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The validity of approximating the effects of many-body interactions in Ising-type models by
several types of pair interactions is examined. In addition to the bare pair interaction (Py), two in-
teractions derived via high-temperature approximations are considered. The first (P;) is concentra-
tion dependent and is obtained by an expansion to first order in inverse temperature; the second
(P,), obtained by a second-order expansion, is both temperature and concentration dependent. The
validity of the pair approximations is evaluated by Monte Carlo calculations of ordering and ther-
modynamic properties for a particular many-body interaction model on a fcc lattice. In the high-
temperature limit, the structure (as described by pair and multiple correlation functions) is accu-
rately obtained by both the interactions P; and P,, but not by P,. Over a much wider range of tem-
peratures, P, still yields accurate results. However, none of the pair interaction models obtain accu-
rate mixing enthalpies. The connections that are derived between the strength of the many-body in-
teractions, and the environmental dependence of the effective pair interactions, provide a possible
way of evaluating the importance of the many-body interactions in solid solutions from diffuse
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scattering measurements.

I. INTRODUCTION

Even the simplest alloy systems that can be studied ex-
perimentally contain significant three-body and higher-
order interactions, and hence cannot be accurately treat-
ed by simple Ising-type pair models.! This is clear from
the asymmetry in the observed phase diagrams, and also
from the fact that pair interactions derived from one
class of properties, such as correlation functions, often
give poor results when applied to other properties, such
as heats of formation. In addition, non-negligible
higher-order interactions are obtained both by
scattering-theoretic analyses,2 in which a subset of the
terms in a perturbative expansion yields the pair interac-
tion, and in matching schemes,® which fit pair and cluster
interactions to quantum mechanically obtained total en-
ergies. However, a description in terms of effective pair
interactions,' "> which treat only a limited part of
configuration space, is useful for two reasons. First, the
intuitive connection between the interaction parameters
and physical properties, such as short-range order, is
much clearer and more direct for the pair terms than for
the higher-order terms. Thus they constitute a con-
venient abbreviated description of the energetics of the
alloy. Second, we have no experimental techniques
which measure multiatom interactions in the bulk. In
contrast, detailed and precise measurements of pair-
correlation functions in disordered alloys (which describe
the short-range order), have been performed during the
past two decades. Since 1968, the Krivoglaz-Clapp-Moss
(KCM) formula,®’ a mean-field approximation, has been
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used widely to analyze the experimental results in terms
of effective pair interactions. The recently developed in-
verse Monte Carlo method,®® which is more sophisticat-
ed than the KCM formula, allows us to determine a
unique effective pair interaction from the measured
short-range order parameters, on the basis of the princi-
ple of detailed balance. It is important to establish
whether or not the pair short-range order yields sufficient
information to determine the magnitudes of many-body
interactions as well, which can be important in the sys-
tems that have been studied. More generally, the ques-
tions considered here are relevant not only for alloys but
for all equivalent systems belonging to the same univer-
sality class.

The main purposes of this paper are to evaluate the
legitimacy of pair descriptions of short-range order, to
obtain explicit relations between the effective pair in-
teractions and the many-body interactions, and to estab-
lish the manner in which the pair interactions depend on
the properties of the environment, in particular concen-
tration and temperature. To accomplish these tasks, we
perform Monte Carlo calculations of the short-range or-
der above the transition temperature 7, for several pair
interaction models and one multiatom interaction model
on a fcc lattice. Finding existing types of effective pair
interactions inadequate for our purposes, we generate a
new type of pair interaction which, in addition to the
usual dependence on concentration, contains a term pro-
portional to the inverse temperature. This term is ob-
tained from the terms in a high-temperature expansion of
the short-range order which are quadratic in the inverse
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temperature and either linear or quadratic in the multia-
tom interaction parameters. The inclusion of this simple
temperature dependence improves the short-range order
results dramatically. For example, at T =1.5T,, the er-
ror in the second-neighbor short-range order parameter is
reduced to below 5%, from the 20% error obtained by
temperature-independent pair interactions. Since the
temperature and concentration dependence of the pair in-
teraction are related in a simple fashion to the higher-
order interaction parameters, our results show great
promise for the possibility of extracting information
about cluster interactions from measured short-range or-
der data. The success of the pair interactions in describ-
ing short-range order tempts one to apply them to other
properties as well. However, our calculated results for
the heat of formation show that the temperature-
dependent interactions are by no means a universal pana-
cea; in fact, both of the environmentally dependent in-
teractions that we have used give worse results for this
quantity than the bare, concentration-independent, pair
interaction.

The organization of the remainder of the paper is as
follows. Section II describes our cluster interaction mod-
el and the analysis underlying the various effective pair
interactions which we use to simulate the effects of the
cluster interactions. Section III discusses the Monte Car-
lo technique we use to treat the statistical mechanics.
Section IV presents the comparison of the Monte Carlo
results for the cluster interactions with those for the
effective pair interactions. Section V summarizes our
conclusions.

II. INTERACTION MODELS
A more general model for a binary alloy than the often

used pair Ising model can be obtained!® by including
many-body interaction terms:
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Here H is the Hamiltonian, and the {o;} are classical
spinlike variables, which take on the values o;==*1 ac-
cording to what type of atom occupies a given site. The
first term in H is simply a chemical potential term which
fixes (o ). The next three terms correspond to pair, trip-
let, and quadruplet interactions, respectively. By using
the interaction strengths as adjustable parameters, one

can obtain a much better global fit to observed phase dia-
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grams than with pair terms alone.!! In addition, as men-
tioned before the higher-order terms are expected from a
variety of theoretical calculations. Fits to supercell total
energy calculations, for example, have shown!? that
values of |V /V@)| in Al-transition-metal alloys are
typically of order 0.1-0.2, although values as large as
0.3-0.4 can occur. A triplet interaction of this magni-
tude is sufficiently strong to change the sign of the short-
range order coefficient at one end of the phase diagram.'?
Scattering-theoretic calculations®* treating only the
changes in the one-electron energy resulting from
changes in the alloy’s state of order have shown that the
various terms in Eq. (1) can be associated with an expan-
sion in powers of the scattering matrices of the alloy con-
stituent atoms relative to a complex effective medium.
Such calculations have suggested somewhat smaller
values for |V®/¥®)| for transition-metal—transition-
metal alloys.

On the other hand, an accurate description of observed
short-range order data, at a given composition and tem-
perature, can often be obtained including only pair in-
teractions. This suggests that the effects of the three-
body terms, at least for some properties, can be subsumed
in an effective pair interaction which may depend on
composition and temperature. To evaluate the validity of
this contention, we have calculated several physical prop-
erties of the alloy using both the full cluster model and
three pair models. In the simplest case, we have simply
ignored all but the V! and ¥'? terms in Eq. (1). In addi-
tion, we have considered two pair models which contain
the effects of the higher-order terms in an averaged
fashion. In these models, we include only the terms up
through the V¥ level, because only these are included in
the subsequent simulations.

A. Concentration-dependent,
temperature-independent interactions

This type of interaction!? is closely related to those ob-
tained by the scattering-theoretic methods. It is obtained
by using as basic variables the atomic concentration fluc-
tuations 80;=(o; — (o)), rather than the o; themselves.
By simple rearrangement of terms one obtains

H=VO(0))+ o 5, VP())80,50,
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and
lkICﬁ(<0'>)—V(4) . (3)

The V©f term is simply the energy of a completely ran-
dom alloy having the concentration corresponding to
(o). The V'1*f term is absent because 3;80;=0. Note
that if ¥?, ¥® and ¥ contain only nearest-neighbor
terms on a fcc lattice, then the interactions V¢ also
contain only nearest-neighbor contributions. V4 jg
concentration independent only because we ignore the
five-body and higher-order interactions. We include the
expressions for V3¢ and y4»*f here primarily because
they will be essential in the subsequent calculation of
temperature-dependent potentials.

The main utility of the effective pair interaction is that
it is guaranteed to produce the correct short-range order
(SRO) at high temperatures. The exact SRO parameters
are given by ’

- k
(80,80,)=Z 1S 80,80,e VT )
{cy
where
S 2 (1) /kpT

and {C]} denotes the collection of possible configurations
of the alloy. By expansion of the right-hand side of (4) to
order (1/kyT), using the expression (2) for H, one readily
obtains (for i#j) the first-order high-temperature ap-
proximation

(80,80;)~(b0,80;)"
=—(1—(o)) VDM, j; (o)) /kpT . (5

Thus V3> and V% do not contribute to the SRO to
this order in (1/kgT). It is not clear, however, to what
extent such interactions can describe SRO at tempera-
tures comparable to the order-disorder temperature. The
subsequent analysis, and the results to be presented in
Sec. IV, will provide a partial answer to this question.

B. Concentration and temperature-dependent pair interactions

We expect that a more accurate description of SRO
can be obtained if one forces the pair interaction to ob-
tain the correct SRO not just to first order, but also to
second order, in (1/kgT). To evaluate the utility of this
approach, we have determined such pair interactions for
the model described in Sec. II. The first step in this pro-
cedure is the evaluation of the short-range order parame-
ters by expansion of Eq. (4) to second order in (1/kgT),
using the expression (2) for H. The procedure is straight-
forward but somewhat tedious. The result for interac-
tions of arbitrary range, is the following:

(80,80 ;) ~(80,80 ;)" +(80,80;)*, (6)
Here (80,80 ;)"
(80,80;)¥=(4+B+C+D+E+F)/(kgT), (7

)is given by Eq. (5), and

where the six contributions to the right-hand side come
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from six possible types of pairings of pair, triplet, and
quadruplet terms. Explicitly,

A8 VP VP o)

+ 183V P (o) ), (8a)
B=253532 BNV (o)), (8b)
C=18} 2 Vit (o NV (o)), (80)
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%82822 (3),eﬂ'(<0.>)2 ) (8d)
E= 83832 Vi (o NV e )), (8e)
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F=483 3, Vi o)Vt
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where

8,=((80,)=1—(0)?,
and
8,=((80;)*)=—2(0)5, .

If only nearest-neighbor terms are included on a fcc
lattice, as in the calculations to be described in Sec. IV,
there is only one pair interaction V2)»ef

, one triplet in-
teraction V3>f and one quadruplet interaction V4,
q p

The expressions (8) then simplify considerably. We ob-
tain, for nearest-neighbor pairs i and j,
A =483+ 182V 2f((g))?
B =88,83V 2 (o ) )V M((q)),
C =283V DM (g ) )W (o)),
(9a)

D =2(83+825,)V ¥ <f((o))?,
E =488V D<M((g ) )V D efi((g))
F=8383V®=f((og))?

for second-neighbor pairs i and j,
A =483V Df((g))?
D =483y 3ef((g))?, (9b)
B=C=E=F=0,

for third-neighbor pairs i and j,
A =28 De((o) )2
D=8V3((g))?
B=C=E=F=0,
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and for fourth-neighbor pairs i and j
A ZSgV(Z),eﬁ( <0_ > )2 ,

B=C=D=E=F=0.

To obtain the effective temperature-dependent pair in-
teraction, U'?>*%(( o ), T), we evaluate the short-range or-
der parameters to second order in U‘?>*T making the re-
placement

|
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H—»HER( T)= U(O),eff( < o )’ T)

ti3 U (o), Ndo 80, .  (10)
L]

Here U'©*f(( o ), T) is simply a concentration-dependent
enthalpy term which does not affect the short-range or-
der. From (5)—(8), we obtain

(80,80,;)=—8UP*M(c),T)/kyT+8 3 UR»M(a), NURZ**"(0c),T)/(kpT)*
k

+ 183U (o), 1) /(ky TP +0((kyT)7?) . (11

We demand that (11) and (6) should agree to order
(1/kg T)®. To order (1/kgT), only the first term on the
right-hand side of (11) contributes. Comparing (11) with
(5), we then have

U,'(jZ)’_Efr( (o), T=w)= V,&”'eﬁ( (o)) .
Assuming U'?>*f to vary smoothly with (1/kzT), we ob-
tain

UP (o), )=V ))+0(1/ksT) .
To order (1/kgzT)? the right-hand side of (11) is un-
J

changed if U'?»*% is replaced by V2" in all terms except

the first. Then, comparing (11) with (6) and (7), we have
that

U (o), )=V} (o))
—(B+C+D+E+F)/(8%kyT) .

With only nearest-neighbor interactions on a fcc lattice in
the starting Hamiltonian, we obtain via Eq. (9) for a
nearest-neighbor pair i and j,

Ui(jZ),eff( (0. >’ T): V(Z),eﬂ‘( (0. ) )—[883 V(2),eﬁ( ( o > )V(3),eﬂ'( < o ) )+28%V(2),eﬂ'( < o ) )V(4),eﬁ‘( (0’ ) )
+2(83+82/8,) V({0 ))2+488,V P <M(( o))V *<f((5))

+ 8 (g )21 /ky T,

for second- and third-neighbor pairs,

U (o), T)=—485V () /kyT ,  (12b)

and

U (o), T)=—8V(a))/kpT , (12¢)

respectively; all farther interactions vanish.

We now turn to the physical interpretation of these
effective potentials. We treat first the 8%( y3refy2 terms,
which contribute at the first-, second-, and third-neighbor
separations. These contributions to U?"*¥ are manifestly
negative, favoring ferromagnetic ordering. They arise
from the terms in the short-range order expansion given
by the first half of the right-hand side of Eq. (8d). These
terms arise from pairs of nearest-neighbor triangles such
that site i is at a vertex of one triangle, site j is at a vertex
of the second triangle, and the sites k and / are shared by
both triangles. If we take, for example, o;,=+1 and
V3 ef((5))>0, the three-body terms in the energy will
first result in an antiferromagnetic (negative) contribution
to 80,080,; subsequently the three-body terms involving
the interaction of this pair with o; will favor o;=+1

over 0;=—1. Thus the short-range order parameters

(12a)

behave as if there were an extra ferromagnetic term cou-
pling the sites i and j. An entirely parallel argument
holds for the case V3"*f((o))<0. The relative magni-
tudes of the first-, second-, and third-neighbor terms re-
sult simply from the numbers of pairs of nearest-neighbor
triangles of the above type; for nearest neighbors there
are two such pairs, for second neighbors there are four,
but for third neighbors there is only one. The prefactors
of these terms vanish when (o )2=1. This reflects the
fact that the magnitude of the contribution to 80,80, re-
sulting from a particular atom at site i must vanish when
the minority concentration vanishes. One might expect
similar contributions from (V4»*)2 terms; these vanish
in the fcc structure because there are no pairs of nearest-
neighbor tetrahedra sharing a common face.

The remaining contributions are present only in the
nearest-neighbor interaction. The 8,V 2><fy el term is
due to the term (B) [cf. Eq. (8)] in (80,80 ,)'?, which
consists of contributions from nearest-neighbor triangles
containing the sites i and j. The origin of this term may
be understood as follows. Assume that V?f and p(3)ef
are positive, and that 0;=+1. Then the V*"°f terms in
H will make a negative contribution to (8o, ). The
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V3 terms, in turn, will result in a positive contribution
to (80 ), so that the net contribution to (80,80 ) is fer-
romagnetic. On the other hand, if o;= —1, the net con-
tribution to (80,80 ;) is antiferromagnetic. The relative
probabilities of these two cases are determined by (o ),
and are such that the total contribution to (80,80 ;) is
ferromagnetic if (o )>0. The 8,3 Ty el terms in
(12a) may be understood by a completely parallel analysis
of the term E in Eq. (8).

Finally, the 83/8,(V®»¢M)2 terms in (12a) arise from the
corresponding terms in (8d) which came from nearest-
neighbor triangles containing the sites i and j. These
terms, in turn, arise from contributions to the probability
distribution proportional to 85780380%. If (o) >0 these
terms are largest for 0,=0;=0,=—1, if (o) <0 they
are maximized for 0, =0 ;=0 =1, and if (o) =0, they
are independent of configuration. Thus for (o )70 they
produce a net ferromagnetic contribution to the short-
range order.

III. MONTE CARLO TECHNIQUE

In the previous section we have obtained effective pair
interactions which approximate the many-body interac-
tions in increasing orders of (1/kpT). To investigate the
validity of these high-temperature approximations we
have performed Monte Carlo simulations in the solid
solution region of the disordered phases. In order to
compare the configurations obtained by the various in-
teraction schemes, we have determined the pair correla-
tion function, cluster probabilities, and configurational
energies as functions of the temperature and the concen-
tration.

According to the purpose of the present investigation,
our Monte Carlo simulations are focused primarily on
the pair correlations in the disordered phase, and further
on those cases where one expects the largest differences
between the cluster interaction model and the approxima-
tions by effective pair interactions. Therefore, most of
the simulations were performed at the A4 ;B stoichiometry
for the model considered. As will become apparent from
our results on the correlation functions, we need high
precision in the Monte Carlo simulation to distinguish
between the results of the various interaction schemes.

The many-body interaction model we have studied
here is chosen because it has been already treated!! in the
literature as a model for the Cu-Au alloy. The order-
disorder phase diagram has been calculated by both the
cluster variation method!! and the Monte Carlo
method.!* There has been a long standing controversy
about whether the triple points are at zero temperature,
as given in the published Monte Carlo results,'® or at
finite temperatures, as was found first by the cluster vari-
ation method.!' In our Monte Carlo simulations we find
clear evidence that the triple points are at finite tempera-
tures for nearest-neighbor interaction models for pair in-
teraction models as well as for cluster interaction models.
Except on this point, our results agree with the previous-
ly calculated phase diagram of Styer et al. We em-
phasize that we do not expect this model to describe the
real interactions and correlations in CuAu alloys. How-

W. SCHWEIKA AND A. E. CARLSSON 40

ever, the calculated phase diagram shows a reasonable
likeness to the observed CuAu phase diagram.

We performed the simulations'* on a fcc lattice of
108 000 sites. We used both the single-spin-flip kinetics
(Glauber dynamics) and the nearest-neighbor exchange
kinetics (Kawasaki). In general, the relaxation to the
equilibrium will be faster for the calculation in the grand
canonical ensemble (single-spin flip). However, for the
present purpose of comparing results at a given tempera-
ture and concentration, the canonical ensemble (nearest-
neighbor exchange) is more advantageous; triplet and
higher-order correlation functions are increasingly sensi-
tive to small deviations in concentration. The computa-
tions were performed on a CRAY-XMP at the Kern-
forschungsanlage Jilich. Since we used a vectorized pro-
gram, more than a million Monte Carlo steps (MCS’s) per
CPU second were achieved.

The values for the pair-correlation function were ob-
tained from simulations above the transition tempera-
tures. For the comparison between the models it is im-
portant to regard the details in the full range of the corre-
lation function. Therefore, at lower temperatures (i.e.,
1.5 times the transition temperature or less), at which the
correlation length grows, we calculated the pair-
correlation function up to 80 neighboring shells for de-
tailed comparisons. Since the temperatures of the simu-
lations are not very close to the transition temperatures,
less than 100 Monte Carlo steps per site were needed to
equilibrate the system. Starting from random configu-
rations after 300 MCS’s per site for equilibration, the
averages were taken from' 50 configurations during the
following 1000 MCS’s per site. Because of the large size
of the system, 108000 atoms, accurate values for the
pair-correlation function were obtained, with an error of
roughly 0.001.

At lower temperatures the comparisons are also
affected more by the precise location of the ordering spi-
nodal (or the transition temperature for second-order
transitions). The transitions from the ordered L1, phase
of the A;B alloy to the disordered fcc phase are of first
order. Starting from initially ordered configurations, the
transition temperatures were determined from the discon-
tinuities in the internal energy and the order parameter.
However, this work is more focused on the configurations
in the disordered phase, because such configurations can
be measured very accurately by diffuse (neutron) scatter-
ing and effective pair interactions can be determined from
such experimental data using the inverse Monte Carlo
method.%’

IV. RESULTS

To assess the utility of the pair interactions described
above, for physically reasonable parameters, we have
used values of the cluster interactions which have previ-
ously been applied'! to the Cu-Au phase diagram: For
nearest-neighbor clusters, ¥¥=30 meV, V¥=—1.025
meV, and V*'=—1.575 meV. (In the notation of Ref.
11, these correspond to ¥V;=60 meV, a=—0.08, and
B=0.01.) All other interactions are neglected. The sign
of ¥ is such that an Au(Cu) site has o=-+1(—1).
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These parameters cannot quantitatively describe the ener-
getics of Cu-Au alloys, for several reasons, including the
presence of significant second-neighbor interactions.!’
However, they do reproduce the observed order-disorder
temperatures, and correspond to physically reasonable
higher-order interactions. The cluster interactions are
quite weak compared to typical Al-transition metal sys-
tems, for which!? (as mentioned previously)

[v®,/p2)~0.1-0.2 .

For our systematic analysis, we focus on the Cu ,5Aug 75
stoichiometry. A smaller set of calculations at other
stoichiometries has resulted in similar conclusions.

The first approximation to the cluster interaction mod-
el, going beyond the bare pair interaction V%, is given by
the concentration dependent effective pair interaction
y2sef which is shown in Fig. 1(a). The drop in V2»f
with increasing (o ) is readily understood via Eq. (3) and
the negative sign of V>, Figure 1(b) displays the calcu-
lated temperature-dependent interactions U,sz”e‘f for a

(a)
1.0 ——_\
V(Z)‘eff
v®
0 1 1 1
-1 0 1
<o>

| T T
o V@ (b)

25‘W

U(2),eff (meV)

‘THIRD NEIGHBOR (x10)

O e T T ]
SECOND NEIGHBOR (x10)
| 1 | | n
0 0.2 0.4 06 | 0.8
VT VT,

FIG. 1. (a) Concentration-dependent pair interaction, nor-
malized to ¥?=30 meV. (b) Concentration- and temperature-
independent interaction vs inverse temperature. 7, denotes
transition temperature.
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Cug ,5Aug 75 ({0 )=0.5) alloy, down to temperatures
slightly below the order-disorder transition temperature
T, obtained by the full cluster Hamiltonian. At 7 = oo,
U»eff=p2)heff and the corrections to V% resulting from
¥ and V¥ amount to a 10% reduction in magnitude at
the nearest-neighbor distance. The second- and third-
neighbor corrections vanish at 7= «, since, as discussed
above, V'2>¢f contains only nearest-neighbor couplings.
With dropping temperature the nearest-neighbor cou-
pling receives a significant ferromagnetic contribution
which reduces its magnitude by an additional 20% at T,.
This contribution is dominated by the V2»efp3heff 554
y@heffy el torms [cf. Eq. (12)], as expected from the
small values of the cluster interactions relative to the pair
terms (V2'f=27.2 meV, V3 f=—1.8 mev, p“-f
= —1.6 meV). The second- and third-neighbor terms are
entirely due to the (V3>¢)2 contributions and are smaller
than the nearest-neighbor corrections, by more than a
factor of 50.

In Fig. 2 we display the temperature dependence of the
first- and second-neighbor short-range order parameters
a; and a,. These parameters are defined by

a,={(8a,d0,;)/(1—(0)?),

0.3
A& - ]
m O
< o
A
A°° 8
s
»
g
L8 @
<
. AAQ) . 2 o
a0 W©°
-0.3 1 1 L L 1 1 ) L 1
0 0.5 1.0
(2)
A\'% /kBT

FIG. 2. Short-range order parameters, at first (o;) and second
(ar,) neighbor distances: V=30 meV. Solid squares: full clus-
ter Hamiltonian [Eq. (1)]. Triangles: bare pair interaction only.
Diamonds: concentration-dependent interaction V' [Eq.
(3)]. Circles: concentration- and temperature-dependent in-
teraction U?* [Eq. (12)]. Dashed and solid lines denote first-
and second-order expansions in inverse temperature, respective-
ly. Transition temperatures for the various models indicated by
marks on the horizontal axis.
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where i is any site in the nth neighbor shell of site 0. We
show results for four different models: (1) the full cluster
Hamiltonian [Eq. (1)], (2) only the pair terms ¥'? in this
Hamiltonian, (3) the temperature-independent effective
pair interaction V?>f [Eq. (3)], and (4) the temperature-
dependent effective pair interactions U?"°f [Eq. (12)]. In
addition, high-temperature expansions to first and second
order in (1/kgT) [cf. Egs. (6)—(8)] are shown. [For a, the
(1/kyT) contribution vanishes and is not shown.] We see
that the first-order high-temperature expansion for «, re-
sults in errors of 10% already at T = IOV(Z)/kB (=10T,);
the second-order expansion improves on this result some-
what but causes gross discrepancies at T~5V? /k, and
below. On the other. hand, the temperature-dependent
potential U?"f produces excellent results even quite
close to T,. The results for a, are roughly similar, with
the second-order expansion producing errors of roughly
30% at T =5V'?/k, and much larger errors at lower
J
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temperatures. The U‘®"°F results are very close to the
Monte Carlo results and improve considerably on both
the ¥® and V®>°f results. The error of the latter is
roughly half of that for ¥?, but is still an order of mag-
nitude greater than that for U?"*f at temperatures com-
parable to T,.

Thus the linear (1/kp T) dependence of U appears
to account for the short-range order much better than the
second-order expansion of a; and a,, which was original-
ly used to generate U'®>T, This cannot be explained by
the smallness of the temperature-dependent corrections
to the pair interactions or the higher-order interactions,
since these effects are indicated by the differences be-
tween the exact results in Fig. 2 and the V2> and y»
curves, respectively. In fact, the exact temperature-
dependent pair interaction U‘?"**, which is defined as the
interaction which rigorously reproduces the exact short-
range order, can be written as ‘

(2)ex — 1(2),eff V(3),eﬂ"V(2),eﬂ" (2), off
[SAR _V ’ +a:; k T {1+b1(V ’ /kBT)+"']
B
a4V(4),eﬂ'V(2),eﬂ'
[1+c1(V(2),eﬁ/kBT)+ . ]+0((V(3),eﬂ“)2’(V(4),elf)2,(V(3),eﬂ‘V(4),eﬂ")) . (13)

kT

Thus the terms in U®>°f that are linear in V3> and
y el correspond to expansions in V2T /k, T, which
are not a priori éxpected to be rapidly convergent near
T,. The reason for the rapid convergence that we have
observed may be analogous to the improved convergence
obtained by the use of self-energies in perturbative treat-
ments of interacting quantum many-particle systems.
The self-energy converges more rapidly in series expan-
sions because the combinatoric factors associated with
various orders in perturbation theory are better behaved
for the self-energy than they are for direct expansions of
the physically observable correlation functions. Roughly
speaking, since the self-energy is less singular than the
correlation functions, when viewed as a function of the
interaction strength, it seems to be a more natural target
for a series expansion. The effective potential U?"°f here
is closely analogous to the self-energy: instead of includ-
ing two-body interactions in an effective single-particle
potential, as in the case of the self-energy, one includes
three- and four-body interactions in an effective two-body
potential. Thus a possible reason for the accuracy of the
results obtained by U?"*f may be that U'®»** behaves
more smoothly as a function of temperature than do the
various correlation functions of interest.

A more detailed picture of the short-range order is
given in Fig. 3, which compares the calculated distance-
dependent short-range order parameters «, for the four
different models treated in Fig. 2. At T=5.75V? /ky
(=~4T,) both V2 and U describe the short-range
order very well, but the bare pair interaction ¥? results
in errors of 10-20 %. This is as expected from Eq. (5),
which shows that V2" must obtain the correct short-
range order in the high-temperature limit. The situation

f

at T=2.16V? (=1.5T,) is considerably different. At
the second-neighbor distance, use of V' results in an es-
timate of a, which is high by nearly 50%. The inclusion
of the higher-order terms in ¥?"f improves the situation
somewhat, but the error is still over 20%. However, the
additional temperature-dependent terms contained in
U@ eff result in a dramatic improvement, the 5% remain-
ing error being comparable to the numerical error in the
Monte Carlo calculations. Similar improvements are
seen at the further neighbor separations as well. The
close agreement between the U?"*% results and the exact
cluster results implies that it is impossible, on the basis of
measured short-range order data at a single temperature
and composition, to distinguish between pair and cluster
models for the interaction Hamiltonian. However, as will
be discussed in Sec. V, measurements of short-range or-
der at several different concentrations and temperatures,
and comparison with other properties such as the heat of
formation, can supply information about the relative im-
portance of the cluster terms.

In order to assess the utility of the various pair interac-
tions in treating the long-ranged part of the correlations,
we have evaluated (cf. Fig. 4) the static structure factor at
an ordering wave vector q, for the CuAuj; structure:

S(q)=3 (80480, )e' N /(1—(a)?) , (14)

where

q.=(27/a)(1,0,0) ,

and a is the lattice constant. The results follow the pat-
tern set by the preceding ones. At high temperatures all
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of the pair interactions provide a reasonably good
description of S(q.). At lower temperatures, large
discrepancies begin to appear for the ¥? and V?"f re-
sults, with the latter being more accurate. For all the
temperatures considered, the U'2>*f results are within the
Monte Carlo error bars of the exact results. Thus even
for the long-ranged part of the correlations, a good
description can be obtained by an effective pair interac-
tion.

A more stringent test of the utility of the pair interac-
tions is the calculation of the order-disorder transition
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FIG. 3. Short-range order parameters vs interatomic separa-
tion R,; lattice constant for fcc lattice is a. (a) T =2000
K=5.75V®/kg. (b) T=750 K=2.16V? /ky. Solid squares:
full cluster Hamiltonian [Eq. (1)]. Triangles: bare pair interac-
tion only. Diamonds: concentration-dependent interaction
y2hef [Eq. (3)]. Circles: concentration- and temperature-
dependent interaction U*"*f [Eq. (12)].
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FIG. 4. Structure factor at ordering wave vector for L1,
structure vs inverse temperature: ¥?’=30 meV. Solid squares:
full cluster Hamiltonian [Eq. (1)]. Triangles: bare pair interac-
tion only. Diamonds: concentration-dependent interaction
Vel [Eq. (3)]. Circles: concentration- and temperature-
dependent interaction U'? T [Eq. (12)].

temperature, since this involves the free energy of a
long-range-ordered state, as well as the short-range-
ordered states considered up to now. We have approxi-
mately evaluated the transition temperatures 7, for the
various models by calculating the temperature depen-
dence of the long-range order parameter. This, in turn,
was obtained by starting the system in an artificially or-
dered state and allowing it to evolve over Monte Carlo
steps. A priori, we do not expect U‘?>°T to describe the
ordered state well, since it is derived from properties of
the high-temperature disordered state. However, our re-
sults again reveal U® T to be considerably more accu-
rate than V2> or V2. The value of T, obtained by the
full cluster Hamiltonian is roughly

490+4 K =1.41V? /ky

(versus 493+2 K from Styer et al.'). The bare pair in-
teraction yields T,~1.85V® /ky, more than 30% too
high. The temperature-independent effective pair in-
teraction V2% eliminates less than half of the discrepan-
cy, giving T,~1.68V'?/ky. Finally the value of
1.31V? /ky obtained by U'®»°F is within 7% of the
correct value.

At temperatures significantly below T,, however,
U does not produce useful resuits. The calculated
long-range order parameter displays a very unphysical
behavior at lower temperatures, dropping with decreas-
ing temperature below 7 =0.9V?/k,. In fact, for
sufficiently low temperatures, it is clear from Eq. (12) that
US" must change sign and become ferromagnetic. Thus
in the low-temperature limit, either V? or V> will
provide a more accurate description than U®"*f, How-
ever, it may be possible to improve the temperature
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dependence of U'®>*T by going to higher order in
(1/kgT) or by starting with a low-temperature approxi-
mation. For example, at very low temperatures, we ex-
pect nearest-neighbor Cu triplets or quadruplets to be
rare. If one assumes that they are absent, one can obtain
the pair and triplet correlation functions entirely in terms
of the pair correlation function. One then obtains a
nearest-neighbor effective pair interaction equal to

VO 44y 42y W=y 2ef((g)=1)
=22.8 meV ,

which yields the accurate estimate T,=1.42V'? /ky for
the transition temperature. We do not at present have a
well-justified prescription for interpolating between this
low-temperature result and the high-temperature interac-
tion U @»ef,

Up to this point we have considered only pair correla-
tions, which were also used as inputs for the interaction
U< (although only at high temperatures). A more
complete picture of the structure of the alloy is given by
the actual fractional numbers of tetrahedra of various
types, which reflect the triplet and quadruplet correla-
tions obtained in the Monte Carlo simulations. The
values of the fraction of CuAu; tetrahedra are displayed
in Fig. 5. At infinite temperature all the approximations
must give the completely random value (0.75)3(0.25)(4)
=0.422; at zero temperature, all tetrahedra are CuAu,
and the fraction is unity. Because V% is the strongest of
the three pair interactions that were used, the V2 curve
climbs more rapidly than those for V2> and U?<f,
Replacement of ¥ by V?»°F reduces the discrepancy
with the full cluster results by nearly 50%; the inclusion
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FIG. 5. Fraction of four-atom tetrahedral clusters having
CuAu; stoichiometry, vs inverse temperature: V?'=30 meV.
Solid squares: full cluster Hamiltonian [Eq. (1)]. Triangles:
bare pair interaction only. Diamonds: concentration-
dependent interaction VT [Eq. (3)]. Circles: concentration-
and temperature-dependent interaction U?"*f [Eq. (12)].
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of the temperature dependence in U'?»*f places the pair
interaction results within the error bars of the Monte
Carlo results.

The last alloy property which we treat is the heat of
formation. Let us assume that we have determined
effective pair interactions by the inverse Monte Carlo
method. Since we do not a priori know the magnitude of
the possible contributions from the many-body terms, we
would calculate the heats of mixing just from the pair
terms in Egs. (2) and (10). However, this means that pos-
sible cluster contributions to the single-site terms in these
expressions are neglected. Therefore, heats of formation
calculated in this fashion should be different from the
measured data if many-body interactions are present in
the alloy. This point is illustrated in Fig. 6. We see that
U< describes the heat of formation poorly. In fact,
for the completely random solid solution (7T"= o), the
bare pair interaction V%' gives a more accurate heat of
formation than either V®¢f or U For more or-
dered solutions, corresponding to lower temperatures, the
Y2l results improve somewhat on those obtained by
V), but the U results became significantly worse.
Discrepancies of this type have already been pointed out
in Ref. 8, although the authors of that work suspected
that the quality of the experimental short-range order
data might be poor; as discussed above, the discrepancies
may be due to many-body interactions instead. In fact, if
the effective pair interactions are strongly concentration-
dependent, the heats of formation based only on these in-
teractions are expected to be inaccurate. One can imag-
ine the formation of a solid solution from blocks of 4 and
B elemental metals as a continuous process involving the
transfer of B atoms to the 4 block and 4 atoms to the B
block, until both blocks have the same composition. In
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FIG. 6. Heat of formation vs inverse temperature: V»=30
meV. Solid squares: full cluster Hamiltonian [Eq. (1)]. Trian-
gles: bare pair interaction only. Diamonds: concentration-
dependent interaction V*»*f [Eq. (3)]. Circles: concentration-
and temperature-dependent interaction U [Eq. (12)].
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this process, a continuous range of compositions, ranging
from pure A to pure B, are sampled. Thus the values of
the effective pair interactions at a particular composition
are not necessarily relevant, and the pair interactions that
describe heats of formation should involve some form of
averaging over concentrations. Since the cluster interac-
tions are directly related to the concentration derivatives
of the pair interactions [as is seen immediately from Eq.
(3)], it may be that to obtain the correct heat of formation
one needs to know these derivatives as well as the pair in-
teraction values themselves.

V. CONCLUSIONS

The most surprising feature of the preceding results is
the accuracy with which the structure of our model clus-
ter interaction alloy, at temperatures above the transition
temperature, can be described by the effective pair in-
teractions. The results for the distribution of tetrahedron
types are particularly noteworthy, since this distribution
is directly influenced by the higher-order interactions,
which we average in an approximate fashion; in contrast,
the pair short-range order is only indirectly influenced by
these interactions. The key to obtaining an accurate,
flexible, effective pair interaction lies in including the
temperature dependence of the interaction. We have
seen that even an approximate treatment of this tempera-
ture dependence, including only terms of order 1/kgzT,
can reduce errors in several physical quantities by a fac-
tor of 5 or more. The temperature dependence of the
pair interaction is much less singular than that of several
observable properties of the alloy, which may explain the
success of the low-order expansion. However, the struc-
ture of the alloy below the transition temperature, and
the heat of formation, are described poorly by all of the
pair interaction models. For treating these properties,
one must either use the complete cluster Hamiltonian, or
take into account all of the contributions to the one-body
terms.

The preceding results should be of considerable utility
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in extracting information about higher-order interactions
from measured short-range order parameters. From
these parameters, one can extract the effective pair in-
teraction U‘?"** that produces the correct short-range or-
der at a particular temperature. If this interaction pro-
duces a poor heat of formation, then one expects that
many-body interactions are important. In addition, if
one can obtain data at sufficiently high temperatures, the
high-temperature approximation U?*f to U?»** will be
accurate. Since the temperature dependence of U?"°f is
explicitly given in terms of the cluster interactions [cf.
Eq. (12)], the temperature dependence of the measured
interaction can be used to provide direct measurements
of certain combinations of the interactions. On the other
hand, the concentration dependence of the pair interac-
tions can be related to different combinations of the
higher-order terms. Hence, the use of both types of in-
formation should allow the determination of the impor-
tance, and perhaps the form, of many-body interactions
in alloys.

Future work should explore the limits of validity of
this technique. We have obtained excellent results for al-
loy structure using physically reasonable values of the
cluster interactions. However, our expansion contains
only low-order terms in V" /ky T, where n >2. Thus we
expect the method to break down for sufficiently large
cluster interaction values and at low temperatures. In ad-
dition it should be established whether or not our ap-
proach is accurate for systems with longer-ranged in-
teractions; we have no reason to doubt this, but it needs
to be established definitively.
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