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Sublattice-symmetric spin-wave theory for the Heisenberg antiferromagnet
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We apply the sublattice-symmetric spin-wave theory (SSSW) for Heisenberg antiferromagnets to
obtain excited states at zero temperature. We identify a set of spin-wave states that have the correct
total spin and correspond to the states with lowest energy in a given sector where S„ the z com-

ponent of the total spin, is fixed. This approximation gives results in good agreement with the re-

sults of exact diagonalization. We also discuss results of SSSW for finite-temperature and dynami-

cal correlations. We recover the same equations as those obtained in the mean-field Schwinger bo-
son theory of Arovas and Auerbach, except for a factor of 3/2. From comparison with exact results

obtained by. exact diagonalization, we assess the accuracy of the theory when the temperature is

finite.

I. INTRODUCTION

Recently two-dimensional quantum antiferromagnets
have attracted tremendous theoretical interest' due to
their possible relevance to high-T, superconductivity.
The current numerical work has conclusively established
that the ground state of the S=—,

' Heisenberg antifer-
romagnet on a square lattice with nearest-neighbor cou-
pling possesses long-range order, ' the actua1 value of
the staggered magnetization being slightly higher than
that predicted by linear spin-wave theory. ' Thus the
spin-wave approximation is quite successful even in the
S =

—,
' case, for which it is supposed to be least accurate.

The spin-wave calculation for the Heisenberg model
has a long history. Andersen first performed a semiclassi-
cal spin-wave calculation for the antiferromagnetic
Heisenberg model, and obtained the ground-state energy
and the staggered magnetization. Later Kubo elaborat-
ed Anderson's method and developed a full quantum ap-
proach. ' Oguchi showed that the next-order correction
to their results is negligibly small. " A modified spin-
wave theory was introduced by Takahashi for the Heisen-
berg ferromagnet. ' Imposing a constraint that the total
magnetization be zero, he obtained results which agree
very well with the thermodynamic Bethe ansatz integral
equations in one dimension. Recently, Arovas and Auer-
bach (AA) have developed an approach for this model
based on a Schwinger boson representation. ' In their
formula for the spin-correlation function, there is a cutoff
parameter g which removes the singularity for finite lat-
tices; thus one can use their formula on finite lattices and
directly compare with exact results. Hirsch and Tang
then pointed out that AA's expressions yielded the same
long-range order in the thermodynamic limit as obtained
from linear spin-wave theory, and that the cutoff parame-
ter g could be introduced within spin-wave theory by
adding the constraint that the total staggered magnetiza-
tion be zero." Under this constraint, they obtained the
same results as AA's at zero temperature and compared
the sublattice-symmetric spin-wave (SSSW) results with

the results of exact diagonalization for the ground state
on square lattices of 4 to 26 sites. In the present paper,
we show that, besides the ground state, SSSW also gives
good results for some excited states. We also extend the
previous work to finite-temperature and dynamical prop-
erties, and compare the results with finite-lattice calcula-
tions as well as with AA's theory. We have recently re-
ceived unpublished work by Takahashi' and by Ohara
and Yosida, ' who reported results in agreement with
Ref. 1 and with some of the results discussed here.

The paper is organized as follows: in Sec. II we define
our notation and summarize the results obtained in the
previous paper; Sec. III gives new results at zero temper-
ature; Sec. IV deals with thermodynamic properties and
dynamical correlations. We end in Sec. V with a discus-
sion and conclusions.

II. SUBLATTICE-SYMMETRIC
SPIN WAVE THEORY

where J)0 for antiferromagnetism, and (i,j ) runs over
nearest neighbors. This Hamiltonian can be rewritten as

H=J g [S S'+ —,'(S,+S +S; S,+)] .
(, )

(2)

We consider the Hamiltonian on a bipartite lattice with
sublattices A and 8. The Holstein-Primakoff transforma-
tion' for A and B sublattices is defined as

S;+ =(2S)' (1—a; a;/2S)' a

S; =(2S)' a; (1—a; a;/2S)'

S =(2S)'i bt(1 bb /2S)'—
J J J J 7

S =(2S)' (1 b~bj/2S)' bi, —

S.'=S —a, a;, S'= —S +b~b

(3a)

(3b)

(3c)

The Hamiltonian of interest is the conventional
Heisenberg Hamiltonian

H=J $ S;S
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where i E A and jEB. The boson operator a;~ lowers the
spin on site i of sublattice A, while b raises the spin on
site j of sublattice B. The boson commutation relation is
imposed on these operators.

In the thermodynamic limit, the up-down symmetry,
as well as the sublattice symmetry, can be broken in vari-
ous states. However, this will not happen on a finite lat-
tice of N sites. To preserve these symmetries, we impose
the constraint that the total staggeved magnetization be
zero:

where nk and nk is the occupation number of magnons of
c type and d type. The parameter 21 is determined by Eq.
(9).

If we restrict g to be real, then there is an upper bound
for the total number of magnons we can have. Setting g
to its lowest allowable value zero, we find that this num-
ber cannot exceed NS. Also, we find

S, =—(
—(a; a; )+(b bj ).)= g( n—k+nk) . (10)

k

or

gS —gS =0
iEA iEB

ga;ta;+ gb b =NS ..

(4a)

(4b)

Thus the z component of the total spin total S, is deter-
mined by the difference between the total occupation
numbers of the magnons of c type and d type.

III. ZERO-TEMPERATURE RESULTS

Now, if we only keep the bilinear terms in spin-wave
operators, the Hamiltonian (1) can be approximated by

a= —~ NzJS'
2

+JS g (a;b +a; b .+a, a;+b bj.),
(i,j )

where z is the coordinate number of the lattice. %'e can
diagonalize the spin-wave Hamiltonian Eq. (5) under the
additional constraint that the sublattice magnetization be
zero, i.e., Eq. (4b). First we introduce the Fourier trans-
formation

1 ik.R. —ik.R .
bk= Xe

iEA V Nz jEB

where k runs on the half-Brillouin zone of the lattice, and
N~ is the number of sites on each sublattice. Then we

apply a Bogoliubov transformation

ak =(coshek )ck+(sinhek )dk,

g e'
»2 (I+nk+nk)

1 i'kg 97 k

(1 2y2 )1/2

(1 la)

for i,j on the different sublattice, where R =R, —R and

S, S.= —
—,'5; + g(1—e'" )(nk —nk)

k

ikR1

2X
1 (I+nk+nk )

( 1 ~2y2 )1/2

The energy spectrum given in Eq. (8), however, does
not yield accurate results in comparison with exact re-
sults for finite lattices. More accurate estimates can be
achieved through calculation of the spin-correlation func-
tions. In doing so, we include the terms up to order 1/S.
We find that the spin-correlation functions are given by

S; S = g(nk —nk)
k

bk (sinhek
——)ckt+(coshek)dk (7)

(1 lb)

D is the dimension of the lattice. The constraint (4b) be-
comes

1+nk+nk
i/2

—'
(1—

21 yk)
(9)

to make the spin-wave Hamiltonian diagonal. The resul-
tant Hamiltonian is given by

H= —,'NzJS + g—(ek—1)
zJS

k

+ g ek(ckck+dkdk ),zJS
k

where

( 1 ~2y2 )
1/2

and
D

y„=—g cosk„
l

for i,j on the same sublattice, after we take an average
over the two sublattices. For the ground state, all occupa-
tion numbers are zero. The SSSW results for this special
case were already discussed in our previous paper. "
Spin correlations are exact for lattices of N=2, 4, and 8
sites, and accurate to a fraction of percent up to the larg-
est N studied, N=26.

One wave vector, ko=(0, 0), has special importance.
Because we only consider wave vectors in half the Bril-
louin zone, we will not take k into account. If we put l
magnons on, say, dk, the z component of the total spin

0

S,= l. In addition, as can be verified by direction evalua-
tion, the total spin is exactly

S.S=NS (0)= 1 (l + 1),
where S(0) is the spin structure factor for wave vector 0,
i.e., the sum of all the spin-spin correlation functions.
The staggered magnetization is given by the relation be-
tween the structure factor S (n, rv) and the mean-squared
staggered magnetization

Nm =S(m, ~),
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where the order parameter

m = eRSR

and eR =+1. Now we can use the foregoing results to
calculate the magnetization in the thermodynamic limit.
When N approaches infinity, for I «N; the parameter g
reaches its limit 1, and the summation on k in (9), (1 la),
and (1 lb) become integrals. We separate the divergent
terms from the integral in a fashion similar to the case of
Bose-Einstein condensation. ' For sufficiently large N,
we have

m = +(l+1) 1 1 d k 1+9 Yk'
1 —g 4& (2') 1 —g yk

(12)

That is, the constraint parameter g depends on the num-
ber of magnons in the state. Combining (12) and (13), we
find that the staggered magnetization is

m = —,
' (2S+1)—f (2m ) (1—q yk )'

(14)

Thus, the dependence on I drops out for I «N, and all
those states have equal staggered, magnetization. Equa-
tion (14) is the same as the old spin-wave result of Ander-

after discarding negligible terms. However, the integral
in (12) is only proportional to in% in two dimensions;
thus only the first term needs to be considered.
Meanwhile, the constraint Eq. (11)now becomes

1 2(l+1) 1. d k 1

( 2)1/2 J (2 )D (1 2 2 )1/2

son. For two dimensions, the case we are especially in-
terested in, Eq. (14) gives a staggered magnetization
m =0.3034.

Because those states, with occupation number l on dk
0

(or on ck ), would have the same staggered magnetization
0

for the ground state in the thermodynamic limit, we ex-
pect them to have the lowest energy in their correspond-
ing S,=1 sectors on a finite lattice. We calculated the
exact spin structure factors for the lowest states in
different S, sections for the 4X4 lattice. A comparison
of the exact spin structure factors with the SSSW results
is presented in Fig. 1. The sublattice-symmetric spin-
wave approximation gives very accurate results for low l.
The errors for the singlet ground state and the lowest
triplet state are less than 1%. The error increases for the
higher S, states, as interactions of higher order between
magnons become more significant. However, when
S, =NS, i.e., the trivial ferromagnetic case, SSSW be-
comes exact. In Table I, we present the SSSW results for
energy and staggered magnetization for the singlet
ground state and the lowest triplet, together with the re-
sults obtained by exact diagonalization, on square lattices
from 10 sites to 26 sites. The agreement is excellent.
SSSW is exact for four-site and eight-site square lattices.
An interesting observation is that the SSSW approxima-
tion systematically underestimates the staggered magneti-
zation for all lattices we studied and for all S, values.

IV. THERMODYNAMICS

At finite temperatures we introduce the occupation
probabilities Pk(n) and Pk(n') representing the probabili-
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FICr. 1. SSSW results for the spin structure factors from S,=0 to S,=7 on the 4X4 lattice. SSSW is exact if S, =8, i.e., when all
spins align ferromagnetically. The values in parentheses are the results of exact diagonalization.



SUBLATTICE-SYMMETRIC SPIN-%AVE THEORY FOR THE. . . 5003

TABLE I. The SSSW values of the energy and mean squared staggered magnetization for the ground
state {singlet, S =0) and the lowest excitation state (triplet, S =1) for the two-dimensional S =

2
anti-

ferromagnetic Heisenberg model. The values in parentheses are the results of exact diagonalization.

Lattice
Ground state

Energy Eo Stag. mag.
Lowest excited state

Energy E& Stag. mag.

20

—2.0000
(—2.0000)
—1.5000

( —1.5000)
—1.4599

( —1.4600)
—1.4031

( —1.4036)
—1.3994

( —1.3880)
—1.3831

{—1.3816)
—1.3704

( —1.3689)

0.500
(0.5000)

0.3750
(0.3750)

0.3375
{0.3380)

0.2763
(0.2765)

0.2665
(0.2686)

0.2555
(0.2577)

0.2315
(0.2339)

—1.000
( —1.0000)
—1.2500

( —1.2500)
—1.2946

( —1.2928)
—1.3342

(—1.3312)
—1.3344

( —1.3315)
—1.3379

( —1.3349)
—1.3426

( —1 ~ 3399)

0.3750
(0.3750)

0.3438
(0.3438)

0.3186
(0.3242)

0.2703
(0.2720)

0.2619
(0.2637)

0.2521
(0.2541)

0.2301
(0.2326)

ty that n (n') c-type (d-type) bosons occupy the state with
momentum k; we have then

g Pk(n) =1, (16a)

c/ ck =n/ = y nP/ (n) (15a) P (kn') =1, (16b)

dk d/ =
n/

—g n P/ ( n )
n'

with

(15b) for all k. To order 1/S the constraint of zero staggered
magnetization still takes the form (9). The Hamiltonian
(2) can be written as

(a) =—JX ~2 ik5

2 2 2+ (1 2 2)]/z k k (17)

where 5 is a vector connecting a site to a nearest neigh-
bor, and the constraint (9) has been used. The entropy
and the free energy are given by

g= —g g Pk(n)ln[Pk(n)] —g g Pkn'ln[Pk(n') j,
k n'

where

and

(22)

v=(H) Tz. —

We minimize the quantity

W= V—g p.„gP„(n)—g/M' g P„'(n'),

(19)

k n k n'

I
nk =nk = (21)

with respect to Pk(n) and Pk(n') to derive expressions for
71k and nk ' Pk a d Pk aIe I agrang mu tiphe s deter
mined from conditions (16a) and (16b), respectively. We
find

coth( —,'13'„),Jz
/ (1 "/1~@k )

(23)

where the wave vector k now has its conventional mean-
ing, i.e., it now runs over the full Brillouin zone. The
equations (17), (22), and (23) are the same as the mean-
field equations of AA. '

The preceding formulas are consistent with our zero-
temperature results. Due to the symmetry between e-
type and d-type magnons, the terms involving (nk n/',)—
in (1 la) and (lib) will vanish. We rewrite (nk+nk) as nk,
the occupation number of magnon of wave vector k, and
substitute its expectation value (21) into (1 la) and (lib);
the spin-correlation function is now
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where

e ikR 1
coth( —,/3'�),1

(24) Assummg nk =n k, g(R) will be zero if i and j are on
the same sublattice, while f (R ) will be zero if they are on
different sublattices. The constraint, which was intro-
duced with some arbitrariness, now becomes an explicit
requirement that S, S, should be S(S+1),i.e.,

f (0)=S+—,
' (25)

Equation (25) determines g from the energy spectrum cok.
Takahashi has recently obtained the same expressions for
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FIG. 2. (a) Spin-spin correlation functions for 2X2 lattice, (b) spin-spin correlation function f
1 f f 1

'
Then-si e a ice. e solid lines are results of SSSW; the dashed lines are h

(NN) and next-nearest-nei hbor (NNN) 1

e as e ines are the exact results. Nearest-neighbor
'g or corre atjons are plotted. The agreement between SSSW and the exa

temperatures lower than the interaction st th
'

n s reng, except or the 2 X 2 lattice, the smallest one.f h
een an t e exact result is very good at
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the spin-spin unc ionf t'on and co using an antiferromagnetic
D son-Maleev (ADM) transformation. 'yson- a e

th exact correlation functions to

the agreement is excellent, particu ar y or
b as the temperature is increased the correlationtices, ut as e e

f t' diverge from the exact values due o eunc ions
this a roxima-bution o eb f th unphysical states present in is app

ns cannottion. Because ethe average number of magnons c
excee, ed NS the product of PA cannot be less t an n .

iven b E . (23),Th' 1 e yields an upper bound of A given y q.is vaue y
reach in thisand hence a highest temperature one can reac

In Fi . 3 we show spin struc-spin-wave approximation. In 'g.
ture factors or efor the square lattice of ten sites. The agree-
ment with exact results is again very good at low temper-
atures.

factor is defined byThe dynamical spin-spin structure .actor
'

S(q, co)= g Jdt e'~' ' '(So(t) Sf(0) /.

We calculate the last expression to orderr 1,~S and find

S (q, co) =——g [ cosh[2(8„—8„+ ]+ 1 (N3 k

(26)

Xn„(n„+ +1)5(co„+

+——g [cosh[2(8„+0„)]—1]N 6

X[n k+6(co)][n k++6(~)]
X5(cok+ +cok —~~ (27)
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FIG. 3. Spin structure factors for thethe 10-site lattice. The
s of SSSW; the dashed lines are the exact re-solid lines are results o

suits. Lines labeled 1 are for q =(m., ~); 2 for q = 0.8m,

SSSW and the exact result is very good at temperatures ower
than the interaction strength.

where

cosh(20k ) = 1(1 'r) 7'k )
2 2 i /2

We ave useW h d the same notation as in AA, q
'
is mea-

We haved from the antiferromagnetic vector (~, vr . e avesure rom e
d th Heisenberg equation of motion for e ope

out b AA, theck, dk and their conjugates. As pointed out y

whereas the second corresponds to the creation or annihi-

with the mean-field Schwinger boson formulation except
for a factor o —,. owef —'. However, (27) is derived by expan ing
(26) to the order 1/S, which indicates that as S goes to
infinity it becomes exact; this point isis not evident in
AA's derivation.

a for the8 '
(27) we calculate the energy gap or ey using

i ht-sitelowest tnp et sta e.'
1 t As expected, on 2X2 and eigh-

ulalattices, t e resu ts are exh lt exact. The accuracy of formu a
(27) is also con rme yfi d b the numerical results of Chen
and Schuttler.

V. CONCLUSIONS AND DISCUSSION

We have examined various aspect s of the sublattice-
roach of the Heisenberg model,symmetric spin-wave approac

and compare t e ana y
'

u h 1 tical results with exact resu ts or
nots. For the ground state, the SSSW does no

reserve the rotational invariance. In fact, t e expec a-
tion value of

'b to the spin-correlation functions.tri utes o
a set of s in-waveAt zero temperature, we identified a se o p'

iven S sector.states, i.e., the lowest-energy states in a give
the a reement withF the spin-correlation functions, e agror e

ood es eciallyt e exach t diagonalization results is very g, p
tizationin the smal, case.1 S, . The exact staggered magnetiza

'

or allis always slig t y ig er
'

h 1 h' h than the spin-wave value for a
the lattices and S, we calculated.

calculated by usingF r finite temperatures, the results caor ni e
ment with the exact results(24) to (25) are in good agreement wi

when the temperature be-at low temperature. However, wh
rable to the strength of the interaction,

SSSW begins to deviate from the exact resu s, e
e ', h h SSSW reproduces exactlythe 2X2 lattice, even t oug

s of a few states at zero tempera-the spin-spin correlations o a
um of XSma-ture. it in

nons for N wave vectors, N/2 for c- ype g
a t e. This means that we can have C&&+&

states a number usually much argerspin-wave s a es,
meanin ful states for(2S + 1), the number of physically meaning u

onian. On the other hand,th riginal Heisenberg Hamiltonian.eo
ave counterpart orSSSW fails to reproduce the spin-wave p

some hysically meaninful states even in the case of 2 X 2

triplet states, i.e., one has a magnon dk an e

ck, but there are t ree owck, h lowest triplet states for the origi-

nal Heisenberg Hamiltonian (1). SSSW fails to reproduce
f S =0. Thus, it is not surprisingthe lowest triplet state o,= . u, '

that the finite-temperature results are not as goo as
Nevertheless, results for spinthose at zero temperature. Nev

ason ablestructure factors a nit 6 ite temperature are in reasona e
agreement with exact results.
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