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The dynamic critical behavior of one-dimensional random spin systems in a field at zero tempera-
ture is investigated by a generalized transfer-matrix scaling technique. Three spin models are con-
sidered: Heisenberg in a longitudinal field, XY in a transverse field, and Ising in a transverse field,
with either spin-glass or random-field disorder. Near the transition, i.e., for small values of the re-
duced field A=(H —H,), where H, is the critical field, one finds that the dispersion relation for the
low-frequency w, small-wave-vector k spin-wave excitations takes the scaling form o=k*f(A/k?),
and exact results are given for the dynamic exponent z and crossover exponent ¢. This form con-
tains a crossover of the frequency w between two different asymptotic behaviors: k*for A <<k ¥ and
h® for A>>k®, where the field exponent is =z /. In the case of the Heisenberg systems the spin-
glass disorder gives rise to the nontrivial dynamic exponent z = 3, whereas in the random-field case
it is the exponent associated to the field that becomes nontrivial, taking the value %. For the trans-
verse XY systems the random-field disorder implies nontrivial values for both the dynamic and field
exponents, % and %, respectively, whereas the spin-glass disorder does not affect the dynamics of the
system, which behaves like a pure transverse XY ferromagnet. Finally, for the transverse Ising sys-
tems neither the random field nor the spin-glass disorder affects the dynamics, which is the same as
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for a pure transverse Ising ferromagnet.

I. INTRODUCTION

In this paper we study the dynamic critical behavior of
various random spin chains in a magnetic field at zero
temperature, by a real-space renormalization-group tech-
nique. Near a critical point the long-wavelength dynam-
ics of the spin-fluctuation modes becomes anomalous due
to the divergence of a characteristic length, which for the
cases considered here is associated with the field inducing
the transition. Length-scaling methods are then required
to handle the critical effects on the dynamics. Real-space
methods are, in particular, well suited to treat strong lo-
cal disorder, and standard techniques have been applied
to the dynamics of random media (for a review see
Stinchcombe!). The application of such techniques, how-
ever, typically involves approximations because of
simplifications that are necessary to deal with the ran-
domness, even in one dimension. Recently, a new, exact,
transfer-matrix scaling technique was introduced by the
authors in the study of the spin-wave dynamics of a one-
dimensional spin glass.? This technique is here general-
ized to treat spin dynamics in a field, providing an exact
investigation of a class of random systems exhibiting rich
critical phenomena.

In particular, we shall consider the following systems
in one dimension: (i) Heisenberg ferromagnet in a ran-
dom field, (ii) Heisenberg spin glass in a uniform field, (iii)
XY and (iv) Ising ferromagnets in transverse random
fields, and (v) transverse XY and (vi) transverse Ising spin
glasses. Random fields are most commonly generated by
impurities in the materials.>* Another realization of ran-
dom fields occurs in randomly diluted uniaxial antifer-
romagnets in an external uniform field.> Spin glasses are
traditionally magnetic systems involving competing
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ferro-antiferromagnetic exchange couplings, arising from
spatial or substitutional disorder.®’ Spin-glass-like be-
havior is, however, also observed in nonmagnetic systems
such as mixed ferro-antiferroelectrics which are described
as a spin glass in a transverse field.®

For the systems (i) and (ii), which both involve Heisen-
berg spins in a magnetic field 4, the Hamiltonian is

N N—1
H=— 3 h;:8;— 3 Ji+:8S; 41, (1)

i=1 i=1

where in the case of (i) the field is a random variable with
a “plus-minus” distribution, h; ==h, whereas in the case
of (ii) the randomness is in the exchange couplings, which
are random variables with a “plus-minus” distribution,
Jij==J. It should be noted that since (ii) is a one-
dimensional spin glass with nearest-neighbor interactions
only it has no frustration.’

Considerable attention has been given to the study of
the effects of quenched random fields, which couple
linearly to the order parameter, on static critical phenom-
ena.> 19713 It is clear that if the field is strong enough the
spins will align along the direction of the field, destroying
the order. However, the order is also destroyed for
infinitesimal fields if the system reaches a lower free ener-
gy by breaking up into domains. It has been shown that
random-field fluctuations imply an effective reduction of
the dimensionality of the pure system, so that long-range
order is lost for (integer) dimensionalities d <4 (instead of
d =2) for systems with continuous symmetry (Heisenberg
or XY),? and for d <2 (instead of d <1) for Ising-like sys-
tems. '* As noted by Mattis,'* for nonfrustrated spin-
glass models one can define a transformation of spins, by
which a spin glass with random coupling *J in a uniform
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field, as in (ii), is mapped onto a uniform ferromagnet in a
random field +4, as in (i). This implies that the statics of
the two models are equivalent, and on this basis Aharony
and Imry'® studied the static critical properties of (non-
frustrated) spin glasses in a uniform field. The Mattis
transformation does not, however, imply the equivalence
of the dynamics of the two models. It will be shown that
(i) and (ii) have distinct nontrivial dynamic critical behav-
ior.

The Hamiltonian for the systems (iii)—(vi), describing
spins in a transverse field I', can be written in the general
form

N
H=— 3 IiS;

i=1

- 2 Jii w1 [(1+7)S7S7

i=1

+(1—1)SS74+ 11 (2)

with 7=1,0 corresponding to the transverse Ising and
isotropic transverse XY models, respectively. The
different random systems are characterized as follows: in
(iii) and (iv), the transverse field is a random variable with
a “plus-minus” distribution, I'; ==TI", whereas in (v) and
(vi), the exchange couplings are random variables which
have a ‘“plus-minus” distribution, J;;==*J. Again, for
the same reason as for the spin-glass chain (ii), the trans-
verse spin-glass chains (v) and (vi) have no frustration.

The one-dimensional pure transverse Ising and isotro-
pic transverse XY models have been exactly solved,!” '
with the result that they exhibit a “‘quantum” phase tran-
sition at zero temperature, in which long-range order is
lost for transverse fields above a critical value, for which
I'./72J =1 (for spins normalized to unity). The trans-
verse Ising model, which is the simplest, has been exten-
sively used as a basis for the study of quantum critical
phenomena, in particular the static critical behavior of
quantum systems with random fields (which couple to the
order parameter),” and of quantum spin glasses.?! The
static critical behavior of classical transverse Ising spin
glasses has been investigated by Piré et al.® Also, in the
presence of a transverse field, the Mattis transformation
implies the equivalence between the statics of a nonfrus-
trated spin glass with random couplings *J in a trans-
verse uniform field, as in (v) and (vi), and the statics of a
uniform ferromagnet in a transverse random field £T", as
in (iii) and (iv). Again, however, the Mattis transforma-
tion does not imply the equivalence of the dynamics of
those models. We will be particularly interested in the
dynamic behavior of the systems (iii)—(vi), close to the
transition induced by the transverse field.

In the dynamics of systems (i)—(vi), one observes a
crossover in the frequency o, of spin-wave excitations,
from one asymptotic regime to another, which results
from the competition between the characteristic length
k 7! of the spin excitations and the controlling length of
the behavior of the system which is measured by the in-
verse of the reduced field A=(H —H_), where H is h or
I" and H, is the critical field; the two asymptotic regimes
are determined by the dominance of either k or A. So,
for A, k, and w—0, the dispersion relation takes the scal-
ing form
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o=k*f(A/k?), (3)

where z is a dynamic exponent characterizing the spin-
wave dynamics near the transition, ¢ is a crossover ex-
ponent, and f is a scaling function governing the cross-
over which occurs at A~k¥?. For the systems (i)—(vi) we
will show that due to the randomness the exponents z
and @ can take nontrivial values. While randomness is
treated exactly, any quantum effects are ignored in this
work since in each section the starting point is the linear-
ized equation of motion provided by usual ‘“mean-field”
approximations.

This paper is organized as follows. In Sec. II we con-
sider the Heisenberg spin chains in a field, and in Secs.
ITA and IIB we study the critical spin-wave dynamics
for the cases of a ferromagnet in a random field and of a
spin glass in a uniform field, respectively. The transverse
XY and transverse Ising spin chains are considered in
Secs. III and IV, respectively; the critical spin-wave dy-
namics of these systems in the presence of a transverse
random field or with spin-glass disorder are treated in
Secs. IIT A, IIIB, IV A, and IV B, respectively. Finally,
in Sec. V, we summarize the conclusions of this work.

II. DYNAMICS OF HEISENBERG SPINS IN A FIELD

The linearized equations of motion governing the
transverse spin dynamics of a Heisenberg spin system in a
longitudinal field at zero temperature, are

oS =hS;"+ 3 J;(SF(SH)—(SH)S"), 4)
J

where S;" is the usual combination S;"=8*+iS? of
transverse spin components at site 7, { - -+ ) denotes the
expectation value taken in the ground state, and the sum-
mation is taken over the nearest neighbors of i. We shall
now discuss the dynamics for the cases where random-
field or spin-glass disorder occur, in the scaling regime
where A, k,—0.

A. Heisenberg ferromagnet in a random field

In this system the couplings J;; are uniform, J;;=J >0,
and the fields A; are random independent variables with a
“plus-minus” distribution, so that one can write h; =¢§;h,
where ;=21 with equal probability. It is easy to see
that the ferromagnetic ground state (all spins “up”) is
unstable with respect to the formation of “reversed”
domains of length (in number of spins ) / =2J /h induced
by the field. However, the formation of such “reversed”
domains only occurs for configurations of the random
fields with / neighboring sites with fields “opposite” to
the ferromagnetic order, and these occur with probability
p S(%)[. Thus in the limit A —O0 (for finite J), only very
large “reversed” domains can occur and with a very
small probability. In the following study of the dynamics
we will assume that the ground state has local ferromag-
netic order ((S?)=1, say) over lengths larger then the
characteristic lengths of the spin waves considered. This
implies, however, that our results are valid only for spin
waves with characteristic lengths k ! up to the size of
the smallest domain, i.e., for k ! <2J /h. Since J/h >>1,
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these still lie in the scaling region. In this situation, (4)
takes the form

(2+§,h —w)S[+:Sitl+Si_:"1 . (5)

Here o and h are frequency and field divided by exchange
constant J, respectively. Equation (5) can also be written
in the following form:

st 2+¢h—o0 —1| (87T
stoT 1 0 ]lst,
st
=T(w,h) st | (6)

which involves the transfer matrix 7;. We now proceed
to the application of the generalized transfer-matrix scal-
ing technique? which incorporates the additional depen-
dence on a field. For a chain of N +1 spins with periodic
boundary conditions S;* =S;"_, the allowed frequencies
are determined by det(Ay —1)=0, or equivalently (since

detAy=1) by TrAy =2, where

N
Ay(w,h)= [ Ti(w,h) : (7)

i=1

is the transfer matrix across the whole chain. Thus under
a lattice rescaling by a dilation factor b, the dynamics is
preserved if w and 4 are transformed to o' and h’, respec-
tively, so that

TrAy(@,h)=TrAy (o' h') . ®)

Expanding TrA y in powers of w and 4 leads to

N

TrAy(w,h)=2—N 3 (0—§;h)
i=1
N i—1
+ 2 2 [wz_wh(§i+§j)+h2§i§j]

i=1j=1

X[N(Gi—j)— =]+ - .
9)

Since (9) depends on the random variables §; the match-
ing (8) is in fact generating the scaling of their distribu-
tion. From (9) we find, for any odd moment of
TrAy(w,h), a form Fo(Nzco), and for any even moment a
form F,(N’w,N*?h), which by (8) leads to the scaling
transformations, o'=b%»w and h’=b3"2h. Such scaling
transformations together with the scaling of the inverse
characteristic length k’=bk (resulting directly from the
lattice dilation) imply a dispersion relation of the form

o=k*f(h/k3?), (10)

where the crossover exponent takes the nontrivial value
@=32 compared to ¢=2 for the case of a uniform field.
The form of the dispersion relation in the two asymptotic

regimes is given by

k? for (h/k3?)<<1,

O AR for (h/k3?)>>1 .

(11)

In (11) the usual (zero field) ferromagnetic dispersion is
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trivially recovered in the limit where A is negligible,
whereas in the other limit the dynamics is characterized
by a nontrivial exponent associated with the field. It is
important to note that the crossover in (10) occurs at a
characteristic length k ~!~#4 ~2/3, which lies in the range
of lengths for which our results apply (k! <h 1), and
hence it can in fact be observed.

B. Heisenberg spin glass in a uniform field

We consider a spin glass in which the couplings are
random independent variables with a “plus-minus” distri-
bution, i.e., J;;=+J with equal probability, in the pres-
ence of a uniform field 4, =h.

As noted before, if one performs a Mattis transforma-
tion of spins S;—pu;=¢;S;, where {;==*1 with equal
probability, the statics of this spin-glass system becomes
equivalent to the statics of the random-field system stud-
ied in the previous section, II A. Thus, all the considera-
tions that we made then regarding the stability of the fer-
romagnetic ground state apply now for the ground state
defined by (S?)=¢;, in which the spins are aligned paral-
lel or antiparallel according to the configuration of the
random couplings. We will consider such a ground state
in the following study of the dynamics, which, in a simi-
lar way to before, implies that our results are valid only
for spin waves with characteristic length k ~!<2J/h.
We note that we have ignored real quantum effects in
taking the classical ground state, which is appropriate for
sufficient large spin. Equation (4) can then be written as

2—lo—m I =u"+ui . (12)

Comparing this equation with (5) clearly shows that the
dynamics of the two systems are distinct. Equation (12)
has a similar form to the one found in our previous work?
for the spin-glass chain in zero field, but where » has
been replaced by (w—#). Written in a matrix form (12)
becomes

S 2—5ilo—h) —1 st
st T 1 0 J st
s+
=T,(co,h) Sitl

Then from the results obtained in our previous work it
follows that for the present problem the scaling transfor-
mation is (0’ —h')=b3*(w—h). This scaling transfor-
mation yields a dispersion relation of the form

o=k3¥2f(h/k3"?) , (13)

where the nontrivial spin-glass dynamic exponent z =2
occurs. In (13) the crossover variable k /k>/2, which is
the same as in (10), drives a crossover in w between the
two asymptotic forms

k3% for (h/k3/?)<<1 ,

7\ for (h/k¥)>>1.

Here the spin-glass dispersion is naturally found in the
limit of negligible field, and the other limit is trivial.
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III. DYNAMICS OF XY SPINS IN A TRANSVERSE FIELD

The linearized equations of motion for the transverse
spin dynamics of an isotropic XY spin system in a trans-
verse field at zero temperature (given that the average
spin component in the xy plane is along the x direction)
are

0Sy=T,;Sy— }‘,J (S7)SsY, (14)
where, as usual, ( -+ - ) denotes the expectation value
taken in the ground state and the summation is taken
over the nearest neighbors of i. We shall now study the
dynamics in the cases where the transverse field is ran-
dom or the exchange couplings have spin-glass disorder,
in the scaling regime, i.e., for (C—T,), k, ®—0.

A. XY ferromagnet in a transverse random field

This system is characterized by uniform couplings
J;;=J >0 and a transverse field which is a random in-
dependent variable with a “plus-minus” distribution, i.e.,
I;=¢, T, where §; ==*1 with equal probability.

In the ground state the spin components in the trans-
verse direction align parallel to the field and hence mani-
fest its randomness, i.e., (S?)=¢;{(S?). Thus, in this
case, and considering that near the transition (S?)=1,
(14) takes the form

(2+A—&w)SP=S?_, +S7,, , (15)

where A and o are, respectively, the reduced field
(C—T',) and frequency divided by exchange constant J.
Writing (15) in matrix form gives

St 2+A—§iwo —1 S?
sy ™ 1 o J|sr,
SY
=Ti(w,A) sr| (16)

We note that the transfer matrix T;(w,A) in (16) is for-
mally identical to the transfer matrix T;(w,h) in (6), with
the following change of parameters: —w—A and
—h—w. Thus, using the results of Sec. Il A, with the
proper replacement of parameters, we obtain for the
present system the scaling transformations, o'=53"w
and A’=b%A, which imply a dispersion relation of the
form

w=k3"?f(A/K?), (17)

where the dynamic exponent takes the nontrivial value
z=3. The frequency appearing in (17) crosses over be-

tween the two asymptotic forms

k37 for (A/k?)<<1,

AM* for (A/k?)>>1 . (18)

o~
It is interesting to note that in this system the random-
ness in the field implies nontrivial exponents for the dy-
namics in both regimes in (18), 2 and 2 compared to 2
and 1, respectively, in the case of a uniform field.
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B. XY spin glass in a transverse uniform field

We consider a spin glass where the couplings are ran-
dom independent variables with a “plus-minus” distribu-
tion, i.e., J;;==J with equal probability, and the trans-
verse field is uniform, I';=T". Since, in the ground state,
the transverse components of the spins are parallel to the
uniform field this implies that they are also uniform, and
hence {S7?)=(S?). Then, by a Mattis transformation of
spins (S; —pu; =¢;S;), (14) becomes

[T/D =l = (S (p}— +ul+y) (19)

where o is frequency divided by coupling constant J. It
turns out that (19) is precisely of the form of the equation
for an XY ferromagnet in a transverse uniform field. So
the spin-glass randomness does not affect the dynamics.
From the solution of (19) it follows that below the
transition (I'/2J <1) the dispersion relation is
o=(I"/J)(1— cosk), and above the transition (I" /2J > 1)
it is @=(I'/J)—2cosk. In the scaling regime these ex-
pressions yield the form

o=k*f(A/k?), (20)

where A is as defined before, yielding the dynamic critical
exponent z =2. In (20) a crossover occurs between the
two asymptotic forms

k? for (A/k?)<<1,

@7 1A for (A/K2)>>1,

where the trivial exponents of a pure transverse XY fer-
romagnet occur.

IV. DYNAMICS OF ISINGS SPINS
IN A TRANSVERSE FIELD

The linearized equations of motion for the transverse
spin dynamics of an Ising spin system in a transverse field
at zero temperature, are

[ [21 (S7) ] - ]S"—r (87 )zJ, SFST,

(21)

where, as usual, ( - - - ) denotes the expectation value in
the ground state and the summation is taken over the
nearest neighbors of i. We shall now discuss the dynam-
ics for the cases where random field or spin-glass disorder
occur, again in the scaling regime where ('—T,) k,
o—0.

A, Ising ferromagnet in a transverse random field

In this system the couplings are uniform J;;=J >0and
the transverse field is a random variable w1th a “plus-
minus” distribution, i.e., I';=¢ T where £;==+1 with
equal probability. In the ground state the components of
the spins in the transverse direction align parallel to the
field and hence exhibit its randomness, (S?)=¢;(S?).
In turn the ferromagnetic coupling determines that in the
x direction the spin components are uniform,
(S7)={(S*). So, for the present system (21) takes the
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form
(T /) +4(S*)2—?1S7=(T /IS NSF_; +S7 1),
(22)

where o is frequency divided by coupling constant J.
Equation (22) turns out to be identical to the one for an
Ising ferromagnet in a uniform transverse field, thus im-
plying that the randomness in the field does not affect the
dynamics. Hence it follows that below the transition
(' /2J < 1) the dispersion relation is w?>=4— (T /J)?cosk,
and above the transition ('/2J>1) it is w?=(T/J)?
—2(T'/J)cosk. In the scaling regime these expressions
lead to the scaling form

o=kf(A/k?), (23)

yielding the dynamic critical exponent z=1, and @
crosses over between the two asymptotic forms

k for (A/k?)<<1,

O IAV2 for (A/K2)>>1°

(24)

corresponding to the trivial behavior of a pure transverse
Ising ferromagnet.

B. Ising spin glass in a transverse uniform field

We consider a spin glass in which the couplings are
random independent variables with a “plus-minus” distri-
bution, i.e., J;;==%J with equal probability, in a trans-
verse uniform field I'; =T". Thus, in the ground state, the
spin components in the transverse direction are uniform
(S7?)=(S?), whereas in the x direction the spin-glass
coupling determines that the spin components have a
configuration such that {S7)=+(S*), according to the
distribution of the random couplings. Introducing these
conditions in (21) and performing a Mattis transforma-
tion of spins leads to an equation which is of the same
form as (22). We therefore conclude that the transverse
Ising spin glass has the same spin-wave dynamics as a
transverse Ising ferromagnet. Hence the spin-glass ran-
domness does not affect the dynamics which is then given
by the results (23) and (24).
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V. CONCLUSIONS

We have studied the dynamics of a number of one-
dimensional random spin systems, in which critical be-
havior is induced by an applied magnetic field. We con-
sidered three different spin models, in a field: Heisenberg
in a longitudinal field, XY in a transverse field, and Ising
in a transverse field, and in each considered spin-glass or
random-field disorder. The critical spin-wave dynamics
of these systems was calculated by a transfer-matrix scal-
ing technique which provides exact results for the dy-
namic critical exponents as well as the crossover ex-
ponents.

In the case of the Heisenberg systems one finds for
both the spin-glass and the random-field systems the
same nontrivial crossover exponent ¢ =3, but their dy-
namic exponents are different. So, for the spin glass in a
uniform field z takes the nontrivial value %, the same as
for the system in zero field, whereas for the ferromagnet
in the random field z takes the typical value for ferromag-
netic systems (z=2). This implies that because of the
randomness, in the spin-glass case the dynamic exponent
is modified whereas in the random-field case it is the ex-
ponent associated to the field that becomes nontrivial tak-
ing the value %.

For the transverse XY systems we find again that the
spin-glass and random-field systems have the same cross-
over exponent, which is also the same as for a pure fer-
romagnet in a transverse uniform field, but that their dy-
namic exponents are different. In the case of the random
field z takes the nontrivial value %, which has before been
associated to spin-glass disorder. It turns out that for
this system the randomness in the field implies nontrivial
values for both the dynamic and the field exponents, 3
and 2, respectively. On the other hand, the spin-glass
randomness does not affect the dynamics of the system,
for which one finds the trivial exponents of a pure trans-
verse XY ferromagnet. Finally, for the transverse Ising
systems we find that neither the random-field nor the
spin-glass randomness affects the dynamics which is then
the same as that of a pure transverse Ising ferromagnet.
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