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By use of a generalized Hubbard model, we investigate the influence of electron correlations on
the temperature dependence of the quasiparticle properties of ferromagnetic Ni. The one-particle
energies of the model Harniltonian are taken from a realistic band-structure calculation. The model
contains only two parameters, Hubbard U and the interband exchange J. It is approximately solved

by use of a self-consistent moment method. We find a ferromagnetic ground state, mainly caused by
the uppermost d subband, a magnetic moment at T =0 of 0.56pz, a Curie temperature of Tc =635
K, a Brillouin-type magnetization curve, a strict Curie-Weiss behavior of the paramagnetic suscepti-
bility, a satellite peak some 6 eV below the chemical potential p as a consequence of strong electron
correlations in the uppermost d subband, a temperature-dependent spin polarization of the satellite
(=—75% at T =0), temperature-dependent exchange splittings at the top of the d band (0.23 —0.36 eV
at T =0), and an enhancement factor of the electronic specific heat q ( T =0) =——0.56. All these re-
sults are in excellent agreement with the experiment. - For the first time the full temperature depen-
dence of the quasiparticle band structure and the quasiparticle density of states of ferromagnetic Ni
are presented.

I. INTRODUCTION

The so-called "localized" magnetism, as represented by
4f materials such as EuO, EuS, and Gd, can be con-
sidered as rather well understood within the Heisenberg
model. The itinerant magnetism, however, a prototype of
which is the 3d transition metal Ni, persists to be a
matter of intense study and controversial discussion. '

The most important question therefore aims directly at
the origin of the phenomenon. What is the physical
reason for a spontaneous magnetic order of itinerant elec-
trons? Many of the existing theories, very often based on
Stoner-type approximations, predict unrealistic, high Cu-
rie temperatures. It is therefore not yet clear which
theoretical model may be appropriate for the description
of metallic magnetism leading, e.g., to reasonable T~
values. Furthermore, a modern theory of band magne-
tism encounters the fundamental problem of the incor-
poration of localized as well as itinerant features of the
conduction electrons. We have to develop a model,
which simultaneously describes localized aspects
(Brillouin-function-type magnetization, Curie-Weiss be-
havior of the static susceptibility, etc. ) as well as itinerant
aspects (noninteger magneton numbers in the ground
state, large cohesive energy, ' enhanced specific-heat
coefficient, "' etc.).

Self-consistent one-electron band-structure calcula-
tions ' for Ni yield, at a first glance, rather convincing
T=O spectra. In detail, however, there are striking
discrepancies with valence-band photoemission data,
which have attracted the interest of numerous research
groups in the recent past. The exchange splitting near
the top of the fifth d subband [0.25 —0.35 eV (Refs.
9—13)] is only half as large as predicted from band theory

[0.65 eV (Ref. 6)]. There appears a resonant satellite
structure some 6 eV below the Fermi edge' ' with a
high spin polarization, ' which cannot be reproduced by
one-electron band-structure calculations. The measured
d-band widths" are smaller by about 20—30% than the
calculated ones. It is the widely accepted opinion that
these discrepancies are caused by strong electron correla-
tions in the partially filled d band, which are obviously
not taken into account by normal band theory. In this
paper we want to present a new approach which is able to
explain nearly quantitatively all the above-mentioned

problems and questions.
The modern theory of magnetism in narrow-band sys-

tems normally starts from the Hubbard model, '

which can be used for discussing very general problems
of band magnetism as well as for detailed statements
about the electronic structure of certain magnetic materi-
als. Investigations, which aim at the qualitative under-
standing of band magnetism, are based on the simple s-
band Hubbard model. Since its exact solution is not
available, the question, whether or not this model is able
to describe collective magnetism, is not completely
clarified. In the recent past a great number of approxi-
mate theories have been proposed, based on mean-field
approximations, ' Green-function techniques, ' ' mo-
ment methods, functional integral procedures,
variational approaches, ' and perturbation expan-
sions. ' Interesting information can be drawn from nu-
merical investigations of finite systems, where, how-
ever, the generalization of such results to the thermo-
dynamic limit appears to be rather problematic. Most of
the above-mentioned work confirms the possibility of col-
lective magnetism within the framework of the Hubbard
model, but under certain conditions on model parameters
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like the Bloch density of states, the effective coupling
constant, and the band occupation.

The simple s-band Hubbard model is, of course, com-
pletely overcharged if detailed statements about the elec-
tronic structure of classical band ferromagnets like Fe,
Co, and Ni are required. The d-band degeneracy can no
longer be neglected, the actual lattice potential must be
incorporated into the one-particle part of the Hamiltoni-
an, and the inhuence of the other charge carriers, which
do not enter explicitly into the model, must be taken into
account by a proper renormalization of the Bloch ener-
gies E (k). An appropriate procedure has recently been
proposed for the 4f ferromagnet EuO (Refs. 44—46) to
derive the foll temperature dependence of the quasiparti-
cle band structure. For this purpose a spin-polarized,
self-consistent one-electron band calculation, performed
on the basis of density functional theory, has been imple-
mented into a many-body scheme for the d fexcha-nge
model. An analogous concept should work for Ni, too,
when we use a generalized Hubbard model as starting
point.

Similar ideas have been applied already by some other
authors. Treglia et al. start from a model, which con-
siders intra-atomic direct Coulomb interactions only and
neglects all exchange terms. The "Stoner part" of the in-
teraction is incorporated into the one-particle energies,
which are then identified with the results of a band struc-
ture calculation. The authors justify this identification
by referring to Gunnarson, who has shown that such
band calculations for magnetic materials are quite con-
sistent with a Stoner ansatz in which the exchange split-
ting is only slightly energy dependent. A perturbation
theory for the electronic self-energy is then performed up
to quadratic terms in U/W ( U is the intra-atomic
Coulomb matrix element, and W is the Bloch bandwidth).
Although the basic idea and some final results are quite
convincing, it is surely not unfair to say that the applied
simplifications are too serious and sometimes even
misleading. So it has recently been shown that the sa-
tellite structure derived in Ref. 47 is nothing more than a
consequence of the non-self-consistency of the applied
theory, disappearing when the procedure is improved in
this respect.

An interesting ansatz has been chosen by Davis and
Feldkamp ' in order to explain why the measured d-band
widths are up to 25 —40% narrower than the calculated
ones. The theory being restricted to T=0, uses as input
a linear-combination of atomic-orbitals fit for the Ni d
bands calculated by Wang and Callaway. The many-
body part resembles an interpolation scheme, ' which
is equivalent to the so-called Hubbard I approach. ' The
results indeed remove a substantial portion of the
discrepancy between experiment and previous T =0 band
calculations.

Liebsch ' has applied a T-matrix approach ' to the
extended Hubbard model' for an approximate deter-
mination of the one-hole spectral density. Because of the
small hole density in the Ni d bands the T-matrix pro-
cedure should work reasonably well. A well-known
disadvantage of this method, however, is its non-self-
consistency. Bandnarrowing, large quasiparticle damp-

II. MODEL HAMILTONIAN

Our model shall incorporate all interactions between
electrons in the same signer-Seitz cell being, however,
restricted to the d-band complex only. The most general
Hamiltonian then, is the following: "

(m)Ho P Tij +im aiZjm a
l,J, o, m

U(m& mz'm4 m3)
Ii, o', o', m ],m 2, m 3, m 4

a. a~
im o im o' im o' im o1 2 3 4

(2. l)

(2.2)

(2.3)

a; (a, ) is the annihilation (creation) operator of a
Wannier electron with spin o. at site R; in an energy band
with index m. TJ

' are the hopping integrals being con-
nected with the one-electron Bloch energies by

T,'~'=(1/N) g E (k)e
k

(2.4)

The sum extends over all k vectors of the first Brillouin
zone.

U is the Coulomb matrix element. To simplify the
model as far as possible, but so that still enough structure
is left to express the essentials of itinerant magnetism,
we restrict the Coulomb matrix elements to the "direct
terms" (m& =m4=m;mz=m3=m'),

U = U(m, m';m, m'), (2.5)

and to the "exchange terms" (m, =m3=m;mz=m~
=m'),

J =U(mm';m'm) . (2.6)

Then, the interaction operator H
&

reads,
—1Hl Z g ( mrrr ima im a' 'im a im'''a

i, o, o', m, m'

~
~ .a. .a.+err m

' in a im akim a'+im 'a') (2.7)

This Hamiltonian is very similar to the one used by Oles

ing, relatively small exchange splitting, and the existence
of the satellite peak come out qualitatively correct, but
cannot be fitted quantitatively with the same U. Further-
more, no statements about finite temperature properties
are made.

In this paper we present a model calculation which
provides us with the full temperature dependence of all
important quasiparticle quantities of the transition metal
Ni. A ferromagnetic ground state and a strikingly exact
Curie temperature are found as results of a self-consistent
treatment of a generalized Hubbard model, which are not
at all predetermined by the input from the one-electron
band calculation. The paper is organized as follows. In
Sec. II we introduce the model and explain how the re-
sults of a realistic band calculation enter into our pro-
cedure. In Secs. III and IV we develop the many-body
approach, the results of which are presented and com-
pared to experimental Ni data in Sec. V.
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and Stollhoff. As they have shown, in the form of (2.7)
H represents the very general intra-atomic interaction1

part if the atomic symmetry is fully taken into account.
We now introduce spin operators

Z
im T ~ o imo (2.8)

im ~im + o. ~im imo. im —a
0' x (2.9)

we get after simple manipulations

Hi= —,
' g (J +Um )n; n;

l, m, o'

i, m, m'

(mmmm')

~mm']m ~im'

+—,
' g (U .——,'J )8'; 8',

Ii, m, m

(mmmm')

The last term is spin independent:

~im = & nima

(2.11)

(2.12)

and is therefore irrelevant for magnetic phenomena.
With suScient accuracy and according to the basic "phi-
losophy" of our procedure this term will be accounted for
by a respective renormalization of the one-particle ener-
gies, as will be described below. Finally, we neglect the m

59dependence of the coupling constants,

J=—J ~ (mAm'); U=J +U (2.13)

so that our model contains, henceforth, only two parame-
ters. If we intr@duce the "local" spin operator

where n,. =a; a,. is the occupation number opera-
tor, and z a sign factor (z

&

= + 1, z i = —1). Using

(2.10)

tween the z components of the electron spin and the "lo-
cal" spin (2.14), and a nondiagonal part, which expresses
spin-exchange processes between the two spin operators.

As mentioned above, we have to determine the one-
electron energies e (k) in such a way that all the interac-
tions, which are not directly covered by our model Ham-
iltonian (2.15), are accounted for by a proper renormal-
ization of the e (k). For this purpose we performed a
band-structure calculation for nickel with a parametrized
Slater-Koster tight-binding scheme along the line pro-
posed by Papaconstantopoulos. The root-mean-square
error to a first-principles augmented-plane-wave (APW)
calculation in the local-density approximation is 10 meV
for the six energy bands which are of interest here. The
"d bands" were composed from the five states with the
highest total d character at each k point. They are ar-
ranged into five subbands, numbered by m =1, . . . , 5,
with increasing energy at each k point. The main prob-
lem in this context is, not to count any interaction twice,
once in the one-electron band calculation and then once
more in the following many-body treatment of our model.
In Ref. 44 such a double counting has been elegantly cir-
cumvented for the ferromagnetic 4f insulator EuO by ex-
p oi ingloiting an exactly solvable special case of the underlying
d fexcha-nge model. This led to an exact one-to-one re-
lationship between Bloch and quasiparticle energies, by
which a double counting could be excluded. Such an ex-
actly solvable limiting case is not available for the rather
sop is ica ehisticated model (2.15). Instead of this we use here

sedthe same arguments as given in Ref. 47, which are base
on Gunnarsson's observation that standard band calcu-
lations on ferromagnetic materials are quite consistent
with the Stoner model. In the paramagnetic phase, how-
ever, the Stoner energies are identical to the Bloch ener-
gies. We have therefore performed the above-mentioned
T =0 band calculation for paramagnetic Ni. We believe
that all interactions responsible for the magnetic behavior
are then switched o6; while all the other interactions con-
tribute to a renormalization of the one-particle energies

Sim =—
m'

(m'Wm )

(2.14)

the model Hamiltonian can be reformulated as follows: I I I I I I I I I

H =Ho+H~+H,

Hc=zU X ni nimmaa—
I, o. , m

(2.15)

(2.16)

Nickej.
d bands

He-m 2
J X ( a ima im +ima im a im-p a) (2.17)

i, o, m

The first term Ho, defined in (2.2), contains via (2.4) the
Bloch energies e (k), which should incorporate, as real-
istically as possible, all those interactions which are not
explicitly taken into account by our model Hamiltonian
(2.15). The second term H, is the Hubbard-Coulomb in-
teraction between electrons of the same d subband, which
turns out to be decisive with respect to the appearance of
s ontaneous band ferromagnetism in Ni. The third termsp n
H can be interpreted as electron-magnon interaction.e-m

It consists of two parts, a diagonal Ising-type part be-

4h 1—
O

Q

m=2

m=3

m=4

m=5

IK=~ sp bands

I

-9 . -8 -7 -6
'I

-4 -3

I

I i~I' ~-'P
-2 -1 0

Energy ( eV )

FIG. 1. Bloch density of states for paramagnetic nickel as
function of energy and its decomposition into d and sp sub-
bands.
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(k). As shown below, the actually required inputs for
our many-body treatment are the Bloch densities of states
(BDOS) of the five d bands (m =1,2, . . . , 5), which we
obtain by a calculation of the energy eigenvalues at about
2000000 k points —over 46000 in an irreducible wedge
of the first Brillouin zone —and sorting them into 0.1 eV
wide energy intervals for the five subbands. Figure 1

shows the total density of states (solid line) which agrees
very well with other calculations. ' We see that the sp
bands (shaded regions) are almost completely pushed out
of the d-band region, and that there is a significant part
of the m =5 subband well above the Fermi edge. An in-
dependent calculation using a combined interpolation
scheme gave essentially the same results. The partial
densities of states derived in Ref. 61 from an APW calcu-
lation, also agree very weil with ours. We are aware that
the distinction between d and sp bands is somewhat arbi-
trary. Our procedure, however, is well defined and as-
sumes that the states with the highest d character show
the strongest correlation effects. Except for the two cou-
pling constants U and J, which are fixed at a later stage of
our theory, our model Hamiltonian (2.15) is now com-
pletely established.

III. SELF-CONSISTENT MOMENT METHOD

The second term in the model Hamiltonian (2.15) turns
out to be of crucial importance for the appearance of

5

H, it= g H, s(m),
m=1

(3.1)

which separates with respect to the band index m. Each
additive term H, (itm) has the formal structure of the
one-band Hubbard Hamiltonian:

H, (sm)= gE (k)a„a„
k, o.

+
2 g nimcr im cr— (3.2)

As in Ref. 26 we solve the corresponding many-body
problem by use of a self-consistent moment method. The
central quantity of this procedure is the one-electron
spectral density Si, (E),

spontaneous band ferromagnetism. The interband ex-
change term, which describes electron-magnon scatter-
ing, has a strong inAuence on the magnetic properties of
the system, but does not produce the ferromagnetism. It
provides the (k, m, o ) electron with a certain self-energy
contribution M (k, E). Let us assume for the moment
that we have already determined this quantity—
explicitly done in Sec. IV—and that we can express the
inhuence of M by a further renormalization of the
Bloch energies [s (k)~s (k)]. We are then left with
an effective Hamiltonian,

Si, (E)=(l/N) pe ' ' I d(t t')e '~"' " ' '(—1/2m)([a, (t)a (t. ')]+) .
tl J

Previous investigations have convincingly demonstrated that a two-pole ansatz,
2

Sk (E)=R g a (k)5(E+p EJ (k)), —
j=1

(3 3)

(3.4)

which can be calculated exactly and independently of the required spectral density by use of the following relationship:

Q„'"' =(1/N) pe ' ' ([[ . . [a, ~ H ]. . . , H ],aJ ]+), (3.6)

represents a very realistic starting point for this fundamental function, at least as far as quasiparticle lifetime effects do
not play a dominant role. It should be mentioned that the ansatz (3.4) is the only not exactly provable assumption of
our method. The further treatment is rigorous. The spectral weights n, as well as the quasiparticle energies, are
fixed by the first four spectral moments

Qk"' =(1/A') f dE E"Sk (E), (3.5)

where [[ [ ]. . . ]. . . ] is an n-fold nested commutator. H is defined as

H =H, s.(m) —
iLt gn; (3.7)

where p denotes the chemical potential. After tedious but straightforward calculations (for more details see Ref. 26) we
get, as quasiparticle energies,

E, (k) =H (k)+( —1)i[A (k)]'

II (k) =
—,
' [E (k)+ U+& ],

(k)= '[U+g —E (k)] +U(n )[E (k) —& ] .

(3.8)

(3.9)

(3.10)

The spectral weights are given by



FINITE- TEMPERATURE FERROMAGNETISM OF NICKEL 5019

(3.1 1)

This set of equations still contains two equal time correlations, B and (n ), which must be expressed by the
one-electron spectral density, in order to get a self-consistent solution. By use of the spectral theorem the average oc-
cupation numbers ( n ) are uniquely determined by the spectral density,

(n ) =(1/Nfi) g I dE f (E)Sz (E—p) . (3.12)
k

Because of translational symmetry they are, of course, site independent. f (E) denotes the Fermi function,

f (E)= t 1+ exp[(E p)/—k~ T ) ] I (3.13)

The crucial term for the appearance of ferromagnetism is the "band correction" B,which consists of higher equal-
time correlation functions,

(n )(1—(n ))(8 —To )=(1/N) g T. ' (a; a (2n, —1)) .
l,J{i')

To is the center of gravity of the renormalized (m, cr ) Bloch band,

To =(1/N) g E (k) .
k

(3.14)

(3.15)

Fortunately, the band correction is also expressible by the one-electron spectral density. This has been demonstrated in
detail in Ref. 26. We therefore cite here only the final result for the "higher" expectation value in (3.14),

(a,. a ~ n, ) =(1/NA) g e ' ' f dE f (E)—[E—s (k)]Sk (E) .
k

This leads to the following expression for the important band correction:

(n )(1—(n ) )(8 —To )

=(1/NA) g [E (k) —To ]J dE [(2/U)[E —s (k)]—1If (E)S„(E).
k

(3.16)

(3.17)

Eqs. (3.8)—(3.13), (3.15), and (3.17) constitute a closed system, which can be solved self-consistently for the average oc-
cupation numbers ( n ) and ( n ), provided the renormalized energies E (k) are known. The latter are discussed
in Sec. IV.

IV. EFFECTIVE MEDIUM APPROACH

Finally, we discuss the self-energy contribution M (k, E), which stems from the interband exchange term H,
(electron-magnon scattering) (2.17) of our model Hamiltonian. The operator H, has exactly the same structure as the
d fexchange operator-, which has been applied to the 4f ferromagnet EuO in Refs. 44—46. We therefore approximate
M (k, E) by switching off' the Hubbard term Hc for the moment and by solving the nontrivial many-body problem
defined by the operator Ho+H, (s for d fmodel, Kon-do-lattice) strictly along the line exposed in Ref. 45. For de-
tails of the mathematical procedure, the reader is referred to Refs. 45 and 46. Here we present only the final result for
the self-energy [see Eq. (2.33) in Ref. 46],

M (k E)—=M (E)= g M ~ (E), (4.1)

{m'Am )

M (E)=—
—,'Jz (o'; )+—,'J (a, a', ~ )Go (E)I1—[—,'J(1+z (a; ))—M (E)]GO (E)I (4.2)

This is an implicit conditional equation for the electronic
self-energy, which also enters the propagator Go (E):

Go (E)=(1/N) g [E—E (k) —M (E)]
k

(4.3)

The magnetization (o'; ) of the mth subband and the

I

spin correlation function (cr, cr; ) provide the self-
energy with a characteristic temperature dependence.
Both can be expressed by the one-electron spectral densi-
ty. For the magnetization, this follows directly from (2.8)
and (3.12):
(o' ) =(1/2NA') gz J dE f (E)S~ (E—p, ) .

ko

(4.4)
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The spin correlation can be written M (E)=r (E)+ii (E) . (4.9)

+im im ~ ~ im —o imo. imoaim —o

=(n, ) —(n, n, ) .

We define

(4.5)

In accordance with our spectral density ansatz (3.4),
which, from the very beginning, neglects quasiparticle
damping, we have to determine the renormalized one-
particle energies E (k) as solution of the following equa-
tion:

(n, n, ) =(1/U)p (T)

and use (3.16) to express p (T) by Si, (E),

p (T)=(1/XA') g I dE f (E)

(4.6)
e (k):=e (k)+r (E=Z (k)) .

In first order this equation is solved by

Y"'(k)=E (k) —
—,'Jz g (cr' ) .

(4.10)

(4.1 1)

X [E—e (k)]S„(E).

(4.7)

Finally, the spin correlation reads

(cr, o;)=.,'n ——z (cr;') —(1/U)p (T), (4.8)

where n = ( 8,. ) is the average occupation of the mth d
subband (0 ~ n ~ 2).

This completes our general theory. We see that after
inserting (4.3), (4.4), and (4.8) in Eq. (4.2), the self-energy
contribution M (E) is determined by the one-electron
spectral density only. In general, M will be a complex
quantity,

Gi, (E)=iri[E —E (k) —X (k, E )]

(E)= —( I/m ) ImG„(E+i0+ ),
we introduce the total self-energy X (k, E ),

(4.12)

(4.13)

(k, E)=R (k, E)+iI (k,E), (4.14)

which turns out to be k independent. According to our
ansatz it is, of course, a real quantity,

m'

(m'Wm )

Via the very general expression for the one-electron
Green's function„

X (k, E)=R (E)=r (E)+ U(n )[E—r (E)—8 ]/[E —U(1 —(n ) ) r(E) 8— ] . —(4.15)

V. DISCUSSION OF THE RESULTS

A. Ferromagnetic ground state

We have self-consistently solved the closed system of
equations, developed in Secs. III and IV, for the average
occupation numbers (n t) and (n t). As already men-
tioned, it turns out that the question of whether or not
the electron system orders ferromagnetically is mainly
answered by the intraband correlation U and by the sub-
band occupation n . In a previous paper we have ex-
plicitly shown, for the one-band Hubbard model, that the
Coulomb interaction U as well as the number of electrons
(n ) and the number of holes (2 —n ), respectively, have
to exceed certain critical values, otherwise a spontaneous
ferromagnetic order becomes impossible. The lowest
three subbands (m =1,2, 3) are fully occupied and there-
fore magnetically inactive. The number of holes in the
m =4 subband is far below the critical value. Thus the
ferromagnetic ground state is exclusively due to the up-
permost fifth subband, which is slightly more than half-
filled. The interband exchange J enhances the fer-
romagnetism, but does not produce it. More strictly, the
first term in (4.2) favors a ferromagnetic order, while the
second term, arising from electron-magnon scattering,
tends to destroy the order. However, the first term is
dominating. Previous studies ' have shown that for
temperatures below Tc, which we are mainly interested
in, the electron-magnon contribution is sufFiciently well

U= 6 eV, J*=0.8 eV . (5.1)

This finally determines our model. There is no further
adjustable parameter.

B. Magnetization, susceptibility, and spin correlation

The total Ni magnetization m„, shows, as a function
of temperature, a typical Brillouin function-type behavior
(Fig. 2). The main contribution to the magnetization
stems from the moment m5 of the magnetically active
fifth d subband and a minor part from that of the polar-
ized fourth subband. The first three completely occupied
subbands are spin-split below Tc, but without resulting
momt:nt. The self-consisten solution of our model deter-
mines the Curie temperature of Ni to Tc =635 K in strik-
ing agreement with the experiment [Tc"~=631 K (Ref.

reproduced by the first term in (4.2), if one replaces J by a
J* being about 20% smaller than the original J. Since J
is in any case an adjustable parameter within our model,
we have done this replacement, which leads to a substan-
tial simplification of the rather involved numerical evalu-
ation of our theory. The renormalized one-particle ener-
gies e (k) can then be used in the form (4.11) instead of
(4.10). The self-consistent solution of our model yields a
ferromagnetic ground state for Ni with the experimental
value of 0.56pz for the T=0 moment, if we take
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05-

0.3

x '(evj

0.70

11)]. The calculated magnetization curve (Fig. 2) fits the
experimental data almost quantitatively.

Figure 2 shows also the temperature behavior of the
static susceptibility of paramagnetic Ni,

0.7-

005 y„,( T)= (IJ,ii Ipo)(N/&)y( T), (5.2)

600 7200 75CU
5

X(T) (po/pB ) g g z (B(n )/BBo)T, a, o—
m=1 a

(5.3)

FIG. 2. Left: Magnetization m„, of ferromagnetic nickel as
function of temperature T. m4 and m5 are the partial magneti-
zations of the fourth and fifth d subbands, respectively. The
solid line is from the present theory, the dots are experimental
data from Ref. 65. Right: Static susceptibility y [see text, Eq.
{5.2)] for paramagnetic Ni as function of temperature. The solid
line is from the present theory, the dots are from the experiment
{Ref.66).

p~ is the Bohr magneton and pp the vacuum permeabili-
ty. The superscript "0" means "paramagnetic. " In the
presence of a magnetic field Bo =poH, we have to add a
Zeeman term z pIiH to the one-particle energies E (k).
Furthermore, all expectation values ( . . ) are then field
dependent.

g(T)=[p /(Nfip )]g gz j dE f (E)[BIBBS„(E—p)]{o'
m k, o.

(5.4)

The result of a troublesome, but straightforward calcula-
tion for y( T) is exhibited in Fig. 2. This quantity is relat-
ed to the so-called specific susceptibility,

g, =g/p (p is the mass density),

by the following relation:

(5.5)

(y) '(eV)=0. 692X10 y, '(cm /g) . (5.6)

The static susceptibility of paramagnetic Ni, as calculat-
ed within our model, shows an almost strict Curie-gneiss
behavior, again in excellent agreement with the experi-
ment. "' The phenomenological fit to the experimental
data is frequently written as

course, zero. In the I=5 subband it is, however, possi-
ble to fiip the electron spin from J, to 1 even at T=O,
since the (m =5,o = 1') subband is not completely filled.
Thus, (cr~ cr5+) is finite at T=O K. In the m =4 sub-

band, on the other hand, there are no free l' states avail-
able at T=0 K. The correlation (o4 o.4+ ) therefore van-
ishes.

It is interesting to recognize that the local-spin magni-
tude ( cr o ) is practically temperature independent.
It is mainly determined by the double occupancy
( nimrxnim —o ) ~

y,',"i~'( T)=C/( T—Tc)+y, , (5.7)
().6

where g, is assumed to be rather small and T indepen-
dent. It may be caused by influences like paramagnetic
susceptibility of sp electrons, orbital contribution of d
electrons, s-d exchange interactions or sim.

' sr effects,
which are not considered by our model. For very high
temperatures y, causes a slight deviation of (g,", ')
from the Curie-%'eiss line as can be seen in Fig. 2.

The results for the magnetization and for the static sus-
ceptibility clearly prove that our band model (2.1) excel-
lently reproduces the localized aspects in the band
magnetism of Ni. This is further supported by the behav-
ior of the spin-fiip correlation function (o.—o ), which
can be evaluated with the self-consistent solution of our
model by use of Eq. (4.8). The result, plotted for the two
highest d bands in Fig. 3, strikingly resembles corre-
sponding correlations of localized spin systems. The
main difference is the T=O behavior. In the ferromag-
netic saturation of a localized spin system, (cr o ) is, of

0.4-

P 2 m ((z)o5),~'

(o4CZ4)

(&4o4)
0 p

—— I- ———+ —— 3———W ~ ~ ah~ + f ~

0 200 400 600 800

Temperature ( K )
1000

FIG. 3. Spin-Aip correlation functions (cr o) of the —two

uppermost Ni subbands {m =4, 5 ) as function of temperature.
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(5 8)

which hardly changes with temperature, as can be seen in
Fig. 4. In order to find out why the magnetic properties
of the itinerant ferromagnet nickel are so similar to those
of a typical Heisenberg ferromagnet, we have inspected
the degree of effective moment localization, which we
define in a similar manner as proposed in Ref. 67. In the
"band limit" ( U =J =0), the spin magnitude reads

(5.9)

The opposite limit can be considered as a dilute local mo-
ment system with spin —,'. Because of the more than half-
filled subbands, the holes are the spin carriers. Thus we
have

'(n4 h4 )'
N W W & W W H W W % % % % % % % & & & % % %
~ ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ s ~ ~ ~ ~ ~ ~ sh

Dr M~5)
~ S ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ S ~ ~ ~ ~ p R

0.6-

0.4-

0.2
(a4a4)

~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~~ ~ a a a wa na a i

(n5 n5 )

1.0— ~ ~ ~ I ~I ~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Oeeel +a+a
gall ORB AN %AS hhsS ~~~~~+~~~ ~

b+ I ~ ~ ~ ~ I ~

O~
+~

0.8

&o o )„,= —,'(1+—,
' )(2—II ) . (5.10)

0.0
200 400 600 800

Temperature & K )
1000

A proper measure for the degree of magnetic moment lo-
calization may be the following ratio, which varies be-
tween one for the local moment limit and zero for the
band limit:

FICx. 4. Local spin magntiude (o cr ) (solid lines), dou-
ble occupancy (n; n;,„)(dashed lines), and degree of mo-
ment localization DLM(m) {dotted lines) as function of tempera-
ture for the m =4, 5 subbands.

(5.1 1)

Figure 4 shows that DLM(5) as well as DLM(4) are very
much closer to the local moment limit than to the band
limit. DLM(5) has a nearly temperature-independent
value between 0.88 and 0.92; D„M(4) shows some struc-
ture below Tc, mainly because of a temperature-
dependent band 611ing n

C. Quasiparticle density of states
and quasiparticle band structure

The magnetic Ni properties are direct consequences of
the temperature-dependent quasiparticle density of states

(QDOS) which is plotted in Fig. 5 for four different tem-
peratures. We observe a spin splitting of the bands for all
temperatures below Tc. This splitting is rigid ("Stoner-
type") only in the low-energy part of the spectrum. In
the upper, not fully occupied, d-band region the strong
electron correlations have two difFerent effects. On the
one side they cause an exchange shift of the 1 spectrum
to higher energies relatively to the l' spectrum. On the
other side they create a spin-dependent band narrowing,
which is stronger for the T than for the J, spectrum. This
is especially evident in the uppermost I =5 subband
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FIG. 5. Quasiparticle density of states pI ~
for ferromagnetic Ni as function of energy for four difFerent temperatures ( Tc =635 K)

(solid line: o = f; dashed line: o = $). The arrow on the energy axis indicates the chemical potential p. The dotted curve is the re-
sult of the one-electron band calculation for paramagnetic Ni as in Fig. 1.
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FIG. 6. Quasiparticle density of states of the two highest d
subbands as function of energy for T=O K. The solid lines are
for the f states, the dashed lines are for $ states. The arrow on
the energy axis indicates the Fermi energy.
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(Fig. 6). Our model, therefore, predicts an exchange
splitting which may change its sign near the bottom of
this subband as can be seen in Fig. 6, where we have plot-
ted the QDOS of the two highest d subbands for T =0 K.
This figure demonstrates that the exchange splitting is en-
ergy dependent and of order 0.2, . . . , 0.35 eV, exactly as
observed in the experiment. ' The spin splitting of the
QDOS maximum, e.g. , amounts to 0.23 eV at T=0 K,
being, of course, strongly temperature dependent, as
shown in Fig. 7. There is no exchange splitting above
Tc. For paramagnetic Ni the QDOS p (E) takes its
maximum value of about 2.2 eV ' just at the chemical
potential p. This value agrees very well with that given
in Ref. 64. Upon cooling below Tc predominantly the l'

subband shifts to lower energies, pt(p) therefore de-
creases, while pt(p) remains (nearly) constant (Fig. 7).
Figure 8 shows the quasiparticle band structure for two
high-symmetry directions and for four different tempera-
tures. The exchange splitting of the lower fully occupied
d states is roughly proportional to the Ni magnetization
(Fig. 2) and is rigid. However, this does not hold at all

sp(5)

X L

FIG. 8. Quasiparticle band structure for Ni as function of
wave vector k along the I I.and I X directions for different tem-
peratures. The solid lines are for f and the dashed lines are for
$ quasiparticles. Dotted lines mark sp-like states, not involved
in our many-body treatment, therefore taken from a one-
electron band calculation for paramagnetic Ni. sp(4, 5) are sa-
tellites belonging to the m =4, 5 subbands.

for states near the chemical potential p. The already-
mentioned interplay between band shift and band nar-
rowing may even cause a change in sign of the exchange
splitting as function of the wave vector k. The exchange
splitting disappears in any case in the paramagnetic
phase of Ni. The temperature behavior of the unoccu-
pied quasiparticle d states has experimentally been inves-
tigated very recently by the use of spin-resolved inverse
photoemission. The data of this experiment are fully
compatible with a vanishing exchange splitting upon ap-
proaching T&. The sp-like states are inserted into Fig. 8
as dotted lines, although they are not affected by our
model calculation. They are simply taken from the origi-
nal one-electron band calculation for paramagnetic Ni
(Fig. 2.). In reality they will, of course, also be spin split
as a reaction on the 3d ferromagnetism.

4Q7 RX) D. Satellite peak

FIG. 7. Exchange splitting of the QDOS maximum and spin
dependent QDOS p at the chemical potential p, as functions of
temperature.

The most striking feature of the QDOS is the satellite
peak some 6 eV below the chemical potential p (Fig. 5),
which has received extraordinary attention in the recent
past. ' ' According to our theory, the satellite peak
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FIG. 9. Quasiparticle densities of states for the m =4 and m =5 subbands as functions of energy and for four different tempera-
tures. The solid line is for 0.= t', the dashed line is for 0.= ~. The low-energy satellite peak results from electron correlations in the
m =5 subband. The chemical potentia1 p is indicated by an arrow on the E axis.

arises from electron correlations in the partially filled
m =5 subband. The Coulomb interaction U splits the
original Bloch band into two quasiparticle subbands.
The only exceptions are completely filled and empty
bands. The spectral weight of the upper quasiparticle
subband scales with the probability that a propagating
(m, o ) electron will meet a lattice site, where another m
electron with opposite spin ( cr ) is —already present
(=(n )). The weight of the lower quasiparticle sub-
band is determined by the probability [=(1—( n ) )]
that the (m, u ) electron will find a site with no other elec-
tron from the same subband. The latter probability is
zero for m = 1,2, 3 because these subbands are completely
filled ((n ) =1). It is very small for m =4 because of
the very few holes. It is, however, significant for the
m =5 subband. A satellite structure is therefore possible
only for the m =4, 5 subbands, where the weight of the
m =4 band is so small that the respective satellite does
not appear in the QDOS. To demonstrate this more
clearly we have plotted in Fig. 9 the QDOS of the two
magnetically active d subbands only, and that for the
same four temperatures as in Fig. 5 for the total QDOS.
The satellite belongs to the m =5 subband, where the
sum of the areas under the satellite and under the upper
m =5 band is normalized to one for each spin direction.
As a function of temperature a shift of weight occurs be-
tween the two parts of the m =5 subband, most clearly to
be seen in the J, spectrum. The weight of the lower m = 5
quasiparticle subband is furthermore strongly spin depen-
dent, which results in a high spin polarization P, of the
satellite in excellent agreement with the experiment. "
Our model predicts a temperature-dependent spin-

-- -048

06--

02-- -- -0.56

2M 4M 600

FIG. 10. Temperature dependence of the spin polarization P,
of the satellite peak and of the specific-heat enhancement factor
q.

polarization P„starting at about 75% for T=0 K, de-
creasing with increasing temperature and disappearing
for T~ Tc (Fig. 10). The reason for this behavior is a
temperature-dependent rearrangement of spectral weight
between the lower and the upper m =5 quasiparticle sub-
band, which for T( Tc is difFerent for 1 and $ spectra.
The satellite exists, however, for T) Tc, too.

The appearance of the satellite can be understood by
inspection of the electronic self-energy R (E) (4.15)
which is plotted in Fig. 11 for the m =5 subband. For
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=1'

both spins the self-energy exhibits a singularity, so that
the equation

E—s (k) —R (E)=0 (5.12)

has two solutions. The low-energy one contributes to the
satellite. According to Eq. (4.15) this singularity disap-
pears for empty ((n )=0) and for fully occupied
((n ) =1) bands, so that a satellite may exist for the

I =4 and rn =5 subbands. In the quasiparticle band
structure in Fig. 8 they appear as rather dispersionless
curves sp(4) and sp(5), respectively, just in the middle of
the sp-band region. The satellite sp(4), however, is only
formally a solution of (5.12), because it has such a small
spectral weight, as explained above, that it will not be ob-
servable in a photoemission experiment.

R „(eVJ 10

5-

T= OK T= 500K

1 0 1 2 3 4 5 6 7 E(eVJ
I l.

T=600K
I I I I I a

FIG. 12. Electronic self-energy R4 and its derivative R 4 of the m =4 subband as functions of energy for four different tempera-
tures. The solid lines are for o.= ~, the dashed lines are for a = ~. The arrow on the E axis marks the chemical potential.
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E. Specific heat

The electronic part of the low-temperature specific
heat is usually written as

C~=y T, y =yo(1+A, ), (5.13)

where yo is the well-known free-electron coeKcient of the
"Sommerfeld model. " The enhancement factor A, ac-
counts for electron-electron and electron-phonon interac-
tions, which is completely neglected in the Sommerfeld
model. Strictly speaking, one replaces in a rough approx-
imation the bare free-electron mass in the Sommerfeld ex-
pression for y by the many-body effective mass m*(T).
This consists in the case of Ni of two contributions
(A, =p —q) from electron-electron (

—q) and electron-
phonon (p) interactions. The experimental Ni value for X
is =0.77, ' while p has been estimated in Ref. 69 to
about 0.17. Therefore, q is expected to be of order —0.6.
It is defined as the derivative of the real part of the self-
energy at E=p:

q= —
—,
' y (aR .yaE) (5.14)

There is no contribution from the fully occupied
m =1,2, 3 subbands. The derivative of R4 (E) at E=p
is also practically zero (Fig. 12). The main contribution
stems from the m = 5 subband (Fig. 13), and that for tem-
peratures below Tc, in particular, from the majority spin
(o.= T) carriers. Figure 10 shows that in our model the
enhancement factor is rather constant (q = —0.56). For
T(400 K. For higher temperatures, however, q be-
comes strongly temperature dependent. This is not

surprising because the ansatz (5.10) is, of course, accept-
able only for very low temperatures.

VI. SUMMARY

We have implemented the results of a realistic one-
electron band-structure calculation for the 3d transition-
metal nickel into a reliable many-body procedure on a
generalized Hubbard model, in order to get the full tem-
perature dependence of all important quasiparticle quan-
tities of the band ferromagnet Ni. The self-consistent
solution of our model yields a ferromagnetic ground
state, which in the last analysis is caused by the upper-
most of the five d subbands. Our model contains two pa-
rameters, the direct Coulomb interaction U and the inter-
band exchange J, which are fixed by fitting the experi-
mental T =0 moment. The further evaluation leads to a
highly realistic Curie temperature Tz =635 K, and to a
magnetization curve which fits almost quantitatively the
experimental data. The static susceptibility of paramag-
netic Ni shows a strict Curie-Weiss behavior, again in ex-
cellent agreement with the experiment. In this respect
our band model reproduces in an almost quantitative
manner all the "localized" aspects of the band fer-
romagnetism in Ni. In addition, the very often, contro-
versially discussed, discrepancies between one-electron
band-structure calculations and valence-band photoemis-
sion data are removed to a great portion by our model ~

In particular, the resonant satellite structure some 6 eV
below the chemical potential turns out to be a conse-
quence of strong electron correlations in the only partial-
ly filled uppermost d subband. These split the original
Bloch band into two quasiparticle subbands. The lower
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one leads to the satellite structure. We consider it as a
weighty argument for our model that it is able to explain
all of the outstanding and intensely discussed problems
connected with the band ferromagnet nickel, and that
with a minimum of adjustable parameters. Correspond-
ing investigations on iron are in progress.
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