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Surface-enhanced magnetization for uniaxial ferromagnets
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We study the surface magnetic excitations for a semi-infinite anisotropic Heisenberg ferromagnet.
We take a single-ion uniaxial anisotropy at the surface, which is different from that of the bulk. We
determine the layer magnetization and the surface magnon modes in the region of temperatures
above the bulk critical temperature. Our phase diagram presents the paramagnetic, the bulk-
ferromagnetic, and the surface-ferromagnetic phases that join on a multicritical point. This point is
determined as a function of the single-ion surface anisotropy parameter.

I. INTRODUCTION

In a recent paper' we have determined the layer mag-
netization and the surface magnons of a ferromagnet with
single-ion uniaxial anisotropy in a semi-infinite cubic lat-
tice. We have showed that the onset of the surface order-
ing occurs when the surface magnon modes start to be-
come more energetic than any bulk mode.

In this paper we give a detailed analysis of the layer
magnetization and the surface magnon modes in the re-
gion of temperatures above the bulk critical temperature.
We determine the phase diagram that presents the
paramagnetic (PM), the bulk-ferromagnetic (BFM), and
the surface-ferromagnetic (SFM) phases. These three
phases join on a multicritical point which is determined
as a function of the single-ion surface anisotropy parame-
ter. We also exhibit a diagram showing the behavior of
the critical surface anisotropy parameter as a function of
the corresponding bulk parameter. In Sec. II we present
the model Hamiltonian and the calculations performed
within the Green's-function formalism. In Sec. III the re-
sults obtained for the layer magnetization and for the
phase diagram are discussed.

II. HAMILTONIAN MODEL AND CALCULATIONS

We consider, in what follows, the same model Hamil-
tonian on a semi-infinite simple-cubic lattice as in Ref. 1,
i.e.,

the mean value (Sf & is the same for all ions in the plane
I, that is,

Too 0 0 0 0 0 0

~1 T11 1
0 0 T22 0 0

0 0 v 0 (4)

0 0 0 0 v 0. . .

and we have the following diagonal elements:

Too=v oo[d +z(1 l k )] cri

T„=v—oo—o,[d+z(1 —
yq )],

Tp2 —V 0 )

where l =0 stands for the surface plane, l =1, for the
next inner plane, and so on. By considering that just
after the second plane we reach the bulk (l ~ 2) it is easy
to obtain the following expression for the Green's func-
tions:

1g= T CT

277

where

H= —g J;;S"S;—D g(S;. )
(i j) i

(1) We have also defined that

where J represents the exchange interactions between
spins which are nearest neighbors and D is the single-ion
uniaxial anisotropy due to the crystalline field. For the
ions on the surface plane (l =0) we take D =D~ and for
the other ions, D =D. We choose the surface parallel to
the (010) plane and we assume that the spins will be
oriented preferentially parallel to the surface so that
demagnetizing fields can be neglected. First we write the
equations of motion for the Fourier transform over time
of the Green's function ( (Si+ (t); S (t') » . Then, after
employing the random-phase approximation, the system
of equations can be solved. We have also assumed that

= (Sf &, g(kii, v) =JG(kii, E),

E D Ds
v d ds 72J' J' ' J '

k, T
zSJ

and yk =
—,
' [cos(ak„)+cos(ak, )] is the structure factor for

II

a square lattice (z =4) of spacing a. In the preceding
equations, the matrix G(k ~, E) is the Fourier transform of
the Green's functions, and the wave vectors k~~ belong to
the two-dimensional Brillouin zone of a square lattice.
The simplicity of the matrix T is due to the fact that we
have put (Sf & =0 for I ~ 2, because we are interested in
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magnetic surface excitations for temperatures greater
than bulk critical temperature ~, . We are interested in
the values of the anisotropy parameter for which we
could have o.

o and 0.
&, the magnetization of the erst and

second layers, respectively, di6'erent from zero for ~) z, .
In order to determine the layer magnetizations o.

o and
o.

&
for ~) ~, we need to calculate the matrix elements of

T '. lt is easy to show that

where

&o(kii~ v) T&i', Ni (kii, v) = Too

and

D(kii, v) = T„Too o'o (12)

Finally, the expressions for the layer magnetizations
can be calculated through the use of the Green's func-
tions. ' We obtain that

[S—P, (S)][1+/,(S)] +'+ [1+S+P,(S)][/,(S)]
[1+y (S)]2s+1 [y (S)]2s+1 (13)

where
2

a Xi(kii, v, )

2m
dk

II (v v ) 2vJ)/k~ T
X((kii, v2)
2Jv2/k& T

e
(14)

In Eq. (14), v& and vz are the roots of D (kii, v), that is,
the spectrum of the surface magnons for temperatures
greater than the bulk critical temperature. The two self-
consistent equations (13) and (14) can now be solved for
the two unknowns o.

o and o. , We evaluated the two-
dimensional integrals over the Brillouin zone through the
special points of Cunningham.

In this paper we have used the random-phase approxi-
mation in order to decouple our chain of equations for
the Green s function. This approximation is widely em-
ployed in the study of the magnetic surface excitations
(see Seizer and Majlis and the references therein). Other
approximations could be used to break the chain of the
Green's function, like the "Callen decoupling, " but the
problem would become very dificult to handle, and the
results are essentially the same as in the RPA case, except
at very low temperatures.

We would like to stress that we can get much informa-
tion about the critical behavior of systems with free sur-

C

l

faces through the real-space renormalization-group
method. As we will show in the next section, our results
obtained through the Green's-function formalism and the
RPA are very similar to the ones obtained by Mariz
et aI. in the study of the critical properties of a Heisen-
berg model with anisotropic exchange interaction on a
semi-infinite lattice. For a detailed discussion of the criti-
cal behavior of systems with free surfaces, we refer the
formidable revision work by Binder. In the next section
we present the main results obtained for the surface mag-
netization and for the dispersion relations as a function of
the temperature and of the single-ion surface anisotropy.

III. RESULTS AND CONCLUSIONS

We have plotted in Fig. 1 the surface critical tempera-
ture (r=k~ T/zSJ) as a function of the single-ion surface
anisotropy parameter (d, =DS/J). We have chosen
S = 1 and d =0.2 in our calculations. The phase diagram
obtained exhibits three distinct phases, namely: the
paramagnetic, the surface ferromagnetic, and the bulk
ferromagnetic. They meet at the multicritical point
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FIG. 1. Surface critical temperature (Y j as a function of the
single-ion surface anisotropy parameter d, . BFM, SFM, and
PM, respectively, represent the bulk-ferromagnetic, surface-
ferromagnetic, and paramagnetic phases. We have S = 1,
d =0.2, and ~," is the bulk critical temperature.
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FIG. 2. Critical surface parameter d, as a function of the
bulk anisotropy parameter d for 5 = 1.
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