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One-dimensional quantum transport in the presence of traps
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A study is made of the survival probability P(t) for a quantum particle moving coherently on an
ordered one-dimensional chain containing randomly placed irreversible traps in concentration q.
We consider two separate models of the trapping process, focusing on the long-time limit of each.
In the first model, intended to describe substitutional traps, the trapping impurities act as disruptive
absorbing barriers which prevent further motion along the chain. For this model it is shown that
—1n[P(t)]—t ~ . The second model is intended to describe interstitial trapping impurities which
do not disrupt the transport. It is argued for this case that Anderson localization of the quasiparti-
cle wave functions will occur in the otherwise ordered chain as a result of the disorder introduced

by the trapping impurities. In addition, it is suggested that the asymptotic decay of P(t) will be
dominated by slowly decaying long-wavelength modes associated with asymptotically large seg-
ments of the chain which are free of traps. Our analysis predicts that the asymptotic decay will be
of the same form as that which obtains in the substitutional model. Numerical results that we have

performed support this prediction.

I. INTRODUCTION

A great deal of recent theoretical work has focused on
understanding essential features of a basic trapping mod-
el, ' ' wherein a single particle moves in a d-dimensional
medium containing randomly placed irreversible traps in
fixed concentration. Of particular interest, due to its re-
lationship to experimental observables, has been the
asymptotic decay of the survival probability P(t), defined
as the configuration-averaged probability for a particle
placed in the medium at t =0 to survive until time t
without being trapped. Much is known regarding this
quantity in various classical limits. ' ' For example,
when transport is diffusive it has been rigorously shown
that at very long times

P(t) —exp( —At" ' +"'),

where 3 depends on the diffusion constant and the trap
concentration. This stretched exponential form has been
shown to arise from the anomalously slow decay associat-
ed with large rarely occurring regions of the medium
which are free of traps. ' Such regions lead to asymp-
totic tails (sometimes referred to as Lifshitz tails' ' ) in
the distribution of decay times for the eigenmodes of the
random system. However, numerical simulations' and
exact enumeration techniques" performed over many or-
ders of magnitude in P(t) have shown that this predicted
asymptotic behavior is achieved in experimentally acces-
sible times only in one dimension. Thus, while the one-
dimensional (1D) result

P(t) —exp( —At'~ )

has apparently been inferred from Auorescence' and con-
ductivity measurements, ' it remains generally true that
theoretical treatments which are valid over much shorter
times' ' —although unable to reproduce the exact

asymptotic behavior —are often more experimentally
useful. Indeed, the development of a unified theoretical
approach which correctly reproduces both limits and
which would allow a study of the crossover behavior
remains one of the central outstanding problems in this
area.

However, while a great deal is known about the decay
when particle motion is diffusive, there has been some
concern that at low temperatures quantum effects may
become important and that deviations from the diffusive
result may occur. ' ' Consider, for example, that at
very low temperatures the mean free path for phonon
scattering can exceed the average distance between trap-
ping impurities. In this limit the standard trapping mod-
el (which assumes the motion to be diffusive over length
scales much smaller than this) no longer applies. To un-
derstand trapping experiments at very low temperatures,
therefore, one is led to consider the more difficult prob-
lem of a particle undergoing a strictly quantum-
mechanical evolution in the presence of random impuri-
ties which can dephase, scatter, localize„as well as ir-
reversibly trap the wavelike motion. In one of the earli-
est analyses to consider this coherent limit in any analyti-
cal detail, Pearlstein and co-workers' obtained a number
of exact results for the trapping rate in one-dimensional
chains containing a small number of traps (typically one
or two). Subsequent work by Kenkre and by Huber '

considered the trapping of coherent Bloch-type excita-
tions in the presence of a finite concentration of traps. In
that work a variety of approaches (e.g. , the relaxation-
time approximation, Born approximation, average-(-
matrix approximation, coherent-potential approximation)
were investigated as a means of treating the difficulties as-
sociated with the multitrap problem. Later, the use of
generalized master equations by Kenkre and co-workers'
led to an approach to the coherent trapping problem
similar to those that had been used for the case of
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diffusive motion. Unfortunately, the nature of these ear-
lier approaches restricted their domain of utility to rela-
tively short times; rendering them insensitive to the
asymptotic behavior of the survival probability and, in
particular, to any Lifshitz-tail effects which might arise in
the coherent case.

Such effects were recently investigated by the present
author for a quantum particle moving at zero tempera-
ture on a one-dimensional chain containing a finite frac-
tion q = 1 —p of randomly placed substitutional traps. As
anticipated on the basis of the diffusion problem, the
asymptotic decay of P(t) in the coherent case is also
dominated by large, rarely occuring trap-free regions of
the solid. The purpose of the present paper is to provide
a more complete description of our earlier work and to
extend those results to more general (e.g. , interstitial)
trapping models. Specifically, for the substitutional mod-
el considered earlier we develop equations of motion for
the reduced single-particle density matrix and solve them
to recover our earlier exact result; namely, that at asymp-
totically long times the survival probability has a
stretched exponential decay of the form

P(t)- exp( —At'~ ) .

The decay is therefore asymptotically slower than that as-
sociated with diffusion, reinforcing the observation made
earlier by Pearlstein et al. ' that the trapping rate can
actually be smaller for coherent particles than for
diffusive ones. We also develop equations of motion to
describe interstitial traps which do not disrupt motion
along the chain, and give an approximate analysis which
suggests that due to Anderson localization by the trap-
ping impurities themselves the asymptotic decay should
be of the same form as in the substitutional model, al-
though with a different functional dependence of the con-
stant in the exponent on the parameters of the system.
We support this prediction by presenting the results of
numerical diagonalizations of large but finite one-
dimensional chains, focusing attention on the tails of the
distribution of decay times for the eigenstates of the
chain in the presence of random trapping impurities.

FIG. l. One-dimensional solid with nearest-neighbor transfer
matrix element J and randomly placed substitutional traps of
depth A. After elimination of bath variables at zero tempera-
ture, the chain is divided into isolated segments with a decay
amplitude y for each of the host sites neighboring a trap site.

(Fig. 1). Particles at sites next to a substitutional trap can
then "fall into" the trap by emitting a phonon of the ap-
propriate energy. For interstitial traps, on the other
hand, the trapped states do not replace specific sites in
the chain. Nonetheless, there will be host states along
the chain which are closest to a given trapping impurity
and we expect that trapping will occur by a similar pro-
cess primarily from these sites (Fig. 2). In either case,
once trapping has occurred we expect that at zero tem-
perature the reverse process (detrapping) will not occur
due to the lack of thermal phonons around to assist the
transition. Thus, coupling to the phonons is absolutely
essential to account for the irreversibility of the trapping
process. In this paper we will not go into detail regarding
the exact form of the coupling to the phonons responsible
for trapping. Rather, our aim is to present simplified
equations of motion which contain the essential features
of quantum transport in the presence of these kinds of ir-
reversible trapping processes. We do note, however, that
there are several well-established ways to model this cou-
pling, e.g. , by making the matrix elements connecting the
impurity and its neighboring host sites proportional to an
appropriate bath operator. ' '

Thus, in the interstitial model, if we denote by n; that
site along the chain which is closest to the ith interstitial
trap then we can add to the Hamiltonian a term of the
form —b, i & & i

l
to describe the trapped state itself, and a

term

II. BASIC MODELS

We begin with the basic models, which are intended to
be simple quantum-mechanical versions of those
developed to study diffusion-limited trapping. The Ham-
iltonian

to describe transitions between the trapped state and the
host site in the chain to which it is coupled. To provide

H= —J gin &&n l+l l+n+l&&nl

describes transport in a 1D tight-binding solid in the ab-
sence of trapping centers, with

l
n & representing a quasi-

particle state centered at the nth lattice site, and J
representing the transfer matrix element which connects
nearest-neighbor sites along the chain. When trap mole-
cules are introduced they bring with them associated
states which have energies that are lower than those in
the band by an amount 5 assumed to be much greater
than 2J. For substitutional trapping impurities these
states are associated with sites located in the chain itself

FICx. 2. One-dimensional solid with randomly placed intersti-
tial traps of depth A. After elimination of bath variables at zero
temperature, a decay amplitude y is associated with each host
site along the chain which is located next to a trap. Motion
along the chain is not disrupted as it is in the substitutional
model.
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for irreversibility of the transition we choose V to be a
bath operator, e.g. , of the form V=+&gq(bz+b z),
where b and b are destruction and creation operators
for the qth vibrational mode of the phonon bath and g is
the coupling constant of the quasiparticle system to that
mode. At zero temperature, coupling of this form will al-
low a particle to make transitions into the trap by emit-
ting a phonon of energy E=A. With no thermal pho-
nons around for the particle to absorb the required ener-

gy, however, it will be unable to move back onto the
chain. Nonetheless, because interstitial impurities do not
disrupt the chain (i.e., the bare matrix element J coupling
the host site n; to its neighbors is relatively unaffected by
the trap molecules in the interstice), it is possible for a
particle to pass through site n, without being trapped.
The probability of doing so will evidently depend upon
the relative strengths of J and V.

On the other hand, if n,. is a site in the chain occupied
by a substitutional trap, then we should modify the origi-
nal Hamiltonian by including a term of the form

b,
~ n, & &

—n, ~
to lower the energy at this site, and describe

transitions between site n; and its neighbors by a term of
a similar form, viz. ,

V(~n, &&n, +1~+~n, +1&&n, ~)

with V as before. Thus, a particle moving along some
segment of the chain located between two substitutional
trapping impurities can become trapped by emitting a
phonon while at one of the sites located next to the traps.
Once trapped it will, as in the interstitial model, be un-
able to make transitions out of the trapped site at zero
temperature. Since a particle cannot leave a given seg-
ment without passing through a trap site, and since it
cannot get out of the trap site once it has been trapped,
motion along the chain is disrupted. As in the classical
problem, ' therefore, substitutional traps effectively
divide the chain into isolated clusters of random length.

III. SUBSTITUTIONAL TRAPS

We now consider, in more detail, the dynamical behav-
ior of particles governed by the simpler substitutional
trapping model previously described. In as much as we
are only interested in the dynamics of the transport parti-
cle, and not that of the bath with which it is interacting,
we can describe the evolution of a single particle on the
chain by a reduced density matrix p, obtained by tracing
the full system density matrix over the phonon vari-
ables. ' For substitutional traps at zero temperature,
we can expect that the primary effect of such a reduction
is to give a lifetime r (or a decay amplitude y= —,'r ') to
the two end sites in each cluster that are coupled to a
trap. (There will also be energy shifts which develop, but
they do not substantially affect the asymptotic dynamics
and will therefore be ignored. ) Also, because a particle
will never visit any other cluster than the one in which it
was initially created, we can restrict our attention to a
single cluster, and then find the total density matrix by
statistically averaging over the different clusters in which
a particle can be created (see Fig. 1). Thus, our first task
is to describe the dynamical behavior of a particle created

in a given cluster. As in the earlier work of Pearlstein
et al. ' we argue that the following Liouville —von Neu-
mann equation of motion for the reduced density matrix
provides a reasonable description of the zero-temperature
dynamics of a particle initially located in a segment of N
host sites (which we label by m = 1,2, . . . , N) bounded at
m =0 and m =N + 1 by substitutional traps

dpldt= i[H—tv&p] Ap—& (2)

where the Hamiltonian HN describes transport within the
cluster, i.e.,

H = —Jg ~m&&m+1~+~m+1&&m~,
m=1

(3)

while the relaxation operator, defined through its action
onp

N'p], .= —Xp,.(~, i+&., i+& „v+&.,x) (4)

describes the decay of amplitude from sites m =1 and
m =N due to the traps at m =0 and m =N + 1. These
equations describe a particle which moves coherently in
the region between the two traps, while undergoing
scattering, dephasing, and absorption at the end sites of
the cluster due to the traps to which they are coupled.
To proceed, we observe that Eq. (2) can be formally writ-
ten

The capture strength y determines the rate of decay for
particles located at the end sites. In the simple model of
phonon coupling discussed earlier, y will depend on the
square of the coupling constant and the density of pho-
non states at frequency A.

We are interested in obtaining the probability for a
particle to remain in the cluster in which it was initially
created. From Eq. (2) it is a straightforward exercise to
derive the forrnal relation' '

N

dP~( t) /dt—:g dp~~ Idt = —2y(p»+ p» )

for the decay in a segment of length N. Equation (7)
shows that the decay rate is simply related to the proba-
bility that the particle is actually located in one of the
states from which it can decay to the trap. In addition,
we note that because of the form of Eq. (5) it is possible to
determine the complete dynamical behavior of a particle
in the cluster by finding the eigenvectors and complex ei-
genvalues of the effective Hamiltonian &~. For example,
if we let ~k & represent the kth eigenvector of &~ (corre-

dp/dt = iX~p=—i [&~—&p],

where for mathematical convenience we have introduced
an effective (but non-Hermitian) "Hamiltonian"
which is identical to (3) except that it includes an "imagi-
nary site energy" of magnitude y at each end of the seg-
ment, i.e.,

~„=—i) (~1&&1~+~N&&N~)

N —1—I g In &&n+11+In+1&&nI .
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sponding to eigenvalue E„=e„—i 1"k ) then the survival
probability can be written in terms of the matrix elements
of p in this basis as

P~(t)=gpkk(0) exp( —2Pl, t) .
k

(8)

for appropriate constants Ak, Bk, and complex wave vec-
tor k. By applying &z to the eigenstate ~k) and then
multiplying on the left by a state (n

~
corresponding to

one of the interior sites we find that

(n ~&~~k ) = —2J(n ~k )cos(k), N )n ) 1, (10)

which allows us to identify the eigenvalue associated with
eigenvector ~k ) as Ek = —2J cos(k). We now enforce
this same eigenvalue condition on the end sites. Intro-
ducing the dimensionless trapping strength g=y/J, we
obtain, after some manipulation, two equations: from
site

~

1 }we obtain one which fixes the coefficients

Ak /B„=i g sin(k) l[1—i g cos(k)],

while from site ~N ) we obtain an equation which reduces
under (11) to

tan(kN)=(1+( )sin(k)/[2ig —(1 —
g )cos(k)] . (12)

Equation (12) can be solved to find the allowed wave vec-
tors. Anticipating that the asymptotic decay will be
dominated by increasingly larger cluster lengths it suffices
to obtain solutions which are asymptotic in N. It is readi-
ly verified by substitution into (12) that the mth allowed
wave vector from the bottom of the band for N ))m, is
given to 0 (N ) by

k =(mar/N)(1 f, /N) i rtmf2—/N —=q i—A, —(13,)

where f, =(1—
g )/(1+/ ) and f2=2//(I+/ ). We

should add that while this result is asymptotic in N it is
valid for all g. The real and imaginary parts of the eigen-
values fot these wave vectors are then readily obtained

e = —Re[2J cos(k )]

The quantity I k represents the rate at which the kth
eigenvector decays to the trap state due to the coupling at
each end of the cluster. Moreover, the asymptotic decay
of Pz(t) will be determined by those eigenvectors with ei-
genvalues having the smallest imaginary component. As
we will see, these turn out to be the states at the edges of
the band, so the argument holds in the presence of other
processes (that we have neglected for clarity) which
would cause the particle to equilibrate to the lowest-
energy states. To demonstrate this we need to obtain the
eigenstates ~k ) of &z. Based on what occurs in ordered
lattices we expect these to be "complex" standing waves
of the form

~k) =g[Akcos(kn)+Bksin(kn)]~n ),

I =Im[2J cos(k )]

=2J sin(q )sinh(A, )-4ym. m l[N (I+/ )] .

(14b)

Thus, the minimum decay rate for each cluster occurs for
those states nearest the bottom of the band. [Note from
(11) that k =0 is not a solution since it has zero ampli-
tude at each site. ] The important point to observe' is
that the decay rate for these states scales as N . This
fact (which ultimately determines the asymptotic decay)
can also be obtained from the following physical argu-
ment: As we have shown in Eq. (7), the decay rate for a
given mode depends upon the probability for a particle in
that mode to be at one of the end sites (i.e., to be at one of
the sites from which it can actually decay), therefore,
those states with the smallest amplitudes at the end sites
decay most slowly. But the boundary conditions for this
problem require that the wave function for untrapped
particles vanish at the trap sites. For modes which are
slowly varying in space, i.e., for small wave vectors
k -mm/N in which a small number of half wavelengths
X=2~/k fit into the segment, this condition forces the
wave function in the vicinity of the traps to be very small.
Thus, C& and Cz, the normalized amplitudes to be at the
end sites will go (approximately) as

sin( k ) —m 7TN

and the probabilities p» and p» as m ~ N . Hence,
for these slowly varying modes the decay rate will have
the form I -2ym ~ N . The additional factor of
2/[1+/ ] appearing in (14b) comes from the fact that the
amplitude is decreased even more at the end sites due to
the change in dispersion associated with the imaginary
site energy. Thus, for very large values of g=y/J it is
difficult for the particle to move onto the end sites due to
the large (imaginary) difference in site energies between
those sites and the rest of the sites in the cluster.

Provided a finite fraction of the amplitude ends up near
the band edge, Eq. (14) shows that the asymptotic decay
of the survival probability for particles created in a clus-
ter of size N will take the form

P~(t)- A~ exp[ —8' yt/N (I+/ )] .

If the excitation is created at the bottom of the band, or if
there are equilibration processes which take the particle
there on time scales short compared to trapping, then A&
will equal one at long times. Otherwise, 3& will equal
the probability that the particle was in one of the states at
the band edge at t =0. (If the particle is initially local-
ized on one site, or if it is completely delocalized within
the cluster, then Az will be of order 1/N, since it re-
quires a linear combination of all k states in a cluster to
produce a site state. ) In either case, we can (as in the
difFusion problem ''

) average over the cluster distribu-
tion to obtain

= —2J cos(q )cosh(A, ) ——2J cos(m n. /N), (14a)
P(t) —gf (N)p exp[ —8m yt/N (1+/ )], (16)

and where f (N) =q NA~/p depends algebraically on the
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P(t)-C(q, t) exp( —At' ), (18)

where the constant in the exponent is A =4(Pa /27)'
and the prefactor

C(q, t)=(i /2)' (3f3t/a )' f(y t' ),
is an algebraic function of time which may depend on the
initial conditions.

The 1D decay is therefore slower than that associated
with a diffusing particle, for which

P(t) —exp( —At'~ ),
but faster than that predicted for classical particles
interacting via hard core potentials, where an
exp( —At' ) decay law obtains. ' In the latter case the
anomalously slow decay can be traced to slower-than-
diffusive 1D motion of the individual particles in the re-
gions between traps; an effect which arises from the in-
teractions. In the present circumstance, motion between
the traps is faster than diffusive and the slowness of the
decay arises from wavelike reAection at trap sites due to
the sudden change in dispersion which occurs at those
points. As in the classical problem, however, the decay
law continues to be asymptotically governed by large but
rarely occurring trap-free regions.

It is often assumed that trapping becomes more
efficient as quasiparticle motion becomes more coherent;
this expectation is based upon the idea that it is easier for
a particle to get to a trap if it is not being continually
scattered by phonons. It is certainly true, for example,
that P(t) decays more rapidly for a diffusing particle as
its diffusion constant increases. Indeed, heuristic argu-
ments can be found in the literature which suggest that in
the coherent limit, due to very fast motion and relatively
slow trapping at the ends of each segment, the population
should quickly become uniform in the region between the
traps. Trapping from a segment would then occur with a
rate proportional to 1/N, giving an exp( —At'~ ) law,
faster than that associated with diffusion. However, as
observed earlier, ' ' the zero-temperature decay is ulti-

cluster size and so is slowly varying in comparison to the
exponential factors in the summand. For p (1, the fac-
tor p decays sharply with increasing N; it will therefore
compete with the sharply rising term

exp[ —8~ yt/[N (I+/ )]],
to make the summand strongly peaked about some maxi-
mal cluster size N (t). At large times, N (t) »1, and
the value of the sum in (16) will approach

P(t) —f f (N) exp —(aN+Pt/N )dN, (17a)
0

which after changing variables to y =Nt ' becomes

P(t) —I rf (yr) exp[ —r(ay +Py )]dy, (17b)

where a =in(1/p) =q for q « 1, P= 8ysr /[(1+ / )], and
r=t'~ . The asymptotic properties of Eq. (17b) are readi-
ly determined. Expanding the exponent about its max-
imum value, y (t)=(3P/a)'~, and performing a Gauss-
ian integration we obtain

P„=1 P~ -4—k/(g+g '), (k &&1) . (2O)

Hence, for small wave vectors [k —O(~/N)] the relative
absorption probability actually decreases with increasing
cluster size as 1/N It is a. lso interesting to note that this
form for the reAection and absorption probability is valid
for arbitrary y, so that for fixed X the absorption proba-
bility has a maximum when y =J. For values of y larger
than this the change in dispersion at the end sites due to
the coupling reduces the ability of the particle to move
onto those sites, thereby decreasing the actual trapping
efficiency. This is in marked contrast to the classical
problem where it is always possible to arbitrarily increase
the strength of the localized capture process so as to
make the trap "perfectly absorbing. " Whether it is possi-
ble to identify a coupling mechanism between the pho-
nons and a strictly localized impurity state which is more
efficient at capture than it is at scattering remains an
open question.

IV. INTERSTITIAL TRAPS

We now turn to the interstitial model described in Sec.
II in which the traps do not disrupt motion along the
chain. The problem is intrinsically more difficult than
that addressed in the last section, due to the fact that a
particle located on a segment of the chain between two
interstitial traps now has the possibility of passing by the
traps without getting trapped. The problem does not,
therefore, neatly divide up into isolated clusters as it did
in the substitutional model. The analysis which we
present below, therefore, is necessarily more qualitative
than the one presented in Sec. III. Nonetheless, we can
expect the results of the reduction over the phonon vari-
ables to lead to similar effects regarding the states which
are coupled to the interstitial impurities. In particular, if
we assume a short-range interaction to be responsible for
trapping, then we can expect those sites in the chain
which are located next to the interstitial impurities to de-
velop a decay amplitude y as before (see Fig. 2). Thus
the reduced density matrix for the interstitial model can
be taken to obey an equation similar to (2) except that it
will now apply to the whole chain rather than to one iso-
lated cluster. We write

dp Idt = —i [H,p] —%'p, (21)

mately slower than the diffusion result. Clearly, the naive
argument breaks down because it ignores the coherence
of the wave function, i.e., the phase relationships associ-
ated with the incident and rejected parts of a wave which
produce the long-lived standing waves. Analysis reveals
that a localized absorbing site is more efficient at scatter-
ing a particle than it is at capturing it, no matter how
large the capture strength y becomes. This can be seen
most easily by decomposing the standing wave solutions
into traveling waves: From (11) one can easily show that
a traveling wave of unit magnitude incident upon an ab-
sorbing site is rejected with a reAection probability

Ptt = [1—2(sin(k)+g ]/[1+2( sin(k)+g ]

and is absorbed (i.e., decays to the trap) with probability
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where now the Hamiltonian H describes uninterrupted
motion along the chain and is therefore given by Eq. (1)
without modification, while the relaxation operator now
includes a sum over all host sites in the chain which are
located next to the traps

(22)

In Eq. (22), n, is the host site closest to the ith interstitial
trap and the sum runs over all such sites. As in Sec. III
we can rewrite Eq. (21) in a form involving an effective
non-Hermitian Hamiltonian &, i.e.,

dp/dt = imp=— i [&—,p],
where

(23)

(24)

dP(t)/dt =avdp /dt = —2ygp„„ (25)

Once again we are faced with the problem of finding the
eigenstates and eigenvalues of an effective Hamiltonian;
however, the eigenstates are now considerably more com-
plicated than in the substitutional model. We begin by
observing that the effective Hamiltonian & whose states
we are attempting to determine is almost identical in
form to that associated with a one-dimensional tight-
binding binary alloy consisting of two types of sites with
different site energies; the important difference, of course,
is that in the present model the site energy associated
with one species is strictly imaginary. Even so, based
upon the large body of work that has been done on disor-
dered systems (and on disordered one-dimensional sys-
tems in particular), it is natural to expect that the eigen-
states of & will be localized as a result of the disorder as-
sociated with the random positions of traps along the
chain. If we accept this, then the problem reduces to one
of characterizing the localized states which have the
smallest imaginary component of the "energy, " and then
to determining the distribution of eigenvalues associated
with such states. It is clear from Eq. (25) that the re-
quired states are those which have the smallest fraction
of their amplitude on the decaying sites n;. Thus, we are
naturally led to consider those states which are delocal-
ized over large but rarely occuring trap-free regions of
linear dimension L, surrounded by regions containing
traps in a density more closely reAecting the average trap
concentration q. Note that the trap-free region is locally
ordered since all sites within it have the same site energy,
while the surrounding regions are disordered due to the
presence of both kinds of sites (decaying and nondecay-
ing). This leads us to expect that wave functions which
are delocalized inside the trap-free region will fall off ex-
ponentially as they pass into the disordered region, with a

The imaginary site energies in the summation in Eq. (24)
again lead to a decay of amplitude from those sites in the
chain located next to the traps. The probability for a
particle in the chain to survive until time t without being
trapped can then be written in a form similar to Eq. (7),
i.e.,

localization length g that will depend on the energy. In
the limit in which L )&g, we obtain a picture of states
which are delocalized over a large region of size L, van-
ishing with small (compared to L) tails of length g into
the regions where trapping can occur.

We now observe that this picture is not too disimilar to
that associated with the wavefunctions of the substitu-
tional model, where L is identified with the length of the
region between the substitutional traps, and where the
length g associated with the region where trapping can
occur is, in the substitutional model, efFectively equal to
one (all distances are measured in units for which the lat-
tice spacing is equal to unity). The main difference be-
tween these two pictures is that the length g is given a
priori in the substitutional model, while in the interstitial
model it is determined by the change of effective disper-
sion between the ordered and disordered regions. Our ex-
perience with the substitutional model, therefore, leads us
to expect that the most slowly decaying states for the in-
terstitial model will be long-wavelength states which are
slowly varying in space inside the trap-free region, and
which fall off over comparatively short distances outside
the region.

A. Approximate analytical treatment

The physical picture expressed above has led us to de-
velop a simple phenomenological model for quantitative-
ly analyzing the important features of those states impor-
tant to the asymptotic decay, i.e., the slowly decaying
states centered in large trap-free segments. In our model,
depicted schematically in Fig. 3, that part of the solid
which surrounds a trap-free segment of length L is treat-
ed as a uniform region having a constant site potential
equal to its average value (&„„)= iqy Th—is is.

equivalent to treating the surrounding part of the crystal
in terms of the so-called virtual-crystal approximation
(VCA). We should emphasize that this would probably
not be a good approximation if we were interested in
states away from the band edge, but since we are interest-
ed in states of asymptotically long wavelength (k/2 —L,
with L ~ ~ ) it should be more than adequate for qualita-
tively determining the asymptotic behavior. In addition,
for large L and long wavelengths (corresponding to the
states of interest), the lattice structure becomes unimpor-
tant and we can treat the system as being effectively con-
tinuous. Thus, we write an effective Hamiltonian

H =Jk + V(x) = Jd /dx + V(x—), (26)

V = -iq& V =-iq&

V=O

FIG. 3. Schematic "square-well" model used to analyze the
slowly decaying states in a trap-free region of length L sur-
rounded by region of more typical trap density. Curve indicates
state of interest having smallest decay amplitude.
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where the "potential" function takes the form

V(x) = i—qyB( ~x
~

L—/2), (27)

in which B(x) is the Heaviside step function. For con-
venience we have centered the trap-free region at x =0
and shifted the Hamiltonian of Eq. (1) by a constant
amount equal to 2J. Thus, the problem closely resembles
one treated in most introductory textbooks on quantum
mechanics, involving a particle of effective mass
m =(2J) moving in a square-well potential (which in
this problem is of imaginary depth). Let 6 denote the ei-
genvalue of the lowest mode of Eq. (26), and define the di-
mensionless quantity E =6 /J. By proceeding in analogy
to standard treatments we find that the eigenfunction of
Eq. (26) corresponding to this lowest mode will be an
even function having the form 1((x)= A cos(kx) for
~x~ &L!2, and the form g(x)=8 exp[i~~x~] for
~x

~

)L/2. In these expressions k =E and ~ =E+iqg
By the usual procedure of requiring continuity of 1(j and
its derivative at x =+L/2 we obtain two equations, the
ratio of which is equivalent to

k sec (kL/2)+iq(=0 . (28)

Equation (28) allows us to determine the complex wave
vector k. We now search for solutions to (28) of the form
k =@+a, where e=~ /L is assumed to be much less
than 1, and where the magnitude of a is assumed to be
much less than e. This corresponds to choosing a wave
vector k such that the interior solution vanishes a short
distance (compared to L) outside the boundary. A
straightforward calculation then yields

(1+i )4~ L»1
(2qg)' L

(29)

so that the eigenfunction corresponding to this solution
decays to the traps with an amplitude

r =1m(e)- 4J~
g)1/2L 3

(30)

P(t) —C(q, t) exp( —At' (31)

where, as before, C(q, t) is algebraic in time and, in gen-
eral, depends upon the initial conditions, while the con-
stant in the exponent can be estimated using Eq. (30)
as A =4(5a~/27)'~4, with a=in(1/p) and
5=8J~ (2qg)

The state associated with this decay amplitude will dom-
inate the asymptotic decay for particles initially localized
within this trap-free region. Note that the decay ampli-
tude depends upon the length of the trap-free region to
the inverse third power, as in the substitutional model. If
we now average the asymptotic decay stemming from Eq.
(30) over the size L of the trap-free region, we obtain an
expression similar to Eq. (16) with L replacing N and
with exp( —2I L t) replacing the exponential in that equa-
tion. The asymptotic analysis for P(t) then follows that
of the substitutional model without change and leads to
an asymptotic decay of the same form, namely,

B. Comparison with numerical results

P (L)—exp( aL ), — (33)

to obtain the probability density for I . This leads to the
asymptotic prediction for small I that P(I ) will be pro-
portional to the function

exp[ b(J/I )' ]—,

with

b =a(4~ )' /(2qg)'

It is convenient to express this result in terms of a dimen-
sionless decay time s:—(J/I )' . The probability density
for finding a given value of s should (up to algebraic pre-
factors) then be exponential

P (s)- exp( bs) (s ))1—) (34)

with the exponent given in terms of the parameters of the
system through the expression

b = —ln(1 —q)(4ir )' /(2qg)' (3&)

In Figs. 4 and 5 we show the results obtained from the
numerical diagonalization of the effective Hamiltonian
for a large number of random chains containing M =50
and 100 sites, for two different trap concentrations,
q =0. 1 and 0.2. In all these figures we have taken the di-
mensionless trapping parameter g=y/J =1. For each
chain, a random configuration of traps was chosen. This
was done by assigning to each site a random number uni-
formly drawn from the interval [0,1] and occupying the
site with a trap whenever the associated random number
was less than the trap concentration q. The matrix corre-
sponding to the effective Hamiltonian for the given trap

To evaluate the accuracy of the simple theory present-
ed in the last section we have performed a large number
of numerical diagonalizations of the Hamiltonian & for
large but finite one-dimensional chains with random
imaginary site energies. If, as we have argued, the states
of the random chain are localized with a localization
length which is small compared to the size of the chain,
then the distribution of eigenvalues for the finite system
should closely resemble the distribution of eigenvalues for
the infinite one-dimensional chain. To test the theory,
therefore, we can compare the distribution of decay am-
plitudes, P (I )d 1", obtained from numerical diagonaliza-
tions, with the distribution that follows from the analysis
presented above. Our basic assertion is that the asymp-
totic decay of the survival probability is determined by
slowly decaying states centered in rare trap-free regions.
From this it follows that the distribution P(I )d I will be
governed, for small 1, by the functional dependence (on
L) of I L and by the statistical probability P(L)dL for
finding a trap-free region of length L. That is, we can in-
vert Eq. (30) to find the size of the trap-free region corre-
sponding to a given decay amplitude,

L (I )=[4Jir/(2qg)'~ I ]'~

and then use this along with the probability of finding a
trap-free region of length L
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configuration was then constructed and numerically diag-
onalized. From the complex eigen values E;
(i = 1, . . . , M) obtained in the diagonalization, the imagi-
nary parts I; were extracted and used to calculate the di-
mensionless quantities s; = (J/I; )

' . These values were
then "binned" to find the number n (s) of values of s;
which fall within the range s to s +1. To obtain adequate
statistics, this was repeated for 1600 different random
matrices for q =0.2, and 2400 different random matrices
for q =0.1. For each concentration the results were then
averaged to obtain N(s) —= (n(s)), the average number of
s values falling in the given intervals, and o (s), the stan-
dard deviation of the mean for each average calculated
over the total number of runs. If our arguments are
correct, then we expect X(s) to be proportional to P(s),
as given by Eq. (34), at least for values of s corresponding
to trap-free regions approaching the length of the chain.
Thus, a logarithmic plot of X(s) versus s should follow a
straight line with a slope given by Eq. (35) for sufficiently
large s.

The results for trap concentration q =0. 1 are present-
ed in Fig. 4(a) for chains of length M =50 and in Fig. 4(b)
for chains of length M =100. The upper and lower histo-
gram in each figure corresponds to X(s)+o (s). The
straight lines correspond to fits to the data of the form
N(s)=N; exp( bs), as s—uggested by Eq. (34) with the
value of the constant b =0.47 calculated from our

theoretical expression, Eq. (35); only the value of the pre-
factor 1Vf was varied to adjust the vertical position of the
line on the logarithmic plot. In Fig. 4(a) the value

Nf =14, and in Fig. 4(b) Nf =30. Thus, the histogram
for M = 100 is approximately twice the magnitude as that
for M =50, because there are twice as many eigenvalues
in a 100-site chain as there are in a 50-site chain. In spite
of the statistical fluctuation, the histograms do appear to
have the expected functional form, with the results for
the exponent being insensitive to the chain length. This
is, of course, as we had hoped based upon the localization
argument. Indeed, given the nature of the arguments and
approximations leading to Eqs. (34) and (35) the agree-
ment with the numerical results, particularly regarding
the slope of the line, is surprisingly good.

In Figs. 5(a) and 5(b) we present similar results calcu-
lated with a trap concentration q =0.2. At this higher
concentration it was found that a smaller number of diag-
onalizations, 1600, were sufhcient to give acceptable
statistics. As before, the straight line corresponds to a fit
to the numerical data of the form X(s)=Xf exp( bs), —
with the slope b =0.88 calculated from Eq. (35). We find

Nf =58 for M=50, and Nf =116 for M=100. Thus,
again the number of eigenvalues in a given bin scales with
the number of states in the chain. The agreement be-
tween the numerical results and the theoretical analysis
of Sec. IV A appears to be even better at this higher trap

10
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q =0.1

100
(a)

q = 0.2

N(s)

0.1

50 sites

0.1-
50 sites

0.01 I I I I

7 9 11 13 15
scaled decay time s
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2 3 4 5 6 7 8 9 10

scaled decay time s

N(s)

10

0.1
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I
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(b)

10 +

0.1

q =02
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0.01 I I I

7 9 11 13 15
scaled decay time s

0.01
3 4 5 6 7 8 9 10
scaled decay time s

FIG. 4. Average distribution of (dimensionless) decay times
s=(J/I )' ' for one-dimensional chains containing randomly
placed interstitial traps of strength y/J=1, in concentration
q =0. 1. Histograms are averages over 2400 matrices of
N(s)+o. , and the straight line is the theoretical prediction.
(See discussion in the text. )

FIG. 5. Average distribution of (dimensionless) decay times
s =(J/I )' ' for one-dimensional chains containing randomly
placed interstitial traps of strength y/J =1, in concentration
q =0.2. Histograms are averages over 1600 matrices of
%(s)+a, and the straight line is the theoretica1 prediction.
(See discussion in the text. )
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concentration.
The numerical work, therefore, tends to support the

analysis given in Sec. IVA and, in particular, lends fur-
ther credibility to the asymptotic form for the survival
probability predicted by Eqs. (34) and (35). Whether the
agreement we have obtained between the theory and nu-
merical work continues for significantly lower concentra-
tions and for significantly diiferent values of g remains an
open question. As the product qg gets smaller the chain
length necessary for the numerical work increases and
this puts greater demands on computer memory and
time. We are currently working on extending the numer-
ical results to smaller concentrations so that the theory
can be tested for a wider range of parameters.

V. DISCUSSION AND SUMMARY

Our analysis indicates that in one-dimensional systems
the zero-temperature asymptotic decay of excitations due
to irreversible trapping has a characteristic stretched-
exponential behavior

P(t)- exp( —At'~ ),
with details on the form of the exponential constant de-
pending upon the nature of the trap (i.e., interstitial or
substitutional). The results we have obtained may be use-
ful for understanding low-temperature measurements of
charge carrier and excitation transport in quasi-one-
dimensional organic solids, such as 1,2,4,5-
tetrachlorobenzene, or inorganic ones such as CsNiF&.
For this reason, it is important to consider some of the
general conditions under which the asymptotic behavior
we have obtained might be observed.

Clearly, the most important precondition for the appli-
cability of our analysis is that the temperature be
sufficiently low that phonon scattering be minimal over
the time period of the decay. Since the asymptotic decay
arises from long-lived states with energies near the edge
of the band, this also means that the temperature should
be small compared to the bandwidth of the excitation.
Provided that these general requirements regarding the
temperature can be satisfied, there remains the question
of determining the time frame associated with the asymp-
totic behavior. One might first ask when the stretched-
exponential form [e.g. , Eq. (18)] accurately describes the
integral, Eq. (16), or sum, Eq. (17), from which it has
been obtained. Numerical evaluations that we have done
suggest that this will occur rather rapidly for reasonable
trap concentrations and trapping strengths. We should
emphasize, however, that even when this is not the case it
is still possible to use the full expressions in the analysis
of experimental data.

A more difficult question is that of the time frame over
which Eqs. (16) and (17) provide accurate descriptions of
the survival probability. Recall that these expressions in-
clude only the most slowly decaying states in each clus-

ter, and so the relevant question is at what time is it safe
to ignore the contributions from other (more rapidly de-
caying) eigenmodes. Unfortunately, the answer to this
question depends rather strongly on the initial conditions
of the experiment. With optically created excitonic states
there is a small wave vector (k =0) selection rule which
could result in the states in each cluster located nearest
the band edge being preferentially excited. For this situa-
tion (provided that the other relevant conditions are met),
the asymptotic behavior could set in quite early because
there would be no masking contribution from states close
to the center of the band. On the other hand, if the exci-
tations were created at individual sites, say, with equal
probability (equivalent to a uniform initial population
over the k states) then the results of our analysis could be
masked by contributions from the rest of the eigenmodes.
If equilibration to the bottom of the band occurs rapidly
then this need not be a limitation, however such a condi-
tion might bring with it an unacceptably high rate for
phonon scattering. At any rate, since the density of
states in a one-dimensional system is heavily weighted
near the band edge one might hope that the irrelevant
portion of the decay for such an initial condition would
be a small component of the total. It is worth noting that
similar initial conditions in the corresponding diffusion
problem lead to an asymptotic regime which occurs early
enough [P(t)-—„', ] so as to be easily observed' in nu-

merical simulations.
In summary, we have investigated the properties of

quantum particles which move coherently in one-
dimensional systems containing randomly placed irrever-
sible traps. We have shown for a substitutional model
that the survival probability decays asymptotically as a
stretched exponential of the form

P(t)- exp( —At'i ) .

We have also presented an analysis for interstitial traps
which suggests that due to Anderson localization of the
particle wave function by the traps, the asymptotic decay
will be of the same functional form as in the substitution-
al Inodel. We have provided estimates of the constants in
the exponent for the interstitial model which reproduce
the essential features found in the distribution of decay
amplitudes for large one-dimensional chains that have
been diagonalized numerically, and we have discussed the
conditions under which the asymptotic behavior obtained
in our analysis might be seen in experimental measure-
ments. As in the corresponding diffusion problem, a
unified theoretical approach which handles both the
long-time behavior investigated in the present paper, as
well as the short-to-intermediate time frame investigated
in earlier treatments' ' remains an important theoreti-
cal task. In a future publication we extend these results
to higher dimensional systems, using an analysis similar
to that developed in Sec. IV A.
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