.16)

Thus as T~T, , the loop size diverges, the fugacity
falloff fails, large loops proliferate, the superfluid density
spin-wave stiffness falls to zero, and the free energy is
singular.

Ko
P[

Ki

For p & 0, L I ~~, and v is unchanged from

"Finite"cores a, (l )/a -a "—+0, which do not compete
with diverging loop sizes, do not affect the critical ex-
ponents, at least within this simple fixed-point lineariza-
tion. A shift of v towards its accepted value of 0.67 can
only occur if @=0 and core sizes diverge like the loop
size, so the energy per loop segment -Li is finite (and if
8)0). This is considered in Sec. .V.

In the Appendix, we consider the scaling of correlation
functions by mapping them onto partition functions with
imaginary test charges, and then using the results of Sec.
II. One finds the spin-spin correlation length g' is deter-
mined by the loop diameter, g

8 n.KO
(cos(8; —8„)) ~ e ~~; g'= g . (3.17)

I

y[ Yo

Q/(

Long-range order quantities like (cos8,. ) are not evalu-
ated, but it is likely that the order parameter squared
(cos8; ) goes like the superfluid density p, .

The long-wavelength helicity modulus' ' ' or
equivalently the superfluid density is determined by the
asymptotic value of the coupling in (3.6)

(3.18)

FIG. 2. Schematic plot of the loop coupling pI
——EIe

geometric scale dependence removed) and the loop fugacity yI,
vs log of the loop diameter I =—ln(a /ao ). Here ao is the
minimum loop scale, l =1n{g /ao) is the log of the dominant
diverging loop size g -{T,—T) and ICO, K, are approxi-

mately constants. As temperature T—+ T, / moves out and
asymptotic values of pr (y~ ) fall (rise).

Thus the superfluid density exponent u is

and if p, —& cos8, )', and & cos8, ) —~e~~,

P=v/2 . (3.19)

For simple loops, J„' '(p) = —J„' '( —p) on the same loop
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L, and the segment-segment correlation F„(r ) = g e„ i„b, A & ( r ) /2m.
v, A,

(4.5b)

(J' '(r )J' '(r') )P ir —r'f
(3.20)

i.e., the contribution from such simple loops vanishes as
T~T. .

IV. MAGNETIC FIELD EFFECTS

f3H = —Ko g cos(b,„8„—A „„), (4.1)

where A„„ is an externally fixed bond variable. For
weak fields,

An external magnetic field couples to a spin pattern
[8; I through —g; h;cos8;. Any spin pattern 8, can in
general be regarded as formed from single-valued spin-
wavelike deviations, and vortex rotational spin Aows.
MC work indicates that it is the vortex loops (on the
dual lattice) that drive the transition out of the ordered
phase. Thus we consider, instead of h;, a gauge-field A„,
that can be more easily dual transformed, that couples to
the vortex loops and yet produces a quasiuniform spin
orientation. We consider

and with (4.3) 2mF(r)=(Bh, /By, —Bh, /Bx, 0). It is con-
venient to choose F as a solenoidal "current" along the
faces of the system parallel to the solenoid axis z. It gen-
erates a "field" h, parallel to the z axis and almost uni-
form, except at the edges; for large systems. ' For later
use we note that at a general lattice scale a, and away
from the system edges, from (4.3) and (4.4)

Ai(r)=2~haz . (4.6)

PH=~K g g F (r), .J' '(r')1

L p, r, r'

27rK y—A(R' ') M' '(R' ')5
L, R

where the topological "moment" is

(4.7)

Since gauge fields involve line integrals between sites, an
explicit scale dependence is appropriate.

Using standard electromagnetic results, the "field"
A„(r) is found to orient the topological "moments" of
the J' '(r) loops. The relevant energy contribution from
(5.2) is

PH = —Ko g cosh, „0„—Ko g A „„sinb,„8„.

Let us take

(4.2) 2

(sgnJ& ')M„. (4.8)

3

A„„=—,'e„,i hz(r); g b,„A „=0,pr 2 pv
@=1

(4.3)

where r is an original lattice position, and h(r) some
slowly varying field. Then the coupling term is
——h (r XsinhH„). In the 3D Josephson array language,
sink„o„ is a supercurrent and so, with such a coupling,
the variable h(r ) (taken in the z direction, say) can couple
to circulating supercurrents round an elementary lattice
face. A vortex loop is an extended object of such
circulations. ' "' To determine the coupling between
the field h and the loops, orie repeats the dual transform
of (2.2) —(2.4), with now b,„8„—A„„ in the argument of
the exponential in (2.2). Once again, one goes to a dual
lattice, and now defines additional dual variables A„(r ),
by

3

A(r)= g e„,ib Ai „,
V, A, =1

(4.4)

where Ai(r) is along the edges of the dual-lattice pla-
quette pieced by the original-lattice bond. ' '" For (4.3),
A„(r ) is ~ h, (r )5„,.

One finds, on the dual lattice, that (2.4) is replaced by

This modifies the constant or free-energy contribution to
—B A K

dF K/I e

dl
(4.10)

where Bo= (rr /3) and a —field-dependent fugacity yi(h)
has been defined.

The scaling of the coupling and self-energies carries
through, and (2.18a) is unchanged in structure

Ki '+ Aoyi(h )— (4.11)

Here the center of the loop is the origin, and M„ is a unit
vector perpendicular to the loop area. The energy of the
smallest loop then scales as -ha Ko.

The scaling procedure of Sec. II can then be repeated,
now including the extra energy of loops tumbling in a
(weak) orienting field. The relevant extra contribution
to (2.15) is, with (4.7),

d R d
y, f I P (rr"Kih) (M Z) a 6' '(R ) .

Z ) J +) a a

(4.9)

Z= g exp

config

with y&(h ) now obeying

dye(h ) =(6 mKiLi —5Boh a —Ki .)yI(h ) .

mKO g [F (r)+J (r)]U(r r')—
p, r (4.12)

X [F„(r')+J„(r')], (4.5a)

This implies that for scales beyond

~ -2/5
(BK )' (4.13)

where the usual scaling Bows are diverted. The low-
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temperature fixed point yI =0, %&*=Toe' dominates at
p2 5

all T. Fugacities fall off as e ': large loops are
suppressed by their cost in a field.

Using yI(h ), with the right limiting fugacity forms,

dQ —a g —8 KO a

(4.14)

where the integral defines a function f in scaling form.
The exponents are read o6'as

f —2v,

5=5,
Sv
2

(4.15)

for v= —,', @=1,and 6=—,'.
It is easy to check that the scaling relations such as

a+2P+y=2, y=P(5 —1), y=(2 —il)v, or P=2 —a —5,
y= —2+a+26 are satisfied for general v, by the forms
of (3.13), (3.19), and (4.15). The divergent loop size

—~e~ or correlation length, controls the other ex-
ponents.

V. ANSATZ FOR SCAI,E-DEPENDENT CORE SIZE

There are two length scales associated with 3D vortex
loops, namely, the overall size or diameter al, and the
(effective) core size a, . The self-energy of a loop is
-al ln(al /a, ), with the unscreened 1/R potential pro-
ducing an energy per unit length that depends on size.
The transition caused by the size blow up yields
Gaussian-like exponents, v= —,', so some physical idea is
missing. One pictures a second-order transition as in-
volving a blowup of Quctuations of the "wrong" phase, as
T, is approached. Since the high-temperature phase is a
"tangled mass of vorticity, " with randomly wandering
lines, we consider random crinkling of vortex loops, '

even below T„and its effects on the only other length, a, .
The crinkling of loops will have several effects. The

minimum approach distance will depend on the amount
of crinkling, that increases with the loop diameter a—:e'.
Since lengths appear as ratios, the core size acquires a
scale dependence a, ~a, (l ), that absorbs these random-
walk excursions around the average circular geometry.

The crinkling should also produce partial vector can-
cellations of the effects of the J (r ) segments. Moreover
the crinkling permits other crinkled and twisted loops to
screen more efficiently than the "dipolar" loop screening
considered so far. From (2.10) the size dependence -lna
of the energy per unit length comes from the large-
distance -a segments of the loop seeing the 1/R poten-
tial. Thus if we assume only nearby segments -A, in-
teract via 1/R, we make the replacement

for large rings I near l ))1. The core size or crinkling
region is proportional to the loop diameter, and diverges
with it. Note that the ansatz uses the core parameter

a,:—a,'e, that absorbs the constant co from the particu-
lar geometry seen by the 1/R potential. It implies that
all large geometries crinkle in the same way.

The helium A, transition is believed to be in the same
universality class as the 3D XY model. In helium, the
superAuid density drops to zero at the vortex core, which
thus contains the high-temperature or normal phase.
The size of the normal core blows up at transition. The
3D XY lattice model involves only the phase angle, and
does not have such magnitude variation. However, the
ansatz of (5.2) could be regarded similarly as the high-
temperature (meandering vortex) phase hidden in the
effective core, a, (l ), that blows up at transition.

The constant X& is determined by the fixed-point con-

dition (3.1), from (2.18b) and (6.2):

6/m

L I

(5.3)

We take 8=0.6, the Flory value 3/(2+D) for D=3.
By substitution one sees that the universal value

E( =0.3875, LI ' =0.6374 (5.4)

is a solution. The energy per segment, EI =HEI LI, is

thus a constant, as T~T, . The fixed-point fugacity
value y& =( AoKI ) '=0.062 is small, so a fugacity ex-

pansion is reasonable right up to T, . The core- to loop-
size ratio is a, (l )/g =0.566(1, so the divergent-
core-loop is still (just) defined at transition.

Returning to the procedure of Sec. III and linearizing
in E&, yl, and with LI =LI (1 8KI/LI ), the —stability

matrix only changes by 6~6(1 8/L& ). Th—e eigenval-

ues are A, + =
—,
'

I
—1+[24(1 8/LI )]'~

J yielding a—corre-

lation exponent

v=0. 6717 . (5.5)

[Compare (3.16) with p=0. ] The other exponents fol-
low,

f

of size a should scale as a where 8 is a 3D self a-voiding
walk exponent. (Walks that cross can be regarded as in-
volving smaller loops that have just touched the simpler,
self-avoiding loop at the crossing point. These are al-
ready included in the scaling. ) KI carries a geometric
scale, and in fact controls the tendency of attracting seg-
ments to bend towards each other. We assume the length
dependence enters only through the coupling,
a, (1)/A, -a -KI . Thus, finally, ansatz is, from (3.11),

g

(5.2)

a, (&) a, (l)
+ 7 (5.1) y = 1.343, a = —0.015 . (5.6)

where X is some screening length.
The random-walk extent of these A. segments of loops

These are close to the values ' obtained by diagram-
matics, high-temperature, and 4D expansions. For exam-
ple, high-temperature expansions give v =0.678+0.005,
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a= —0.02+0.03. With (5.2) and (5.3), v depends only on
0, and a plot of v versus 0 is given in Fig. 3. For
8=0, v= —,

' while for the value 0=0.5745 one has
v=0. 6669, close to 3.

The critical bare coupling can be estimated, using
(3.14) and the ansatz, i.e., 6~6(1 8/—L& ), and the

above ~A,
~

=2.488. The effective core size at the initial
Cpscale a =ao is a, (0)—=a,'e ' where "' co =0.329 and a,'

is the minimum segment on the loop of radius —,'ap. We
take this loop as just enclosing the square face of the
unit-length cubic lattice. This defines an appropriate, ro-
tationally averaged, minimum size, set by the lattice. The
minimum loop segment a,' subtended by the unit lattice
side is a,'=(m/2)( —,'ao). Then (2.12) defines yo, =exp
(
—5.63Eo, ) and the critical coupling from (3.14) is

Kp 0.453. This is fortuitously close to the series solu-
tion estimate, 0.454+0.001.

The ansatz implies that the energy per segment EI be-

comes an intensive quantity as T~ T, . This suggests a
physical picture for the 3D transition that has some
analogies with the 2D case. This follows earher ideas, on
the transition from a high-temperature "spaghetti" phase
to a low-temperature "alphabet soup" phase. '@"'" (E&
involves essentially the logarithm of the inverse curvature
for 1/R potentials, so circular segments, with minimum
curvature for a given length, could be most sensitive to a
breakdown of screening. This supports our earlier con-
centration on the most tractable, circular, loops. )

The bare energy per + —vortex pair for the 2D case is

Ep =~KplnR in the low-temperature phase with the bare
form unaltered by dipolar screening. The vortex correla-
tion function is C(R)=(mzmo)-R " ' ' with

q&0 and D =2. In the high-temperature screened phase,—R /g+
Ei -0(1) and C(R )-e +. The pair separation a

and core size a,' are the same, a /a, ' = 1.
The bare energy per segment for oppositely directed

J (r ) in the 3D case is Eo =mIColnR in the low-
temperature phase. The form is unaltered by loop dipo-

0.8

0.7—

0.6

0.5

SIMPLE ON SCALE a, COMPLEX

LOOPS ON

SCALE a

I

I
lw

/
~(

a (l)

COMPLEX ON SCALE ag

T & T(

SIMPLE LOOPS
ON SCALE a

a, (l)

FIG. 4. Conjectured qualitative picture of dominant loop
geometries above ( T) T, ) and below ( T & T, ) transition.
Dashed circles denote magnification of some core scale a, (l),
for loop of diameter a =e'. As T~ T, small simple loops crin-
kle more violently and over larger scales, as large, complex
geometries dominate. As T~T,+ complex loops smooth out
and smaller simpler geometries pinch off.

lar screening. The oppositely directed segment-pair
correlation is C(R ) = ( J„' '(R)J„' '(0) ) -p„/R or-R " 'D ' with g=0 and D =3. As T~T, crin-
kling and screening set in at and above transition, where—R /g+
E& -0(1) and C(R )-e +. The segment separation
and core size are in a constant ratio, a, (l )/g fixed, as
T T. .

Focusing on the role of the energy per segment (per
coupling constant) E&=E&/IC&, the f—ollowing picture of
the transition is suggested, as depicted in Fig. 4. For
T) T, the long, meandering, tangled, and possibly knot-
ted or braided loops have no well-defined large-scale
geometries and mutually screen each other strongly, "so
E&-0(1). As T decreases, the number of loops decreases
and screening decreases. At T,+, E&-lnR over a finite
fraction of loop regions and the energy cost of being part
of a large R loop outweighs the entropy gain. ' " The
simpler-geometry segments, that exist on small scales,
and that are almost closed, then pinch off. For T & T,
the same total vorticity is distributed into finite-sized
loops, now crinkled or bent around a more well-defined
geometry. Screening is dipolar and weaker, with E& -lnR
favoring smaller loops. In both phases the "wrong"
phase, represented by the "wrong" geometry, exists on
finite scales —a, that blow up as transition is approached
from either side.

0.0 1

0.2 0.a
1 I

0.6
I I

0.8 8 1.0 UI. DISCUSSION

FIG. 3. Spin-spin correlation exponent or loop-size exponent
v vs self-avoiding walk exponent 0, treated as a parameter.

A scaling approach based on topological excitations
has been presented for the 3D XY model, dual
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transformed to a 3D vortex-loop model. Within the
Kosterlitz- Thouless approximation, the loop scaling
equations of Williams are obtained microscopically. The
loop diameter a =e' and core size a, are two length scales
in the problem.

Linearizing the scaling equation around a preferred
diverging loop diameter g —

~
e~ ~ ~ yields the

specific-heat exponent o.=2—3v. A simple fixed-point
analysis yields v=0. 5. Corrections in inverse powers of
the self-energy per loop segment vanish for finite core
size, a, /a ~0 as a —+ ~. (By a numerical procedure Wil-
liams finds v=0. 526 with a finite core; the relation be-
tween the two approaches is not clear at present. ) The
dominant loop size g controls the falloff of the fugacity
and spin-spin correlations and the helicity modulus value.
Scaling equations modified to include a particular weak,
slowly varying magnetic field, yield magnetic exponents
y=2v, b, =5v/2, 5=5. An ansatz for a scale-dependent
core size, a, (l ), to allow for the (divergent) crinkling and
screening of loops as T~T, , turns out to yield ex-
ponents close to accepted values. A full description of
the transition seems to need both loop-size and core-size
divergences; neglect of the latter leads to Gaussian" ex-
ponents. The v exponent value is determined by the
space dimensionality and symmetries of the XY Hamil-
tonian, by the value of ~, and by the random-walk ex-
ponent appropriate to the topological excitations. The
lack of microscopic justification for the core-size scaling
ansatz constitutes a weakness of the analysis, however.

Order-parameter-based critical-point methods typically
involve short-ranged models, with long-range correla-
tions and scales emerging from renormalization.
Critical-point analyses based on topological excitations,
or "disorder parameters" have natural long-range in-
teractions and scales, from the start. The two approaches
are complementary. '

Kohring et ah. consider an extra weighting term in
(2.1) —A, g ~u ~

where the sum is over original-lattice pla-
quettes and u =~ gb, 0&/2~~ round one plaquette is
unity for plaquettes pieced by a dual lattice

~ J, ~

= 1 and
zero otherwise. (They also consider the 3D XY antifer-
romagnet. ) The asymptotic 1/R vortex interaction
should not be affected by this term, that just adds an en-
ergy -2A. to the vortex energy per unit length. A similar
(ferromagnetic) scaling analysis should carry through
with a term -2A, g J„and with critical exponents ex-
pected to be unchanged. The extra energy cost would in-
hibit the size blow up, increasing T, as is found, with a
suppression of the transition beyond a critical k, that can
be estimated. Equation (2.6) should acquire an extra
term exp[ —2A, Q„„J„(r)].For E0=0, the partition
function with this term is similar to the (Gaussian)
original-lattice partition function of (2.3), where the
weight factor is exp[ —(2ECQ )

' g„, n „,]. Thus these
"self duality" " arguments lead to the estimate
A,, =(4K„) '=0.5518, close to the MC value. This
may be pursued elsewhere.

It would be interesting to see if topological-excitation
scaling ideas are useful in other contexts. The anisotrop-
ic 3D XY model may be relevant to high-T, superconduc-

tors. ' Vortex loops have also been considered in lattice
superconductor models ' with thermally Auctuating
gauge fields. Including radial degrees of freedom, Monte
Carlo work shows a first-order phase transition, beyond
a tricritical point. One might have to consider the com-
petition between

~ J„~= 1 and
~ J„~=2 vortex loops, "

with the lower
~
J

~

=2 initial fugacity compensated by the
stronger coupling beyond the tricritical point.

Capacitive and dissipative effects in 2D Josephson
arrays, ' "motivated by the universal resistive transition
of granular superconductors, " are of much current in-
terest. One can map the problem at T=O onto (2+ 1)D
vortex loops' ' ' with scaling behavior controlled by the
capacitances and couplings. Details will be given else-
where. The low-temperature first-order transition found
in MC simulations' could be related to (2+1)D (quan-
tum) vortex loops taking over from 2D (classical) vortex
lines, as the imaginary time "system size" —T ' in-
creases.

Lattice gauge theories like the 4D U(1) model have
topological excitations, (monopole strings), but phase dia-
grams are often evaluated by lengthy MC runs. A scaling
analysis could be useful. The 3D Heisenberg model has
spin hedgehog excitations that are necessary for the tran-
sition. Crystal melting and smectic liquid-crystal transi-
tions could involve appropriate dislocation and/or dis-
clination loops. Topological excitations also play a role
in Hubbard-based resonating-valence-bond models of
high-T, superconductors that have been mapped onto
lattice gauge models. ' Friedel' has considered the
effects of layering in the high-T, materials on vortex-loop
orientation and KT-like effects have been seen in aniso-
tropic bismuth compounds. Nelson' has connected the
thermal crinkling of field-induced vortex lines to the criti-
cal field-temperature phase boundary. Glassy behavior
is also of interest.

In summary, following 2D XY methods, a 3D vortex-
loop scaling analysis has been developed for the 3D XY
model that may be relevant for other models with topo-
logical excitations.
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APPENDIX

We evaluate the spin-spin correlation function, the hel-
icity modulus, and the loop-segment correlation, showing
that they are all controlled by the diverging loop size.
The method, following previous' ' ' analysis in the 2D
case, is to map the relevant correlations onto a vortex-
loop partition function with imaginary test charges at the
singled-out bonds. Since the test charges do not affect
the scaling equations as system size N ~~, previous re-
sults can be taken over.
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Consider the spin-spin correlation function

6;k =(e ' " ) —(cos8;)(cos8k) . (A 1)

scaling carried out up to a = r;k =R with distances scaled
in a, U(R )=1. Then, lii

—= ln(R /ao), the asymptotic be-
havior is dominated by the vortex renormalization:

This can be written as

G I,
= exp i S„„bO,

p, r
(A2)

where the tilde means we ignore any long-range contribu-
tions, and focus only on the fall off produced by Auctua-
tions. Here S„„=h„o., and

g b,„S„„=g b,„o.„=—5„,+5„k (A3)
P )M

G,k =exp

or, with (3.11)

Glk
—=e

mal

2 g g„(r ) U(r r—')g„(r )

—:exp( —
K& /4~KO) (A8)

(A9)

so a partial integration on (A2) recovers (Al). For a
given original-lattice bond variable S„„it is useful to
define dual-lattice bond variables S„(r ) related by

S„„=g e„,ib, g„(r) . (A4)

6;k =exp —,' g S„„S„,„,b,„b,„,( 8„8„,)
p'r', p, r

pr (i/4mKO)(i/r, ~ )
S2

=exp =e
2Ko

(A5)

where (A3) has been used, and we present only the
asymptotic falloff. Spin waves do not produce exponen-
tial decays.

The dual transformation on (A2) carries through as in
(2.3), with now a Kronecker 5 constraint g b,„(n„„
+S„„)=0 satisfied as an identity through going over to
dual-lattice variables,

n„„+S„„~g E„ id, (Ni (r )+Si (r ) ) .

These are around the edges of the dual plaquette, pierced
by the original-lattice bond, as in Fig. 1.

In the spin-wave (SW) approximation, and on the origi-
nal lattice

The spin-spin correlation fall off g' is thus proportional to
(and about ten times larger than) the diameter g of the
dominant tumbling loop, that is only moderately efficient
in stirring up the spins. The use of the correlation ex-
ponent v notation in (3.5a) is thus justified.

Since we have not kept track of logarithmic correc-
tions, the exponent g is not evaluated. The exponent re-
lations with (4.15) are consistent with a value ii =0.

Turning to the helicity modulus, similar methods are
useful. Regarding the 3D XY model as a 3D Josephson
array, the supercurrent induced by an external vector po-
tential is

J„, = —XA„,;;.,k~., k
v, k

(A10)

In the spin-wave approximation, it is easy to evaluate
(All), and in the long-wavelength limit, Ko ' ((I, the
response is transverse

where the response function is the helicity modulus ( A k

is a "twist") for spin systems or the superfluid density
[(A10) is a London equation] for Josephson arrays. Here

A;, k =Ko|i„6;k(cos8,. ) —Ko(sinb, „8;sink 8& ) .

(Al 1)

Finally one gets, for Ko ' (& 1,
A(q ) =Ko 5,—

q
(A12)

6;k=exp —gS (r)/2KO
p, , r

X Z [ I J„(r ) +i g„(r ) }]IZ( [I}), (A6)

(A7)

Suppressing vortices, the contribution from

Z(i g):—exp[+ (nKO/2) g f„(r ) U(v —r')g„(r') ]

is seen to go as 1/r, like the irrelevant spin-wave contri-
bution.

The scaling procedure then just carries through, with

where going back to the original lattice and using (A3)
the first factor is seen to be the spin-wave contribution of
(A5). We have defined pure imaginary test charges, along
the dual bonds,

A„;. i,
= —Ko(1 —5 5k )

X g —,'a exp i AS& „'6~8„
a=+1 P, T

where now two bonds are singled out,

Si,'—= (~,, k f,+„,k»~, „+«&—,, ; —~.+. »~,.

(A13)

(A14)

between a widely separated pair of nearest-neighbor sites.
Once again, one can map this onto a partition function

with imaginary test charges as in (A6), with S„' ~(r) in
(A7). The scaling proceeds as before up to lii. The
differences of nearest-neighbor 5's in (A14) are always on
the (original) lattice scale of ao, i.e., scale as a . Thus

For a transverse vector potential, only the current-
current correlation is relevant and (Al 1) can be written
as
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The final result for the

p, =hm, pA(q)-lel" is

p, =p„—[e[; u =v,

super Quid density

(AI 5)

so the superAuid density exponent p is also determined by
the loop divergence exponent v. In the high-temperature
phase, the superAuid density is zero, "due to a screened
interaction.

The order parameter (cos8; & that involves a test
charge rather than test dipoles is not evaluated here, but
one expects p, —(cos8; &

—~e~
~ or P=v/2.

Finally, we consider the correlation

C(R) = —2m. p /R (A16)

the fraction of simple-geometry loops vanishing as
T~ T, . Since diametrically opposite segments are
directed oppositely (for circular loops) this is analogous
to the 2D XY+ vortex-point correlation C(R )—
R " ' ' as discussed in Sec. V.

between segments on the same loop Lo. Ignoring all
loops except this one, the weighting factor

exp[ —(vrKp/2) J„(R)U(R )J„(0)]
gives C(R )= —2m. Kp/Rap. This is modified by dipolar
loop screening to
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