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We report the only neutron scattering measurement of phase and amplitude modes in an incom-
mensurate system with a four-component order parameter (n =4): the phase II of biphenyl. Exper-
iments have been performed at low temperature and under hydrostatic pressure, where phase II be-
comes the ground state of biphenyl. This allows a study at very low temperature, where the damp-
ing of the modes is extremely reduced. Three propagating excitations have been observed, one of
which is twice degenerate. Comparison between their characteristics and that of the soft mode
which drives the transition towards phase II proves unambiguously that they are the phase and am-
plitude modes of biphenyl phase II. We also develop theoretical calculations within the scope of the
Ginzburg-I. andau theory, including coupling between the order parameter and strains. Calcula-
tions lead to the exact assignment of the measured modes to the diFerent possible excitations of
phases and amplitudes according to a single-q or to a double-q structure of phase II. Moreover,
comparison between theoretical and experimental results gives a strong argument in favor of the
single-q structure.

I. INTRODUCTION

In the last few years, incommensurate systems have
raised a great deal of experimental as well as theoretical
interest (for a review on insulator incommensurate ma-
terials, see Ref. 1 and references therein). In particular,
dynamics of these systems have been extensively investi-
gated with experimental techniques such as neutron and
Raman scattering, NMR, and with microscopic or phe-
nomenological theories. Indeed, the appearance of new
periods in incommensurate phases induces the existence
of new fluctuation modes of the atom positions. In this
paper, we are interested in displacive incommensurate
systems where the modulation wave is quasisinusoidal.
For such systems, dynamical calculations can be per-
formed within the scope of the phenomenological
6 inzburg-Landau theory. For an incommensurate
phase with a two-component order parameter (n =2),
one finds one phason, relative to the excitation of the
phase of the incommensurate modulation and one ampli-
tude mode (amplitudon), relative to the excitation of its
amplitude. The amplitude mode has a soft-mode behav-
ior, whereas at the infinite wavelength limit (that is q=q,
where q, is the reduced wave vector at the incommensu-
rate satellite position) the phason frequency is zero.
Furthermore, theoretical studies have demonstrated that
its damping remains finite. Therefore, clear observation
of phase modes, by inelastic neutron scattering, usually
requires an incommensurate system where the damping is
small so that the phason becomes underdamped away
from satellite positions. Before our work (on which brief
reports have already been given in Refs. 6 and 7) neutron
measurements of phase and amplitude modes have only
been performed in a few n =2 incommensurate phases:

biphenyl phase III, ' Thar4, ' and K2Se04. " No direct
measurement of the excitations of a more complex in-
commensurate phase had been performed. It was there-
fore interesting to study a more complex system. Bi-
phenyl, which incommensurate phase II has a four-
component order parameter (n =4), is a good candidate
for such a study since pressure effect allows a study at
very low temperature, where the damping of the modes is
small.

This paper is organized as follows. In Sec. II we recall
the main properties of the crystalline phases in biphenyl
and its pressure behavior. In Sec. III we present the ex-
perimental conditions, in Sec. IV experimental results,
and in Sec. V calculations. In Sec. VI experimental and
theoretical results are compared. In Sec. VII we recall
our main conclusions.

II. BIPHENYL INCOMMENSURATE PHASES

Biphenyl (C,2H, o) is an aromatic molecular compound.
Each molecule consists of two phenyl rings connected by
single C—C bonds. In the high-temperature phase of
crystalline biphenyl, called phase I, the mean molecular
conformation is planar. Transitions towards the low-
temperature phases II and III (Fig. 1) are due to the oc-
currence of molecular twisting, where the two phenyl
rings of a molecule are turned in opposite directions
around the long molecular axis (Fig. 2).

The phase-I space group is monoclinic P2, /a(Czt, ),
the twofold screw axis 1 being the direction in which the
packing of the molecules is the most tightened (Fig. 3).
Transition between phases I and II (T, =37 K at atmos-
pheric pressure' ) is second order and driven by a soft
mode, principally related to the torsional Inotion of the
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FIG. 3. Crystal structure of biphenyl in phase I (P2& la, C2&,
P%90').

FIG. 1. Pressure-temperature phase diagram ofof deuterated
biphenyl.

13molecules.
The incommensurate phase II is characterize y e

a earance of four satellites localized at general pointsappearance
inside the phase-I Brillouin zone' , 'g.(Fi . 4):

1 —5b
+q =+ 6 a*+ b —5e~

$1 0

"partial lock-in" phase transition (Tn-20 K at atmos-
pheric pressure). ' Phase III exists till very low temper-
ature, which has allowed the observation of propagating
phase and amplitude mode branches. The absence of a
simple lock-in phase is very peculiar, and it is at the ori-

16—18gin of theoretical studies.
In particular, from a microscopic approach, Heine,

Price, an en erd 8 kert' ' have shown, with their inter-
meshed rotation model, why the twisting of the mo ecu es

1 —5b
+q, =+ —5,a*+ 1'+6,e* ',

2

where 5„5b, and 5, are all nonrational numbers, witn a
clear temperature evolution. For a molecu14 lecule the center
of gravity of which is situated at the r point, the torsional
angle P(r) is proportional to the sum of two sine func-
tions of wave vectors q, and q, ,

P( ) cc A, cos(q, .r+N&)+ A2cos(q, .r+Nz) . (2)

The order parameter has four components (n = )n =4, direct-
ly related to the modulation amplitudes and phases:

d 4 . The sine approximation [Eq. (2)] has
1-proved to be a good one: Second- and third-order sate-

lites are hardly measurable in phase II.
The transition between phases II and III is a first-order
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FIG. 2. Schematic drawing of the biphenyl molecule showing
the twisting in phases II and III.

FIG. 4. Wave vectors of the incommensurate modulation of
p asehase II in the phase-I 6rst Brillouin zone.
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produces frustration. So biphenyl
dis 1isp acive systems in which the nature of the frustration,
responsible for the existence of th e incommensurate
phases, has been understood.
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peratures ' ' (Fig. 1). T& drops to absolute zero at a
relatively weak pressure value: P, = 1.85 kbar. This
offers the opportunity to study dynamics of the n =4 in-
commensurate phase II at very low temperature, where
the damping is considerably reduced.

III. EXPERIMENTAL CONDITIONS

A. Crystal

Biphenyl-d10 (C&2D,O) of 99.4% nominal purity was
obtained from Merck, Sharp, and Dohme Ltd. The sin-
gle crystal was grown by the Bridgman technique
(Groupe Physique Cristalline, Rennes). Its size adapted
to the pressure cell was 10X 7 X4 mm .

B. Neutron experiments

Inelastic neutron scattering experiments have been
done at the reactor Orphee (Laboratoire Leon Brillouin,
Saclay) on the triple-axis spectrometer 4F1 installed on a
cold source. They have been performed at constant tem-
perature T=3 K (P, =1.85 kbar) and at various pres-
sures in phases I and II (P =1.05 —4.6 kbar). At 3 K the
scattered intensity is significant only for neutron energy
loss (co) 0). So experiments have been made with con-
stant scattered neutron wave vector kF in order to avoid
the reduction of intensity by a kr resolution effect. Hor-
izontal collimations were 55'/30'/40'/40'. For most of
the measurements, the scattered wave vector kz was

0
chosen equal to 1.6 A '. The energy resolution full
width at half maximum was equal to 0.04 THz (0.17
meV). Experiments were done without filter on the in-
cident beam. One expects that it cannot induce any
spurious effect due to phase and amplitude modes origi-
nating from second-order satellites since these satellites
are hardly measurable. But acoustic modes could possi-
bly spoil spectra [+2q, (i = 1,2) are situated near normal

l

Bragg peaksj. Nevertheless, comparison of all the spec-
tra obtained at different pressures in phases I and II,
where the soft-mode frequency (phase I) and amplitude-
like mode frequencies (phase II) shift continuously, have
shown that actually there was not any spurious effect (see
Refs. 6, 7, 21, and Fig. 5).

C. Pressure

High pressure was generated in an aluminum alloy
(7049-AT6) cell with helium as pressure medium. The
range of the pressure cell was 1—5000 bars. At 3 K in our
pressure experiments helium is solid. It does not induce
any problem in the pressure determination. (i) Pressure
remains hydrostatic; (ii) the pressure value is not only
determined via calculations but also via the rneasure-
ment of the (T,P) evolution of the strain gauges located
on the pressure cell itself. ' ' Pressure is found with a
precision of +80 bars. Temperature is controlled with an
accuracy of +0.01 K.

IV. EXPERIMENTAL RESULTS

S(Q,co)- ~l IF(Q) I'

flCO
1 —exp k, r t [co —coo(Q)] +co I

coo(Q) is the quasiharmonic frequency of the mode propa-
gating with q wave vector originating from the satellite
position: Q =Qs +q. I is its damping constant and

1

F(Q) its inelastic structure factor. The fitting parameters
are coo, I", and lF(Q)l . At zero energy transfer, the in-
tensity relative to elastic incoherent scattering or to the
central peak phenomenon is fitted with a 5 function. Let
us emphasize that comparison between all the inelastic
spectra obtained at different pressures in phases I and II
and at different points of the reciprocal space around the
satellite position Qs shows that the background (BKG) is

1

approximately Aat and constant, BKG=40 counts in 25
min (Fig. 5). Note also that a constraint on the damping
constants of the phase-II characteristic excitations was
imposed in the fitting procedure. They were all taken to
be equal. This constraint will be justified in the follow-
irlg.

B. Pressure e8ects on the soft mode

Transition between phases I and II is driven by a soft
mode in phase I, principally related to the torsional
motion of the molecules. Within the model of local po-
tential and competing intramolecular and intermolecular
interactions, ' "one easily predicts that the I-II transi-
tion remains displacive under pressure, which is the
case. Moreover, we have measured a central peak at at-14

mospheric pressure as well as under pressure: ' The in-
tensity of the 6 peak centered at zero energy transfer,
which is roughly constant far away from the transition
line, strongly increases when approaching the transition
line. The fit of the spectra with a 5 function is a good
one: We have not measured any width for the central
peak. Note also that there are indications of a possible
finite value for the soft-mode frequency at the transition
point (co ~0.05 THz), probably in connection with the
central-peak phenomenon. '

Let us emphasize our results on the soft-mode disper-
sion (Fig. 6). With qualitative arguments they illustrate
the increase of intermolecular interactions under pres-
sure. The dispersion law can be fitted by the square root
of a parabolic function. For Q, =q, +r, where

I

is a normal Brag g peak position and for small
q =

qH a*+qk b*+ql c*,

~'(+Q, +q) =~'(+Q, )+g(q),

A. Data analysis

Most of our inelastic spectra have been obtained near
the satellite position Q, , with Q, =2.07a*+ l.45b*
—0. 13c'. The modes in phases I and II were fitted with
damped harmonic oscillators for which
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At atmospheric pressure, the dispersion coefticients are
roughly temperature independent; a=4 THz A, /3=21
THz A and y 1 THz A . At 3 K and $.9 kbar, ~
=6 THz A, /3=22 THz A, and y=2. 5 THz A .
Note that the dispersion is highest along b' and smallest
along c*. This can be understood with the sterical hin-
drance model ' The dispersion coefficients, which
are related to intermolecular forces, are the highest in the
direction in which the packing of the molecules is the
closest (Fig. 3). Under pressure, dispersion practically
does not change in b* direction and strongly increases in
a* and c* directions. Indeed, pressure increases disper-
sion coefficients most in the directions in which the pack-
ing of the molecules is the least tight.

Finally, note that the damping constant of the soft
mode at 50 K (and at atmospheric pressure) is approxi-
matively equal to 0.25 THz (1 meV), whereas at 3 K (un-
der pressure) it is approximatively 0.05 THz (0.2 meV).
As it will appear later (Fig. 7), the damping of the phase
and amplitude modes is roughly the same as that of the
soft mode. Therefore, the above data concerning the
soft-mode damping clearly show why (although un-
resolved at atmospheric pressure) the phase and ampli-
tude modes of phase II can be well resolved under pres-
sure at low temperature.

C. Phase and amplitude modes in phase II

In Figs. 5(a) and 5(b), we report spectra measured near
a satellite position. They show that the soft mode "SM"
in phase-I splits into three well-resolved propagating
modes called P, Gi, and G2 in phase II. The frequency
of the mode P does not change with pressure, whereas
that of 6, increases a little when going away from the
transition line and that of Gz increases much more [Figs.
5(a) and 5(c)]. P is a gapless phason (within the spec-
trometer resolution), whose dispersion along a* and b* is
roughly constant within 1 and 1.8 kbar, 6, and 62 are
amplitudonlike excitations. The "gapless" character of P

PHASE II PHASE I

0] +

0
[2.07 1.45 g ]

q(A )

FIG. 6. Soft-mode dispersion curves at atmospheric pressure
(solid lines) and different temperatures: +40.7, 645, A)50, c) 70
K, and at P = 1.9 kbar and T =3 K: ~ (dashed lines); (a) along
a*, (b) along b*, (c) along c . They originate at a satellite posi-
tion. (See Ref. 7.)
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FIG. 7. Pressure dependence of the Atted damping constant
of the soft mode in phase I and of the characteristic excitations
of phase II. Solid line is a guide for eye.



PHASE AND AMPLITUDE MODES OF THE n =4. . .

is illustrated on Fig. 5(c). On inelastic spectra performed
at a satellite position, one observes only the gap modes
G, and G2, the phason P contributing to the zero energy
transfer peak. In the following, we discuss the dispersion,
damping constant, frequency evolution versus pressure
and inelastic structure factors of P, G „and G2.

1. Dispersion

Dispersion curves of P, G&, and G2 along a' and b*
are compared to that of the soft mode (Fig. 8). P, G&,
and probably G2 (the frequency of which is determined
with less accuracy because of its weak intensity ') have
the same dispersion as the soft mode. It proves that they
proceed from the soft mode. So they are phase and am-
plitude modes of Biphenyl phase II.

Of course, dispersion changes with pressure (cf. Sec.
IV B). But (i) this was shown comparing dispersion
curves between Po = 1 bar and P = 1.9 X 10 Po; (ii) disper-
sion changes the most in the c* direction. Therefore, for
the a* and b* directions and between P&=1 kbar and
P2=2 kbar=2P& only, dispersion can be roughly con-
stant. Indeed, the same dispersion was measured for P,
G„and Gz between 1.05 and 1.8 kbar (for P, see Fig 8), .
which validates the comparison of their dispersion below
P, with the soft-mode one above P, .

Note also that the phason dispersion curve extrapo-
lates to zero frequency at satellite position. Within the
experimental resolution (-40 GHz), the phason is gap-

tu(THz)

less. Besides, this is in agreement with the Liu and Con-
radi NMR experiment, where they have observed a fre-
quency dependence of spin-lattice relaxation, suggesting
the existence of a gapless phason.

2. Damping

(a) Damping constants of the phase and amplitude
modes are roughly equal. Indeed, we are allowed to take
them equal in the fitting procedure because this agrees
with the result of the fit without constraint on the spectra
where the modes are clearly separated. (b) The phase and
amplitude mode dampings as well as the soft-mode one
are approximately constant around satellite positions. In
particular, the phason is overdamped in the long-
wavelength limit since its frequency goes towards zero,
but its damping constant does not change. (c) The study
of damping constants near the critical pressure P, is
difficult because when the soft mode (for example) is over-
damped, its frequency and damping constant are strongly
correlated in the fitting procedure. The fitting program
trend is to increase both quantities. Nevertheless the
damping is found, on the one hand, to be approximately
constant around satellite positions and on the other hand,
to present no discontinuity near P, when going away
from the satellite position where the mode gets under-
damped. This holds for the phase-II excitations. So in
the fitting procedure, we have imposed the continuity of
damping constants near P, . The fitted damping con-
stants at a satellite position are plotted versus pressure in
Fig. 7. In brief, the dampings of P, G„G2, and SM ap-
pear to be consistent with a continuous variation at the
transition.

These results strongly support Golovko, Levanyuk,
Zeyher, and Finger's theories about the damping of exci-
tations in incommensurate phase.
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The frequencies of G, and G2 increase when going
away from the transition pressure (Fig. 9). This soft-
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TABLE I. Examples of values of lF, /Fpl'.
1

V. CALCULATIONS (GINZBURG-LANDAU THEORY)

1.05 1.2 1.5 1.7 A. Free energy developed only in terms of' the order
parameter components

(0.05,0,0)
(0.07,0,0)

(0,0.025,0)
{0,0.05,0)

2.8

1.7

1.9
2.4
1

4. Ineiastic structure factors

Comparison between the inelastic structure factors of
P, G„and G2 shows that Gi is probably twice degen-
erate. So the four degrees of freedom of the incommensu-
rate phase II (n =4) could have been properly measured.
Indeed, after fitting the intensities on the inelastic spec-
tra, one obtains the square inelastic structure factor
IFI, (Q)l of the mode k [Eq. (3)]. The frequencies of P
and 6& being relatively close to each other and 62 being
of weak intensity, determination of the inelastic structure
factors of P, G„and G2 is not very accurate. Neverthe-
less, one finds (Tables I and II) that on average

This indicates that G& is probably twice degenerate. To
understand why there could be a degenerate mode and to
which combination of phase or amplitude excitations the
measured modes P, G„and G2 could be exactly attribut-
ed, calculations have been performed within the frame-
work of the Ginzburg-Landau theory.

TABLE II. Examples of values of IFG /Fo I
.

1 2

1.2 1.5 1.7

(0,0,0)
(0.05,0,0)
(0.07,0,0)
(0,0.05,0)

1.5
2.8
1.6

1.5 2.7

mode behavior is an additional evidence for the amplitu-
donlike character of these modes. Moreover, the varia-
tion with pressure of the square frequencies of SM G&,
and G2 is nearly linear, the slopes being about 0.1

THz /kbar for SM, 0.05 THz /kbar for G„and 0.3
THz /kbar for G2. This linear behavior supports the fur-
ther utilization of the phenomenological Ginzburg-
Landau theory to interpret the experiments. Very close
to P„ there is also an apparent deviation from the
straight lines, at least for SM and G&, which could be re-
lated to the central-peak phenomenon ( co~;„„;„s& 0.07
THz).

In summary in the n =4 incommensurate phase II,
only three characteristic excitations are observed: one
phason (P) and two amplitudonlike modes (Gi and Gz ).

1. Statics

Biphenyl phase II being a four-ray star incommensu-
rate system, its order parameter has at least four com-
ponents. In fact, the Herring criterion shows that it has
only four components: Q, (q, ), Q, ( —q, ), Q2(q, ), and

Qz( —q, ). They are directly related to the phases and

amplitudes of the sine modulations [Eq. (2)]:

Q, (q, )= e '=Q, (
—q, )*,

A2
Q2(q, )= —e '=Q2( —q, )*

P(r) cc

i =1,2;e=+]
Q;(eq, )e

i(eq, ) r

or A, =0 and A2&0, this solution being stable for u &0
and u+u &0. It describes a single-q incommensurate
structure with two types of domains. One domain (asso-
ciated with A i %0) is relative to the static modulation of
wave vector q, and the other to the modulation of wave

1

vector q, . The point group of phase I is no longer
2

preserved. At the microscopic level, the symmetry
operations Ci, and o~ disappear (notations from Ref. 30).
These symmetry operations now relate the two types of
domains.

Case III occurs in the limit case where u =0 (u )0)
and corresponds to a very peculiar solution:
A, + A2 =[a(P, P)/4u] Th—e incomm. ensurate system
may take any orientation in the space ( A „A2 ).

From group-theory calculation, the form of the static free
energy is

F(T,P) =Fo(T,P)+a (P P, )—
x[IQ, (q, )I'+IQ, (q, )I']

+4&u+»[IQi(q, )I'+IQ&(q, )I']

~ +guIQi(q, , )I'IQp(q, , )l'.

For P & P, (a )0), minimization of the free energy leads
to the following solutions for the structure of biphenyl
phase II.

Case I, A i
= A2 = [a (P, —P)/4(2u +u)]'/, this solu-

tion being stable for u &0 and 2u +u )0. It corresponds
to a double-q incommensurate structure where the two
modulations of wave vector q, and q, coexist spatially'1 2

with the same amplitude. The point symmetry group of
phase I is preserved.

Case II,
' 1/2

a(P, P)—
WO and A2=0

4 u+u
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2. Dynamics

The method used to calculate the dynamics of phase I
and of incommensurate phase II is introduced by Axe.
Taking into account all the excitation Q;( —q, —q) of the

order-parameter component Q, (
—q, ),

t

5$(r, t) ~
i =1,2;a=+1

i (eq +q)r
Q, (eq, +q)e

one finds the excess free energy,

Q, (eq, +q) cc exp —i[co(eq, +q)]t,

I

+,=[«P —P, )+g(q)][IQi(q, +q)l'+ IQ2(q, +q)l']
t

+8(u+U)[2[IQ, (q, )I'IQi(q, +q)l'+IQ2(q, ) 'IQ2(q, +q)l']

+[Q (q, ,
)'Q ( —q, , +q)Q ( —q, ,

—q)+Q (q, , )'Q ( —q, ,+q)Q (
—q, ,

—q)l]

+8t IQi(q, )I'IQ&(q, +q)l'+IQ2(q, )I'IQi(q, +q)l'

+Qi(q, )Q2(q, ) g Qi( —q, —eq)Q, ( —q, +eq)
e'=+1

+ g Qi (E'q )Q2( eq, )Q, [——e(q, +q)]Qz[e(q, +q) ]
a=+1

(8)

The direct space origin is chosen so that the static values
of the phases 41 and @2 are zero, which is not a restric-
tive condition since they are not correlated by any um-
klapp term. Within the scope of the Ginzburg-Landau
low-temperature approximation, in Eq. (8) Q;(+q, ) is re-

t

placed by its static value. Then one looks for harmonic
solutions of the Lagrange equations of motion

d
dt (jQ,. ( —q, —q)

BL BL

BQ;( —q, —q)

where

L = g Q;( —q, —q)Q;(q, +q) —6F +
i =1,2 1,2

One gets two equations relating Q, (+q, +q) and
1

Q2( q, +q). Replacing q, by ( —q, ) in them, one finds

two new equations. Hence the matrix equation

I

positions by Cowley. '

Phase I. For P greater than P„ the dynamical matrix
is given by

e 0 0 0
0 0, 0 0
0 0 a 0
0 0 0 a

where a=a(P P, )+g(q). Th—e soft mode corresponds
to the fourfold degenerate normal mode, its square fre-
quency is cosM(+Q, +q)=a (P P, )+g(q),—i =1,2 [cf.

t

Eq. (4)].
Phase II. Case I: double-q structure [Figs. 10(a) and

11(a)]. The dynamical matrix is given by

j3a 1 y

co Q=DQ (10)

with

Q, (q, +q)

where

a= a (P, P), P=a+g(—q)
0 '+U

2Q +U
Q, (

—q, +q)

Q2(q, , +q)

Qz( —q, +q)

and

y= a(P, P) . —
2Q +U

where D is the dynamical matrix. Its eigenvalues are the
square frequencies of the phase-II characteristic excita-
tions and its eigenvectors, the normal modes, lead to the
exact excitation of phases and amplitudes to which these
modes correspond and to their inelastic structure factors.

In the following, the results of our calculations in
phase I and in phase II in cases I, II, and III are present-
ed; in cases I and II, eigenvectors have also been reported
by Poulet and Pick and square frequencies at satellite

It has three difFerent eigenfrequencies, relative to three
modes called Mph 3+ and A

~~,„(+Q, +q)=g(q),

(+Q, +q) =2a(P, P)+g (q), —

and

co„(+Q, +q)= a(P, P)+g(q), i =1,2 . —2U

2u +v
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p~p
SM

-+ Qs +-s,

( a ) DOUBLE - q

p ~pc
( b ) SINGLE- q

1 0 )COS ~ r +
s,

+ A2cos (qs ~ r + l2 ) ]S2

t][t( r) a[A) cos(q ~ r + g, ) ]

-s

A+
A-
M~

(2x)

+QS '- &s,

A

Mpg

w/

-+ Qs

D{2x)

Mph 5I, , 5~
A- 5 (Al - A2)
A+ — 5 (Ai+ A2)

Mph
A —5Ai
p —5[A,cos(g ~ r+O, )]

S2

FIG. 10. For P )P, calculated dispersion curve of the soft mode in phase I, around satellites (+Q, ) and (+Q, ), in an arbitrary
1 '2 '

direction (RQ, = q, +v, r being a basic vector of the normal lattice). For P (P, dispersion curves for the phase-II characteristic
t I

excitations (a) double-q structure; (b) single-q structure; in solid lines for a domain A
&
%0, and in dotted lines for a domain A2%0 (see

the text).

The corresponding eigenvectors are (p, —p, v, —v) with

(p +v )'~ =I/&2 for M h, —,'(1, 1, 1, 1) for A+ and
—,'(1, 1, —1, —1) for A . M„h is twice degenerate, it cor-
responds to the excitations 54, and 5&& of the phases 4&
and %2. The two remaining modes 3+ and A relate to
the excitation of the amplitudes A, and A 2, respectively,
in phase [5(A, +A&)] and in antiphase [5(A& —A2)].
An inelastic neutron scattering measurement performed
at Q=~+q, +q, where v is a normal Bragg peak posi-

t

tion, projects out the displacement component propor-
tional to Q;(+q, +q). ' ' ' So the inelastic structure fac-

tors [Eq. (3)] of M h, A+, and A satisfy the following
relations:

I~M,„(e)l'il~,.(Q)l'= f~M,„(g)l'il~, (q)l'=2.
(11)

Case II: single-q structure [Figs. 10(b) and 11(b)].
First, let us assume that all the crystal is formed of only
one domain, where the static modulation has the wave
vector q, (A, AO, 22=0}. The dynamical matrix is

1

given by

( a ) DOU8LE —q ( b ) SINGLE —q

Q)2
PHASE II

l
PHASE I

(

I

A

~2) I

PHASE II l PHASE I

Pc

Q= -'Qs
I

FIG. 11. Calculated pressure dependence of the square fre-
quencies at a satellite position of the gap modes in phase II nor-
malized to the soft-mode square frequency evolution. For cal-
culation not including coupling between order parameter and
strains (a) p =2, p'=2U/(2u+U); (b) p =2, p'= —v/(u+U).
For calculation including the coupling (a) p =2(2u +U)/
(2u + u + t), p'=2u l{2u + u + t); (b) p =4(u +u}I[2(u + u)
+r+t], p'=( —2u —2r)/[2(u +u)+r+t] (see the text).
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P u 0 0
a P 0 0D= 0 0 y 0
0 0 0 y

where

the same point

~F (+Q, +q)~ =~F„(+Q, +q)~

= -,' IPsM(+Q, ,
+q) I',

IFD(+Q, ,+q) I'= IFsM(+Q, +q) I' .
(12)

a=a (P, P),—P=a+g(q),

y= a(P, —P)+g(q) .

It has three different eigenfrequencies, relative to three
modes called M h, A, and D. Eigenfrequencies are

co~ (+Q, +q)=g(q),

co~(+Q, +q)=2a(P, P)+g(q—),

coD(+Q, +q)= a(P, P)+g(—q) .'2 u+U

The corresponding eigenvectors are I/v'2(1, —1,0,0) for
M h, I/&2(1, 1,0,0) for A, and (0,0,p, v) with
(p~+v )'~ =1 for D. Contrary to case I, where satellite
positions Q, and Q, are equivalent, in case II, for a

1 2

domain where A, WO, the modes M~h and A originate
from satellites +Q, and the mode D from satellites +Q,

1 '2

[Fig. 10(b), solid lines]. M„h and A are the phase and
amplitude modes relative to the excitations 5@& and 5A

&

of the phase and amplitude of the nonzero static modula-
tion of wave vector q, . They are the "usual" phase and

amplitude modes of n =2 incommensurate systems. Yet,
the order parameter has not only two but four com-
ponents. There is also a twice-degenerate mode D which
relates to the excitation of the zero amplitude modulation
of wave vector q, . It is an amplitudonlike mode [Fig.'2
11(b)]. Schematic drawings are shown in Fig. 12 to ex-
plain the meaning of this rather peculiar mode D and
why it is twice degenerate. In Fig. 12(a) are represented
the effect of the phase and amplitude excitations on the
torsional angle P(r) for the nonzero static modulation of
wave vector q, . M h is gapless; a global change in the

1

phase costs no energy since the period of the modulation
(1,, =2~/~q, ) is incommensurate with any linear com-

bination of the lattice constants. In Fig. 12(b) are
represented two excitations of the modulation of wave
vector q, around its mean zero value. They differ by'2
their phases. Obviously, the modulation period
(A&=2~/~q, ~ ) being incommensurate with all linear

combinations of the lattice constants, these two excita-
tions cost the same energy. Actually, the mode D in
phase II has the same meaning-. as soft modes in high-
temperature phases.

Calculations of inelastic structure factors [Eq. (3)] give
(i) that the square structure factors of M „and A at
Q, =+Q, +q are equal to half the soft-mode one at the

1

same point and (ii) that the square structure factor of the
mode D at Q2=+Q, +q is equal to the soft-mode one at

2

Now, let us consider a more realistic case. The two
types of domains (A& =0 or 32=0) are present in the
crystal. Around each satellite position +Q, and +Q,

1 '2
the three modes M h, A, and D should now be observed
[Fig. 10(b)]. For example, around satellites +Q, , M h

1

and A are relative to the excitation of the phase N, and
of the amplitude A

&
in domains in which A

&
is nonzero,

and D is relative to the excitation of the modulation of
wave vector q, in domains in which its static amplitude

1

A& is equal to zero. From this argument and Eq. (12),
the inelastic structure factors at Q=+Q, +q, i =1,2 are

l

found to obey the relations

IFD(Q) I'=2IPM „(Q)I'=2IF, (Q) I' . (13)

(a)

ph

/
/

o /
/ /

r /
/

/

/
/ /

/ /'
%pe

FIG. 12. P„„;,(r) ~ A, cos(q, .r+4&, )+ A2cos(q, .r+@,)
with 32=0. (a) Solid lines indicate equilibrium values of the
torsional angle P(r) in the direction of the propagation wave
vector q, . Dotted lines indicate the values of this angle as the

1

result of the amplitude excitation A and of the phase excitation
M„h in the infinite wavelength limit. (b) Straight solid lines il-
lustrate that the static torsional angle is zero in the direction of
the propagation wave vector q, . Both dashed lines correspond'2
to the values of the torsional angle for two excitations of wave
vector q, , which only di6'er by their phases, hence the twice de-'2'
generate mode D.
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These equations are obtained under the assumption that
the two types of domains are equally present in the crys-
tal, which seems reasonable due to the large size of the
sample. Note also that satellite rejections being Bragg
peaks within the experimental resolution, domains are
large enough to enable us to neglect their static, and a
fortiori dynamic, interferences 3.

Remark. In cases I and II, if the soft-mode dispersion
curve g(q) is not assumed to be a symmetrical function
in q[g (

—q)Ag(q)], this induces ' that (i) the degenerate
mode (M h in case I and D in case II) is now degenerate
only at the satellite positions, its splitting increasing with

q (ii) the dispersion curves of the phase-II characteristic
excitations are no longer all equal to the soft-mode one,
and (iii) the ratios between inelastic structure factors
change with q. However, the measured g (q) being found
roughly symmetrical, the above effects have been neglect-
ed.

Case III. In the peculiar case III, there are only two
different eigenfrequencies for the dynamical matrix, '

co'(+Q, +q) =g(q)

and

co (+Q, +q)=2a(P, P)+g(q—) .

The gapless mode is threefold degenerate and relative to
the excitation of the three degrees of freedom: N„+2,
and ( A, —A z

)' on which the free energy does not de-
pend. The gap mode is related to the excitation of the
amplitudes 3, and A2 along the radius of the circle
defined by 2, + 2 z

= [a (P, P)/4u]. Since—case III has
only one gap mode, it is not allowed for biphenyl phase
II. Therefore, it will not be discussed further.

In summary, in cases I and II one calculates three
modes (Figs. 10 and 11): one gapless phason and two gap
modes. They have the same dispersion law as the soft
mode. But, for the double-q structure, the phason is

twice degenerate, whereas for the single-q structure, the
degeneracy affects one of the gap modes.

B. Free energy including coupling between the order
parameter and strains

Ratios between the measured slopes of the square-
frequency evolution versus pressure of the phase-II gap

modes G, and Gz and of the phase-I soft mode (SM) are

2
COG.'=3
Cc)sM

2
COG

2
=0.5 .

~sM
(14)

But the above calculations indicate that a~„ /cosM=2 in

case I and co„/a~sM=2 in case II. The measured mode
62 being the one which frequency is determined less ac-
curately, the value of 2 for the ratio between its square
frequency and the soft-mode one could be regarded as ac-
ceptable. Nevertheless, it is in the extreme limit of the
error bar. So, in order to get a better fi of the measured
pressure dependence of the amplitudonlike mode frequen-
cies, we have performed calculations including coupling
between the order parameter and strains. Moreover, cal-
culation of the static equilibrium values of these strains
points out an iriteresting difference in the average sym-
metries of case I and II.

1. Statics

For

BQ
e& =, e2=

Bx

BQ
e4=

Bz

BQ
e6=

By

Bzly

By

Bu~
e3 =

az

Bu c}tl

where u is the q =0 displacement of centers of gravity of
the molecules, one defines e; as the difference between the
strain component e and the value that it would have if
there was no phase transition. So, in the phase I, the
components e; are all equal to zero and in phase EI, they
give the effect of the coupling to the order parameter on
the phase-I unit cell (i.e., on a, b, c,a, P, y ). Group theory
enables us to find the form of the free energy including
coupling between e, , i =1—6, and the order-parameter
components. The static free energy has the following
form:"

F,(T,P)=P,O(T, P)+«P —P, )[IQi(q, )I'+ IQz(q, )I']

+4(u+U)[IQi(q, )I'+ IQz(q, )I']+»IQi(q, ) 'IQz(q, )
'

+2(giei+gzez+g3e3+g5e5)[IQi(q. )I'+ IQz(q. )I'l

(15)

Minimization of this free energy shows the following.
(i) In case I (double-q structure, A, =

Az ) e4 and e6 are
equal to zero. The average symmetry is monoclinic as in
phase I (the point symmetry group is preserved). (ii) In
case II (single-q structure, domains Az =0 or A i =0) e4
and e6 are nonzero [they are proportional to ( A i

—A z )].

+2(g".+g.e.)[IQi(q. )I' —IQz(q, )I']+-,' X C;,';;
Z, J

The angles a and y (Fig. 3) are no longer equal to 90 . So
the average symmetry is now triclinic (the point symme-
try group is not preserved).

This important difference between cases I and II will be
discussed when comparing experimental and theoretical
results. Note also two of the stability conditions which
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will be used when studying the phase-II dynamics. If one
defines

and

X K~ikgk
i, k =4, 6

2u+v+t (17b)

Case II, single-q structure. For a domain A, AO, for
example, calculation of

i, k =1,2, 3, 5
gi ~ik gk

where (S; ) is the inverse matrix of the elastic constant
matrix (C; ), (C;J ) eigenvalues being positive, one finds in
case I as well as in case II that

BF
co&(+Q, ,

) =
static

r&0 and t &0.
2. Dynamics

(16)
~D(+Q, )=

BA2

gives

and

~~.(+Q, . ) = BF
Hi+22

v'2

2

static

To calculate in detail the phase-II dynamics taking into
account coupling between order parameter and strains,
one should look for the eigenvectors and eigenvalues of
the 10X 10 dynamical matrix. In ThBr4 Bernard, Cur-
rat, Delamoye et al. ' "have shown a change in the am-
plitudon dispersion due to its coupling with an acoustic
branch. In quartz, Walker and Gooding have studied
coupling between phase and acoustic modes. In this pa-
per, we are not interested in the above-mentioned eA'ects
since we have measured the same dispersion for the
characteristic excitations in phase II and for the soft
mode in phase I. We are looking for the pressure depen-
dence of the amplitudonlike mode frequencies. Not too
close to P„ they are relatively high and acoustic vibra-
tions can no longer follow the order parameter Auctua-
tions. In this case, the gap-mode frequencies at satellite
positions are simply the second derivative of the free en-
ergy F, with respect to the normal modes found by per-
forming calculations without coupling.

Phase I. In phase I coupling to strains does not change
the pressure dependence of the soft-mode frequency. It
is, for example, calculated as the second derivative of the
free energy F, with respect to the amplitude variable A,
and taken at static values of the parameters Q;(+q, ),

i

i =1,2 and e;, i =1—6,

BF~'M(+Q . ) =SM —
si gg2 c=a(P P) . —

static

Phase II. Case I, double-q structure. Calculation of

+ 4(u +U)
Qs. )= 2( + )+ + ( c (18a)

2v 2r p p(-Q, )=2(u+ )+ + '( — ) (18b)

Therefore, in case I as well as in case II, the slope of the
pressure dependence of the gap-mode square frequency
which was found to be equal to twice the soft-mode one is
now found greater than two since r and t are negative in
Eqs. (17a) and (18a). So these calculations including cou-
pling between strains and the order parameter will allow
a better fit of the evolution of the amplitudonlike mode
square frequencies versus pressure (Figs. 9 and 11).

VI. DISCUSSIQN

First, let us consider only the experimental results on
the mode frequencies, ignoring their inelastic structure
factors. In case I as well as in case II, three modes have
been measured, in agreen1ent with calculations: a gapless
phason and two amplitudonlike excitations, which have
the same dispersion as the soft mode. Concerning the
evolution versus pressure of the gap-mode frequencies, in
cases I and II, theory allows a good fit of the data and
distinguishes between G, and G2, getting their exact as-
signment to the difFerent possible excitations of phases
and amplitudes. Indeed, only the square frequency of G2
varies more than twice as fast as the soft-mode square fre-
quency. So, if phase II has a double-q structure (case I),
G2 is the calculated mode A+ and if it has a single-q
structure (case II), it is the mode A. Then G, corre-
sponds to A in case I or to D in case II. And P is obvi-
ously the calculated phason. Theoretical values of the
slopes relative to the pressure dependence of the gap-
mode frequencies [Eqs. (17) and (18)] fit the measured
slopes [Eq. (14)] (i) in case I, for

~~ (+Q, . )=
l

gives

Ai —A2
v'2

static

t = —2v and u =5v/2

and (ii) in case II, for

2v=t —r and u= —r —2t . (20)

(17a)co„(+Q, ) = a (P, P)—+ 2(2u +U)
+ 't 2u +v+t

In summary, considering only the experimental results on
the mode frequencies, theory and experiments are in good
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agreement in case I as well as in case II.
Experimental inelastic structure factors are not deter-

mined with a good accuracy. Nevertheless, these results
are used to discriminate between a double-q or a single-q
structure for biphenyl phase II. Indeed, in inelastic neu-
tron scattering measurements, the on1y difference be-
tween these two types of structures lies in the mode de-
generacy. For the double-q structure, it is the phason P
which is degenerate and for the single-q structure, it is
the mode G &. Comparison between the ratios of inelastic
structure factors of P, G&, and Gz [Tables I and II, Eq.
(5)] and the calculated ratios [Eqs. (11) and (13)] shows
that our results are strongly in favor of case II. Phase II
would have a single-q structure. So, in a domain where
A, XO,

experiments under pressure are in progress and agree
with neutron results. ' There are strong arguments in
favor of a single-q structure for phase II at atmospheric
pressure and at 3 K, between 1.05 and 1.8 kbar (our re-
sults). Raman selection rules will possibly allow one to
distinguish between the single-q and double-q structures.
Then short time needed in Raman experiments could per-
mit exploration of a large area of phase II in the (P, T) di-
agram (although for not too high temperatures); one
could look for an area in the (P, T) space where phase II
should have a double-q structure. Very recently, this
type of crossover has been observed in quartz at atmos-
pheric pressure.

UII. CONCLUSION

P„„,,(r) oc A, cos(q, r+@,), By using inelastic neutron scattering, at T =3 K, we
have studied the dynamics of the incommensurate phase
II of biphenyl under pressure, the order parameter of
which has four components (n =4). In this paper, we
have reported the only direct observation, by inelastic
neutron scattering, of the phase and amplitude modes of
such a complex incommensurate system. Three well-
resolved modes have been measured: one gapless phason
and two amplitudonlike modes, one of which is twice de-
generate. They have been unambiguously identified as
the characteristic excitations of incommensurate phase
II. Moreover, within the framework of the Ginzburg-
Landau theory, calculations have allowed us to determine
to which specific combinations of phase and amplitude
excitations they correspond. We have also given strong
arguments in favor of a single-q structure of biphenyl
phase II at T =3 K.
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P and G2 are relative to the excitations of the phase 4,
and of the amplitude A

&
and the twice degenerate mode

G, is relative to the excitation of the modulation of wave
vector q, (Fig. 12).'2

Benkert and Heine have calculated a single-q structure
in biphenyl phase II. ' But this result is based on the as-
sumption that fourth-order terms in intermolecular in-
teractions are negligible with respect to the fourth-order
intramolecular one. If so, the free-energy coeScients u

and u satisfy u = —2u. In Eq. (20), it implies t = 2r, —
which is impossible because r and t are both negative. So,
within the scope of our calculations, fourth-order inter-
molecular terms are not found negligible with respect to
the intramolecular ones.

Although the experimental argument for the single-q
structure is supported by several inelastic structure fac-
tors measured at each pressure at different points of the
reciprocal space, the proof is still only indirect. We have
tried to get a more direct answer from elastic measure-
ments performed on a triple-axis spectrometer. On the
one hand, if the structure of phase II is triclinic, the angle
y must be very close to 90' since no significant difference
between its value and 90' has been measured. On the oth-
er hand, we have measured no combinations of satellite
positions q, and q, , which, on the contrary, would have

1
'2'

been a proof of a double-q structure. Nevertheless, this
does not allow us to definitely exclude this structure since
second-order satellites are hardly measurable. In fact,
determination of the structure of biphenyl phase II has
not yet been done. This would be very interesting since it
is a rather complex case (n =4), and it could give an
uriambiguous answer. Nonetheless, note that another in-
direct proof of the single-q structure of phase II, at at-
mospheric pressure, has recently been obtained by simu-
lation of experimental RPE spectra. Finally, Rarnan
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