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%"e discuss the mean-field approach to the quantum Heisenberg ferromagnet and antiferromagnet
on bipartite lattices using the Schwinger boson representation, with the constraints imposed on the
average. The low-dimensional results of Arovas and Auerhach [Phys. Rev. B.3S, 316 (1988)] are de-
rived simply by using a Hartree-Fock decomposition and the Peierls variational principle. We
study the models below their critical temperatures in three dimensions (and at zero temperature in
d =2 dimensions} by identifying magnetic ordering with Bose condensation of the Schwinger bo-
sons. This novel interpretation enables us to compute the low-temperature (in the ordered regime)
thermodynamic properties and dispersion relations, which agree with the results of spin-wave
theory. We also extract critical properties that are related to those of the spherical model. A brief
discussion of the limitations of the approach is also presented.

I; INTRODUCTION de6ned by

There has been considerable recent interest in the
study of quantum Heisenberg models' motivated by
La2Cu04 and other compounds related to high-T, super-
conductors. Arovas and Auerbach (AA) have studied an
SU(N) generalization of the Heisenberg model within a
large-X approximation. They employed the Schwinger
boson representation to perform a saddle-point approxi-
mation to the functional integral representing the parti-
tion function and obtained low-temperature thermo-
dynamic and dynamic properties. Their results provide
a reasonable description of the disordered, though strong-
ly correlated, low-temperature regime (the so-called "spin
liquid" ) in one- and two-dimensional (2D) models, both
for the ferromagnetic and antiferromagnetic (AF) cases.
For the 2D quantum antiferromagnet, their results are in
agreement with those of Chakravarty, Halperin, and Nel-
son derived using the nonlinear a-model representation.
The S =—,

' quantum spin chain was studied by Takahashi
who used a variational density-matrix approach and ob-
tained thermodynamic properties in excellent agreement
with the exact Bethe-ansatz results.

- We have extended the mean-field approach to quantum
spin models formulated in the Schwinger boson represen-
tation and used in Ref. 2. The primary motivation for
our study is the extension of this method to investigate
the Heisenberg-Hubbard model. ' The latter model, im-
portant in the study of cuprate superconductors, is

&H H=P —Jg (S; S.——,'n, n ) —t g c,~„c)„P,
(i j ) (ij )p

where c;„creates an electron at site i with spin p and
{ij) denotes nearest neighbors on a d-dimensional lat-
tice; S;:—. —,c;„o.„c; and n,- =c;„c;„arethe spin and num-
ber operators at site i, and P is the projection operator
that eliminates doubly occupied sites. At half filling, the
term proportional to t which represents hole hopping is
absent (n; =1) and the Hamiltonian &H H reduces to
that of the spin- —,

' Heisenberg antiferromagnet considered
in this paper. A novel mean-field theory for the
Heisenberg-Hubbard model based on using Schwinger
bosons to describe singly occupied sites or spins and a
"slave" fermion to describe the empty sites or holes is
discussed elsewhere. '

In this paper we first show that the low-dimensional re-
sults of Arovas and Auerbach (AA) can be obtained easi-
ly by a direct Hartree-Pock decomposition of the Heisen-
berg Hamiltonian into a quadratic form and using the
Peierls variational principle;" the constraint arising from
the Schwinger boson representation is imposed on the
average. Then, we extend our considerations to the
three-dimensional model and show that the same ap-
proach can describe (long-range) magnetic ordering at
low temperatures (T & T, ) in 3D (and at T=0 in 2D) if
we identify the magnetic ordering with a Bose condensa-
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tion of the Schwinger bosons. We show that this ap-
proach correctly reproduces spin-wave theory (dispersion
relation for spin waves and thermodynamics properties
such as magnetization) at low temperatures. . However, it
yields, not surprisingly, critical exponents for the con-
tinuous phase transition which are related to those of the
spherical model. We discuss the derivation of these re-
sults for the ferromagnetic problem in Sec. II and for the
antiferromagnetic model in Sec. III. In the last section
we present critical remarks regarding various assump-
tions made in the mean-field theory; in particular, we dis-
cuss the local gauge invariance associated with the repre-
sentation and the gauge-variant nature of the condensate.

II. FERROMAGNET

In this section we consider the mean-field theory of the
ferromagnetic Heisenberg model in the Schwinger boson
representation. The spin-S Heisenberg ferromagnet is de-
scribed by the Hamiltonian

Next, we make a Hartree-Fock decomposition of Eq.
(2.4) which leads to the following mean-field Hamiltoni-
an:

HMF =A,g gb;" b; 2—S
I 0

—2J g I(Bt, )B,, +(B,, )BJ I

(I,j)

+2J g ( Bt ) ( B," ) + S
(I,j)

where ( . ) indicates thermal averaging and the
Lagrange multiplier k is determined by requiring that
( g b, b; ) =2S. Following AA we assume that ( B, ) is
real and uniform, and we define the mean-field amplitude
8 = ( B,~ ) = (B,.~ ). A nonzero value for B signifies
short-range ferromagnetic correlations. Since the b& and
the b~ channels are decoupled the mean-field Hamiltoni-
an can be diagonalized by Fourier transformation:

H= —Jg S, S
(i,j )

(2.1) HM„= S 2XSN+N—zJB +g cubi, bk bk
2 k, o.

(2.6)

where the exchange constant J )0 and the sum is over all
nearest-neighbor pairs of a d-dimensional hypercubical
lattice with periodic boundary conditions.

where

cok =JBz ( Ek+ A )=JBz ( c.k
—I ) +A, (2.7)

A. Mean-Aeld equations
gives the dispersion relation for the Schwinger bosons,

In the Schwinger representation, each spin variable 5;
is replaced by two bosons b; where cr =+1 at each lat-
tice site i. The spin operators can be represented as fol-
lows:

S ~(b tb t b ib t)

and

A= —1
JBz

si, =—g(1 —e' ) .
1

5

(2.8)

(2.9)

S;+=6;)b;g, S, =b,t)b, + .
(2.2) The energy per site u and the free energy per site f are

then given by

In addition, the bosons satisfy the constraint

gbt b; =2S (2.3)

at each lattice site i.
Using the constraints the Hamiltonian in (2.1) can be

expressed as a biquadratic form in the boson operators:

u= —JzB + S2

2

f = — S 2JzASB —Jz—(8 —S)Jz 2

2

g ln(1+nk),2

P k

(2.10)

(2. 1 1)

H= —2JQ:B; B;:+ S
(i j &

(2.4)

where B; = ,'g b; b, N—is the number of sites in the
lattice, z the number of nearest neighbors, and:: denotes
normal ordering. The rotationally invariant form (2.4)
and its SU(N) generalization have been studied by Aro-
vas and Auerbach for the ferromagnetic model. They de-
rived a mean-field theory using the functional integral
representation of the partition function and analyzed it in
the disordered regime. First we derive the same results
by a direct mean-field theory.

A crucial approximation in this mean-field theory, in
addition to the neglect of fluctuations, is that the con-
straints (2.3) are imposed only on the average. The N
constraints can, in this approximation, be taken into ac-
count by introducing a single Lagrange multiplier A, .

1S =—gni, ,
k

18 =S——QEknz .
k

(2.12)

(2.13)

Equations (2.12) and (2.13) are the fundamental equations
of our mean-field theory.

B.Disordered regime

In the disordered regime the sums in Eqs. (2.12) and
(2.13) can be converted into integrals over the first Bril-

where ni, =(e " —1) ' is the Bose occupation factor.
The Lagrange multiplier (chemical potential) A, and the
mean-field amplitude B are determined by minimizing the
free energy:
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and

t. dk 1

J (2~)d P(c +A)'lj e k

louin zone of the reciprocal lattice. This yields

(2.14)

dress these issues. Before investigating the question of
ordering we examine the critical behavior of the model as
T approaches T, from above.

C. Critical behavior as T~ T,+

ddt
P(E«+A)k

(2.15)

where d is the spatial dimensionality and we have defined
the parameter /3=JBz/kjiT. These equations were ob-
tained by AA [Eqs. 3.5(a) and 3.5(b) in Ref. 2] and by
Takahashi from a mean-field analysis of his modified
spiri-wave theory.

We now brieAy summarize the results of the analysis of
Eqs. (2.14) and (2.15) by Takahashi and AA. Note that
since ci, ~ 0 we must have A ~ 0. Since the integral in Eq.
(2.14) vanishes at T =0 there is no zero-temperature solu-
tion in any dimension. For d =1 and 2 dimensions there
is a solution for all T )0 which implies that the system is
disordered at any nonzero temperature and the symmetry
is unbroken since the theory is rotationally invariant.
That the system is disordered can be also demonstrated
explicitly from the spin-spiri correlation function which
vanishes exponentially at large distances. Furthermore,
in d =1, dimension the low-temperature behavior of the
free energy and the susceptibility agrees with the exact
Bethe-ansatz results, apart from overall numerical factors
of 2 and —'„respectively. This riumerical discrepancy was
attributed by AA to the overcounting of the number of
independent boson degrees of freedom: The point is that
the constraint requires there be exactly one independent
Bose operator per site, whereas relaxing the constraint
makes both b

&
and b

&
bosons independent. The problem

of overcounting does not arise in the Takahashi theory,
since the latter is based on the single-component
Holstein-Primakoff representation of the spin operators.
In fact, the mean-field results of Ref. 3 can be obtained
from the Schwinger boson theory by making the replace-
ment b; t

=b; t
= (2S b;I b; i )' an—d expanding the

square root. In this way the b& component is effectively
removed so that the results are in quantitative agreement
with the Bethe-ansatz results at low temperatures. The
price is that the modified spin-wave theory is not rota-
tionally invariant in contrast to the Schwinger boson
mean-field theory. '

In two dimensions there are no exact results available
for comparison. Nonetheless, it is believed that the
theory gives reasonable results at low temperatures. For
d & 2 there exists a critical temperature T, such that Eq.
(2.14) has no solution for T (T,WO. Arovas and Auer-
bach have taken this as an indication that the system is
ordered below T, . Of course, for the ferromagnet the
ground state and the low-lying excitations are known ex-
actly, and spin-wave theory yields accurate results at low
temperatures. The question then arises if this form of
mean-field theory can be extended below T„and if so,
what corresponds to ferromagnetic ordering? What are
the critical properties? Furthermore, is the theory cap-
able of reproducing the spin-wave results? Below we ad-

For T )T, Eq. (2.14) has a solution with the chemical
potential A & 0 so that the boson dispersion coi, exhibits a
gap for T & T, . As T~T,+, A decreases and goes to
zero at T=T, . The critical properties are essentially
determined by how A vanishes as T~T, . In one and
two dimensions T, =0 and A vanishes as T and

e """,respectively.
For d &2 the critical temperature is obtained from

Eqs. (2.14) and (2.15) by setting A=0 which gives

d "k 1

(2m )"
(2.16)

and

d "k
B,=S-

(2vr )" c k
(2.17)

From (2.16) we determine P, as a function of S which can
be used in (2.17) to obtain B,. The critical temperature is
then found from k~ T, /J =zB, //3, .

Note that 8 decreases with increasing T so that for
T & T„P(P,. For fixed /3 the integrals in (2.16) and
(2.17) are not necessarily analytic functions of A. It is
convenient to define

d "k 1

(2n. ) ) '«
(2.18)

Clearly I(/3) is analytic in P and I(/3, ) =S. Using (2.18)
on both sides of Eq. (2.16) we obtain

1

/3(ok+ A)
e

=I(/3) —I(P, ) .

d/2 1 2(d (4
d/2 —2

——f dc. —.——AlnA, d=4
/3 o E+A P

d )4.A

(2.20)

Since the right-hand side is proportional to P, —/3, we
find that A-(/3, —P)' with s =2/(d —2) for 2&d &4
and s = 1 for d )4. At d =4,

A -—(P, —P ) /ln( f3, —f3) .

Up to this point the analysis is identical to that for an

(2.19)

For fI(/3„A is small and the main contribution to the
integral comes from small values of c. The density of
states for small c. behaves as c" '. Expanding the
denominators we find that the left-hand side of Eq. (2.19)
behaves as
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with s =2/(d —2) for 2&d &4.
To find the correlation length and susceptibility ex-

ponents we consider the spin-spin correlation function
which is given by

6 (R)—:(S(0)'S(R) ) =—[S5R 0+ ~g(R) ~ ] (2 ~ 22a)

where

d dk ik.R
g(R)=

(2m ) t 'k+A'7T ~ k
(2.22b)

Note that for R=O, it follows from Eq. (2.14) that
g(0)=S, and therefore, G(0)=(—,')S(S+1); this has the
correct spin dependence but is wrong by a factor of —,'. As
mentioned earlier this discrepancy arises presumably be-
cause the constraints are imposed only on the average.
Note that since ci,-k for small k, the correlation length

diverges as g-A '~ -t with v=1/(d —2) for
2&d &4 which is identical to the correlation length ex-
ponent in the spherical model.

Similarly, the susceptibility can be calculated from Eq.
(2.22) and is given by

k~ Ty"(q) = (goPa ) d kS+ z nknk+q, (2 23)
2 (2m. )

where ni, =(e —1). Consider y(q=O): By examin-
ing the behavior of the integrand in Eq. (2.23) at small e
it is easy to establish that the susceptibility diverges as
t i' with y=(4 —d)/(d —2) for 2&d &4. Finally, since
the energy is essentially determined by 8 [see Eq. (2.10)]
the specific heat goes to a constant as T~T,+ as in the
ideal Bose gas. To summarize, the critical behavior as
T~T,+ is that of a Bose gas close to its condensation
temperature. In particular, for d =3, v= 1, and y = 1.

D. Ordered regime

As mentioned earlier, Eq. (2.14) does not have a solu-
tion below T, . However, the preceding analysis suggests
that Bose condensation occurs for T ~ T, . This is not
surprising since the total number of bosons is fixed. Here
we show that the condensation in the Schwinger boson
theory corresponds to the breaking of rotational symme-
try and ferromagnetic ordering in the spin system. The
analysis depends slightly on how one chooses to break the
symmetry, although the results do not.

I.et us first consider the case in which condensation

ideal Bose gas close to the condensation temperature P, '.
It should be recalled, however, that we are dealing with
an interacting Bose gas, the effect of interaction entering
through the quantity B. The parameter P is a function of
both T and B. To find the critical properties we need to
analyze the behavior of B close to T, . Note that B=B,
is finite at T, . For T~T, the extra factor of c, in the in-
tegral in Eq. (2.17) ensures that 8 is an analytic function
of A for all d & 2. A simple analysis then yields
8 8, -—(f3, —I3), from which we obtain (8 8, )—-t,
where t —= ( T —T, ) /T, . Therefore, we have

(2.21)

occurs in both the b
&

and b
&

channels in an equivalent
fashion. Then (b the ) =(b&b& ) =S, and (S') =0. We
can obtain a solution to the basic equation (2.12) by
separating out the k =0 mode and converting the sum
over the remaining terms into an integral. This leads to

d
"k 1S =p+

(2')d P(E +A)
e —1

(2.24)

where p=—(botbot )/N= l[N(e~ —1)] is the condensate
density. Above T„p=O, whereas for T & T„p acquires
a finite value. This can occur if PA vanishes as N
Note that since ci, =0 for the k =0 mode the equation for
B remains unchanged. Setting A=O we have for T & T„

d k 1p=S—
d PE7T ~ k

d "kB=S-
(2m ) e "—1

=S —I(P), (2.25)

(b,'b, )=S+m= —y1 1

P{ k+A —h)
k

(2.27)

In the condensed region ~hot ~

= ~b~t (
= ~boi ~

=
~bo~ ~

=(Np)'~ . In particular, at T =0, p=S. If the phases of
the Bose fields are chosen to be the same then
(S') =1/N ~b&» ~

=p, (S~)=0. In this case the system
is ferromagnetically ordered in the x direction with the
magnetization m =p. A different choice of phase induces
a rotation in the x-y plane, but the magnitude of the mag-
netization remains the'same. That the system is ordered
in the transverse direction can also be seen by considering
the spin-spin correlation function. It is easily shown that
in the present case

lim (S (0) S (R)) =p =m
g ~ oo

whereas (S'(0)S(R ) ) ~0 as R ~ ao.
At low temperatures, simple power counting shows

that for d & 2, B=S —constT '. We can deduce the
leading-order result for the magnetization m by setting
8 =S in Eq. (2.25). The resulting equation for m is iden-
tical to that of spin-wave theory. Therefore, we have
m -S—const X T" . Higher-order results are obtained
by systematically expanding Eqs. (2.25) and (2.26). By ex-
panding the integrals in Eqs. (2.25) and (2.26) about 13„
i.e., as T approaches T, from below, we find that the
magnetization vanishes as ~t~. Hence, the critical ex-
ponent P=1 which is twice the ordinary mean-field re-
sult.

Although, in the preceding analysis rotational symme-
try is broken in the transverse direction, the results are
equivalent if instead the system is allowed to order along
the z axis as we demonstrate now. We add a small mag-
netic field in the z direction and then let the field go to
zero at the end of the calculation. In the ordered region
the two channels are not equivalent; in particular, the
number density of b

&
bosons, n», is S +m, and the num-

ber density of b
&

bosons, n», is S —m. Hence, instead of
Eq. (2.12) we have to consider two separate equations for
the b& and b& channels
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(bIb, i) =S —m =—gI 1

P(~k+ ~+ I )
k

(2.28)

where the parameter h is proportional to the magnetic
field. Note that the equation for B [Eq. (2.13)] remains
unchanged even in the presence of the field. For h &0
only the b& channel needs to undergo Bose condensation
since there is a solution to Eq. (2.28) for the bi channel
without condensation provided the value of the magneti-
zation is chosen appropriately. In the ordered region, set
A=h, and convert the sums into integrals after separat-
ing out the k=0 term for the bi channel (this is the con-
densate density p); then let l'2 ~0 which yields

HMF +0+~ X b krrbkrr
k, o

where

„(b „~b k~+H. c. ),
k, cr

(3.4)

where Eo =
—,'NzJS —2A.XS+JA Xz, and we have made

a specific ansatz for the mean-field amplitude
(A;z ) = (A;z. ) = A, a real number. A nonzero value for
the mean-field amplitude A indicates short-range antifer-
romagnetic order.

In momentum space the mean-field Hamiltonian be-
comes

and

p =S+m I(P)—, (2.29)
1y„=——y e'"'=1—E
Z

(3.5)

m =S—I(P), (2.30)

III. ANTIFERRGMAGNET

where the integral I (p) is given by Eq. (2.18). The mag-
netization is determined by Eq. (2.30) which is the same
as Eq. (2.25)

It is straightforward to diagonalize HM„ in Eq. (3.4) us-
ing a standard Bogoliubov transformation,

bkg =coshOkak+sinhOka

bk 1
= coshOk pk+ sinhOk p

where tanh28k= JJzyk/A. . This yields,

A. Mean-field equations and disordered regime MF E0 ~++ X ~k( k k+PkPk+
k

(3.6)

H=Jg S; SJ, (3.1)

In contrast to the ferromagnetic model, the ground
state and the excitation spectrum of the quantum antifer-
romagnetic Heisenberg model are not known exactly ex-
cept in one dimension. The classic paper of Anderson'
provides an excellent description of the low-temperature
behavior of the quantum antiferromagnet using spin-
wave theory. The intimate connection between spin
waves and Schwinger bosons suggests that the bosonic
representation should be well suited to investigate the AF
case also. The Hamiltonian is given by

where

cok=[A, —(JAzyk) ]' (3.7)

1S+—,
'= —g

(
2 2)1/2P 'Vk

1 1+
/3(

2 2 )1/2 2k
(3.8)

specifies the dispersion relation for the Schwinger boson
quasiparticles and N is the number of lattice sites.

The self-consistent equations for the chemical potential
A, and the mean-field amplitude 2 can be derived as be-
fore and are given by

H = —2J g' At"A, + S2, (3.2)

where J & 0. In terms of the Schwinger bosons the above
Hamiltonian can be written as

and

1 'Yk

(
2 2)1/2

1 1+-
p( 2 2 )1/2

k 1

(3.9)

HMF=E0+Ag b; b; —2JA g (A;. +A,"),
l, CT (I,j)

(3.3)

where A;j= ,'g ob, b . W—e wi.ll assume that the lat-
tice is bipartite allowing us to make the transformation
bj )~ bj&

bj &
~bj &

i.e., S+—~—S + and Sj ~ Sj for
sites on one sublattice, say, B. We will denote the
transformed bosons by b, (Note that. A;~ —+A,=

—,'g b; bz if jH sublattice B )The cons.traints on
the bosons given by Eq. (2.3) remain unaltered. As in
Sec. II we introduce a Lagrange multiplier (chemical po-
tential) A, to impose the constraint on the average, i.e., we
ignore the nonzero wavelength components of the con-
straint. Performing a Hartree-Fock decomposition of the
Hamiltonian leads to the following mean-field Hamiltoni-
an:

where we have defined 1M
—=I l(JJz) and P= JAzl(k~ T).

We note that in addition to Eq. (3.9), there is a trivial
solution A =0.

Equations (3.8) and (3.9) become identical to those ob-
tained by Auerbach and Arovas from the functional in-
tegral method when the sums over k are converted into
integrals over the first Brillouin zone of the reciprocal lat-
tice. Their results at low temperature, for d =1,2 are
summarized below. First, note that since yk ~ 1, we must
have p~ 1. If p=1 then there is no gap, the gap being
given by (p, —1)'/ . For d =1 there is a solution to the
equations even at T=O for all S. This means that the
ground state is disordered, in contrast to the ferromag-
netic case in qualitative agreement with the Bethe-ansatz
solution for S =

—,'. Furthermore, there is a gap in the ex-
citation spectrum which behaves for large S as -Se
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again in qualitative agreement with the Haldane predic-
tion' -S e for integer spins; however, the theory
cannot distinguish between integral and half-odd-integral
spins and does not predict gaplessness which occurs
generically for half-integral spins. In two dimensions,
there exists a solution for T &0 so that the system is
disordered at finite temperatures. However, unlike the
d =1 case, there is no solution at T =0 for any S &0.2.
This implies that the system possesses Neel order at
T =0. The excitation spectrum for d =2 dimensions is—4aS /Tgapless, the gap vanishing as —e /" as T 0.

For d & 2, there exists a critical temperature T& such
that there is no solution to the mean-field equations for
T (Tz&0 again suggesting that Neel order sets in at Tz.
For T & Tz the chemical potential p & 1 so that there is a
finite gap in the spectrum. As T approaches T& from
above p~1 and the gap vanishes at T=Tz. The Neel
temperature is thus determined by setting p=1 in Eqs.
(3.8) and (3.9) and converting the sums into integrals over
the first Brillouin zone of the reciprocal lattice:

d "k 1

(2 )d (1 2)1/2
1 1+

p (i 2)1/2 2
e ' " —1

(3.10)

d "k 'Vk

(2 )d (1 y2)1/2
1 1+-

() y2 )1/2 2c k

with 0 & y & 1 and making a high-temperature expansion
on the right-hand side. This gives

S 1 1 1 2 2=—+—— S+—=—+
2 4 3m' 2 ir p

from which we obtain

kT, S+——
zJ 4 2 3m.

1 —2S+—
2 7T

=—S1 2

4

Since T, scales with S the high-temperature expansion is
valid. (In d =3 dimensions, this yields kiiTc/J=1. 5S,
which agrees with the numerical estimate kii T, /J
=1.45S .)

B. Critical behavior as T~ TN+

We now show that although the structure of Eqs. (3.8)
and (3.9) is different from that of the corresponding equa-
tions for the ferromagnetic case, the critical properties
are the same. This is to be expected for bipartite lattices.
We convert the sums into integrals to facilitate analysis.
The critical behavior is determined by the values of the
integrands for y close to 1, i.e., a=1 —y close to zero.

(3.11)

For large S an approximate analytic expression for the
Neel temperature can be obtained in three dimensions by
using the Hubbard density of states

p(y) = —(1—y')'"4 2 1/2

Expanding the denominator in Eq. (3.8) we find that the
integral behaves as

fd d/2 —I 1 1 1 1—+-
A+2e p 2 QA+2s

(3.12)

where we have defined A =p —1. An analysis similar to
that in the ferromagnetic case yields (for 4) d )2)

p, —p=const X —A '+ —A (3.13)

where the second term which corresponds to the second
term in Eq. (3.12) is of higher order in A and can be
dropped. Note that this is identical to the result in Eq.
(2.20) for the ferromagnetic case. Similarly we find,
A, —A =constA" '. These results give A, —A —t and
A-t /'" ' [see Eq. (2.21)]. Therefore, the ferromagnet-
ic and the antiferromagnetic models have the same criti-
cal properties.

C. Ordered region: Bose condensation

Below Tz there is no solution to Eq. (3.8) without Bose
condensation. The nature of the condensate is somewhat
different in the antiferromagnetic case. Because of the
anomalous coupling the spectrum only on y . The con-
densation occurs in three dimensions at k=(0, 0,0) and
k = (rI, ~,m)mode s. imultaneously, corresponding to
y=+1. Precisely at T~, the chemical potential p ap-
proaches unity and then sticks at this value for all
T (T~. Separating the y=+1 term in Eq. (3.8) we see
that the condensate density is given by

2 1

A 1/2 PAe

1+—
2

(3.14)

d k 1

)d ( 1 y2 )1/2
1

p( ) 2 )1/2
k

1+
2—1

(3.15)

dk Tk 1

(2m )" (1 — )'
1+—
2

(3.16)

For fixed p Eq. (3.15) determines the condensate density
p. We now show that p is the sublattice magnetization by
considering the spin-spin correlation function:

(S'(0)S (R) &
= -'If (R) I' ——,

'
Ig (R)I',

where

(3.17)

ik.R

2 i/2
1 1+-

g( 2 2 )1/2

and

where, as before, A =p —1. For p to be finite we must
have A=2/pXP+O(1/N ). Since XA '/ —+ oo in this
limit we can drop the second term in Eq. (3.14). For
T ( T~ Eqs. (3.8) and (3.9) can be written as
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1

p( 2 2 )1/2
e 1

1+—
2

It can be shown that f (R) vanishes for R odd and g (R)
vanishes for R even. As R~ao, f (R)~p for R even
and g(R)~p for R odd. Hence, (S (0)S"(R)) =+p as
R goes to infinity. Therefore, p is the sublattice magneti-
zation m, .

Equations (3.15) and (3.16) correspond to (interacting)
spin waves in the ordered region. In particular, the spec-
trum is gapless and behaves as -k at small k. At T =0
we have

d "k 1

(&~) (1—
yk )

d 2 1/2 (3.18)

At d =2 dimensions, m, =S—0.2. Of course, the system
is only ordered at T=O. For d &2, elementary power
counting at low temperatures leads to the standard spin-
wave result:

m, (T) =m, (0)—const X T" (3.19)

IV. CONCLUDING REMARKS

In summary, we have extended the bosonic mean-field
theory of Arovas and Auerbach for the ferromagnetic
and antiferromagnetic Heisenberg models to the ordered
regime. We have shown that the condensation of
Schwinger bosons corresponds to broken rotational sym-
metry and can be interpreted as signaling ferromagnetic
or antiferromagnetic ordering. In the low-temperature
region spin-wave results are reproduced. However, the
free energy and the susceptibility are ofF' by factors of 2
and —', . The critical exponents have been obtained and are
related to those of a classical spherical model. The criti-
cal properties are, not surprisingly, quantitatively inaccu-
rate. Our paper provides a simple derivation of the re-
sults which allows a straightforward extension to more
complex models. We also note that unlike in many other
slave-boson approaches to many-body problems, we have
provided a simple and appealing physical interpretation
to Bose condensation in these models.

We finally discuss the fact that the Bose condensation
is not real although the associated magnetic transitions

are. The Heisenberg Hamiltonian in the bosonic repre-
sentation has a local gauge invariance, under the trans-

i 9,.formation b;„+b—;„e ' (6; must be the same for up- and
down-spin bosons). Our choice of the mean-field ampli-
tudes and the Bose condensation violate this invariance.
However, the mean-field free energy is invariant under
gauge transformations of the mean-field amplitudes of the

i(0,. +0.) i(8,. —8. )
form A; —+A;e ' ' and B; ~B; e ' '. If one
were to average over all these (physically equivalent)
gauge-related choices for the amplitudes, non-gauge-
invariant quantities would have vanishing expectation
values (in agreement with Elitzur's theorem' ). In con-
trast, physical quantities, such as spin-spin correlations,
etc., are gauge invariant, and have the same value for all
these gauge-related choices for the mean-field amplitudes.
Hence, we believe that conclusions drawn about physical
quantities, using a particular choice of gauge for the
mean-field amplitudes, are valid in general. The local
gauge invariance is intimately tied to the existence of a
local constraint g b; b; =1 at each site i We .have im-
posed the constraint only on the average, thus violating
the local gauge invariance. Could imposing the con-
straint exactly yield results completely at variance with
those obtained within the mean-field theory~ We note
that the Hamiltonian preserves the local constraint and
does not connect sectors of the Hilbert space with
different values of g b; b; . Hence, one expects that the
exact ground state with the local constraints satisfied can
be projected out of the (presumably multiply degenerate)
ground state in the space in which no constraints are im-
posed; if the mean-field ground state approximates the
latter ground state reasonably well, then the physics pre-
dicted by the approximation should be good. Indeed, the
results are encouraging. However, the approximation
does fail to obtain the asymptotic low-temperature results
exactly, even though the temperature dependences are
correct.
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