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Fluid, hexatic, and crystal phases in terephthal-his-(4n)-alkylanilines
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X-ray scattering studies of single-domain samples of the terephthal-bis-(4n)-alkylanilines (TBnA)
are presented. The growth of the bond orientational order parameters in the stacked hexatic SF
phase and the scaling relations between them are studied by analyzing the x-ray scattering profiles.
The phase transition from the Quid S& to the hexatic SF phase changes from a discontinuous jurnp
in TBSA to a continuous transition in TB7A. The SF-to-SG phase transition is first order. Results
of a detailed analysis of the diffuse scattering from the SG phase are reported.

MS code no. BC4267 1988 PACS number(s): 64.70.Md, 61.30.Gd

I. INTRODUCTIC)N

During the past few years, significant progress has been
made in the experimental study of both two- and three-
dimensional hexatic phases. Such phases are character-
ized by order intermediate between that of an isotropic
Quid and a crystalline solid. By studying rare gases phy-
sisorbed on various substrates, ' arrays of ball bearings,
polyballs in water, and both lyotropic and thermotropic
liquid crystals, the existence of a two-dimensional hexat-
ic phase and a three-dimensional counterpart is no
longer in question. Although there are now in the litera-
ture many experimental studies of hexatic phases, few
measurements have concentrated on the critical behav-
ior of the Quid-to-hexatic phase transition in a systematic
way. Here we present a detailed x-ray scattering study of
the Quid (Sc)-to-hexatic (SF) phase transition in the
terephthal-bis-(4n )-alkylanilines (TBnA) for n = 5, 6, 7.
The phase diagram for the TBnA series is qualitatively
similar to that predicted by Aharony et al. (see Fig. 1).
Studying this phase diagram was the original motivation
for this work.

Previous experiments on other systems found the
Quid-to-hexatic phase transition to be either continuous
or weakly first order. If the transition is second order,
one expects the specific heat to exhibit a singularity of the
form Ct —

~
t

~
where t = ( T T, ) /T, is the—reduced

temperature and o. is the heat-capacity critical exponent.
Interpreting heat-capacity data in this manner suggests
that a is always large, of the order —,', the value expected
at a tricritical point. One proposed mechanism by which
a tricritical point may be produced is to couple the bond
orientational order parameter, 'P6, to another order pa-
rameter. The effective free energy obtained by eliminat-
ing the additional order parameter from the partition
function will contain a renormalized 4th order coefficient,
which may change sign as the coupling strength is varied.
Herringbone order, ' smectic layer Quctuations, " and
crystal density Quctuations have all been suggested as
candidates for the additional order parameter needed to
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FIG. 1. (a) Generic temperature-concentration phase dia-
gram near the crystal-hexatic-Auid triple point. The dashed
(solid) lines indicate second- (first-) order transitions. (b) Tem-
perature vs Alkyl chain length phase diagram of the TBnA
series from Ref. 20. Data are taken along the dashed lines.

produce a tricritical point. Near the Quid-hexatic-crystal
triple point, Quctuations in the crystalline order parame-
ter may drive the originally second-order Quid-hexatic
transition to first order. Moving away from the triple
point, the effects of the crystalline order parameter Quc-
tuations on +6 should decrease, returning the transition
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to second order and creating a tricritical point. The con-
sequent phase diagram is illustrated at the top of Fig. 1.

In order to measure the hexatic order parameter, 46,
by x-ray scattering, a single-domain sample is crucial.
Due to the large spot size in a typical x-ray experiment,
orientational structure is averaged out in a multidomain
sample. In the tilted hexatic phases, such as the SF and
the SI phases, coupling between +6 and the molecular tilt
field generates an effective ordering field, ' allowing the
production of a single-domain hexatic sample. This
single-domain sample is obtained at the expense of for-
mally breaking the symmetry we wish to study. In the
weak-field limit, however, information about the critical
behavior may still be obtained by considering the full
equation of state. ' In our experiment, we measure the
hexatic order parameter directly by Fourier analysis of
the scattering function. The temperature dependence of
the order parameter and the scaling relations among the
Fourier coefficients enable us to study experimentally the
region around the triple point.

The high-quality single-domain Sz samples produced
in this experiment allow us to produce single-crystal SG
phase samples, by cooling very slowly through the
SF~SO phase transition. The crystal axes are locked to
the hexatic axes which are in turn well defined due to the
hexatic order. Due to the relatively low resolution of this
experiment, detailed information about positional corre-
lations in the Sz phase is unobtainable; however, some
features of the elastic properties of the Sz phase can be
studied by analyzing the diffuse scattering in the wings of
a Bragg peak. We find that the SG phase has a large
amount of diffuse scattering, indicating that the phase is
very "soft."

The rest of this paper is organized as follows: In Sec.
II, the experimental configuration and data are presented.
In Sec. III, we review the harmonic scaling theory relat-
ing the various bond orientational order parameters. The
analysis of the data taken on the Quid-to-hexatic transi-
tion is discussed in Sec. IV. In Sec. V, we present and
analyze data on the SG phase of TB6A and discuss its
elastic properties.

Sz phase at about 200 C, and annealed until uniform in
thickness. Sample uniformity was determined by visual
inspection. The sample chamber was kept at a pressure
of 1 Torr; the residual gas was nitrogen. Temperature
was controlled to +30 mK.

The scattering expected for two-dimensional fIuid and
hexatic phases is depicted schematically in Fig. 2. By
scanning the angular variable g, while staying on the
peak of the Auid structure factor and the molecular form
factor, one may probe the bond orientational order of the
system. A representative y scan and a longitudinal scan,
taken deep in the SF phase of TB6A where the bond
orientational order has saturated are given in Fig. 3. The
data exhibit well-defined peaks in the scattering at the g
positions expected for the SF phase. ' Longitudinal scans
through these peaks in the g structure reveal that the po-
sitional correlation length is approximately 200 A,
demonstrating that, like the SI phase, the Sz phase is

indeed a stacked hexatic phase with long-range bond
orientational order but short-range positional order. This
agrees with the model of Ref. 7 and with the conclusions
from previous experiments. '

At each point in a temperature sweep heating through

(a) Fluid scattering function

II. EXPERIMENTAL RESULTS

For this experiment, we used primarily a low-
resolution spectrometer configuration produced by using
a cylindrically bent pyrolitic graphite (220) monochroma-
tor to focus vertically the Cu K emission line

0
(A, = l. 54 A) produced by an 18-kW rotating anode x-ray
generator onto the sample. A Aat graphite crystal served
as an analyzer for the scattered x rays. The resulting k-
space resolution (AQ =0.01 A ', by=2') was measured
by placing a Si(111)crystal in the sample position.

The samples are freely suspended films of liquid crys-
tal. The technique of preparing such films is described in
detail in the references. '" The diameter of the films in
this experiment is 6.375 mm and all of the films were
& 1 pm thick. A 1-kG magnetic field produced by a pair
of SmCo5 magnets aligned the tilt field of the molecules at
the Sz —+S& phase transition. Films were made in the

(b) Hexatic scattering function

FIG. 2. (a} In-plane x-ray scattering profile expected for an

isotropic two-dimensional Quid. The peak of the Quid structure
factor is at roughly 4m/&3a where a is the interparticle dis-

tance. The width of the peak goes as 2/g where g is the dis-

tance over which positional correlations decay. (b) In-plane x-

ray scattering profile expected for an ideal hexatic phase.
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sixfold modulation. The sharp peaks deep in the SF
phase indicate that hexatic axes are well aligned across
the whole illuminated area. The transition region of the
TBSA sample is only -0.6 K wide whereas those of
TB6A and TB7A are about -2.5 K wide.

The amount of 6n-fold order present in the system can
be measured quantitatively by fitting the g scan data to
the form
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FIG. 3. (a) A longitudinal scan taken at g=120' peak in the

smectic-F phase. The solid line is fit to a power-of-Lorentzian
line shape. (b) A y scan which shows two peaks separated by
60 in the smectic-F phase. The solid line is the best fit to Eq. (1)
using o., =n+A. (T)n(n —1).
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the S+~SC phase transition, we performed both y and
longitudinal scans through the peak at g=120'. Figure 4
shows y scans at several temperatures passing through
the Sz-to-S& phase transition for TB5A, TB6A, and
TB7A. At high temperatures, the g scans are Aat, con-
sistent with an isotropic ring of Auid scattering. With de-
creasing temperature, the Quid ring begins to acquire a

where we truncate the series at n = 10, since Fourier com-
ponents of the orientational structure with n &10 are
found to be smaller than the statistical measurement er-
ror. Before fitting, Eq. (1) was multiplied by the il-
luminated volume correction, ' cosO ', where 0 is the in-
cident angle of the x-ray beam, and an experimentally
measured background function, Iso(X), was added to the
product.

The temperature dependences of C6, C», and C„ for
TBSA, TB6A, and TB7A are shown in Fig. 5. In all of
the samples, the fundamental order parameter, C6, grows
very rapidly and it is not possible to determine the order
of the transition simply by observing C6( T). Fortunately,
the higher harmonics grow more smoothly and provide a
valuable visual check. There is a definite jump in all of
the IC6„I in TBSA. In contrast, in TB6A and in TB7A,
C» and C&8 appear to grow continuously within the tem-
perature resolution of this experiment.

One very striking result is the complete absence of any
measurable pretransitional bond orientational ordering in
any of the samples. This is in marked contrast to the
system racemic 4-(2-methylbutyl)-phenyl-4'-(octyloxy)-
(l, l')-bipheny1-4-carboxylate, which is usually given the
more convenient name 8OSI, where significant bond
orientational order persisted well into the Sc phase. Ap-
parently, the coupling between 46 and the molecular tilt
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FIG. 4. Orientational scans at several temperatures across the SF-to-S& transition. The solid lines are the results of fits to the

Fourier series assuming the scaling relations given by Eq. (6).
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FIG. 5. First three Fourier coefficients describing the hexatic ordering for TBSA, TB6A, and TB7A as functions of temperature.
Error bars represent a doubling of y . The lines are guides for the eye.

field is much smaller in the TBnA system than in the
8OSI system. Thus, the TBnA system is a better example
of a weak-field limit system than 8OSI and better suited
for phase transition studies.

III. REVIEW OF HARMONIC SCALING THEORY

In previous experimental work it was discovered that
the harmonics of the fundamental order parameter scale
as C6„=C6". This discovery inspired a renewed
theoretical eft'ort on the fiuid-hexatic phase transition.
To begin, we define the bond orientational order parame-
ter using the definition of Aeppli and Bruinsma. ' The
Quid is divided into microscopic cells of characteristic
length Ao ', where Ao

' is large compared to the liquid
positional correlation length, g. In each of these cells V„
where r is the position vector, we calculate the Fourier-
transformed density pq(r ) for

l q l
& Ao. Using pq( r ),

which has an infinite number of components indexed by
q, one can define a two-component vector field represent-
ing the hexatic order parameter:

i60
%6(r)=%6(r)e' "=fd8 e 'lp (r)l (2)

= fd"r(%6(r)) . (4)

where lqol is the peak of the fluid structure factor. In an
x-ray scattering experiment with q = lql )Ao, each cell
scatters independently. The corresponding structure fac-
tor is

&(q)= f d r(lpq(r)l') .

Therefore,
i60 i68fd8 e 'S(qo)= f d r f d8q e '

(lpq (r)l')

Similarly, we define an infinite set of bond orientational
order parameters

i6n8
F16„(r)=f d "rf d8q e ( Ipq (r)l

indexed by n The C6.„defined in Eq. (1) are simply
C6„=Rejd"r(46„(r)), the real component of the spa-
tial average over the illuminated spot size of
Re(%6„(r)).

The Quid-hexatic phase transition theory begins with
the Ginzburg-Landau-Wilson Hamiltonian,

H= f d x[—,'ll'%6(x)l + —,'rl+6(x)l

+u l% (x)l +u l%' (x)l

—h Req, (x)] .

For the special case h =0, this model exhibits XF-model
critical behavior, provided that u4 is larger than the tri-
critical value u«. The renormalized coefticient, u4 is ob-
tained by eliminating all other order parameters from the
partition function. In the absence of fluctuations, u4, =O.
However, fiuctuations shift u « to negative values.
Aharony et al. have argued that the fIuid-hexatic-solid
phase diagram should have the generic structure shown
in the upper panel of Fig. 1. In this experiment, the sys-
tem is not in the plane of Fig. 1(a) (i.e., hAO. ) For an
infinitesimally small field h, one expects the tricritical
point to turn into a critical point, the second-order line to
disappear and the first-order line to remain. At higher
field strengths, the first-order transition line may also
disappear as the critical point moves toward the triple
point. The C6„data shown in Fig. 5 indicate that there is
no pretransitional, field-induced bond orientational order
in these samples. Therefore, we assume that we may ig-
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(7)

Here u 4 =n E/5 is the XY-model fixed point, ' and
u4=u4 —u4, is the distance from the tricritical point.
Equation (7) is valid when C6 is not too small. It is exact
when d =4 and is also valid for dimensions d ~ 3 near the
tricritical point where u4 is small. Asymptotically close
to the XY-model fixed point, Eq. (7) can be rewritten as

~ n+A, n(n —1)/(d —2+ g)

An e expansion predicts that in three dimensions
A,„=0.3 —0.008n. ' Both of these scaling forms, Eq. (7)
and Eq. (8), predict that the correction to the mean-field
result, C6„—C6, scales as a temperature-dependent term
raised to the power n(n —1). This suggests, in three di-

mensions, the scaling from C6, =C6' where o.„=n

+A(T)n(n —1).
In a Landau theory, one assumes that the major tem-

perature dependence is in the coefficient of the quadratic
term. All other coefficients, including, in particular, u4,
are taken to be independent of temperature. Therefore,
using Eq. (7) we may measure u&/u 4 in the region where

C6 —1. If u&-0, the system is near a tricritical point. If
the system does not happen to cross the S&—S~ phase
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FIG. 6. Temperature dependence of u4/u4 below the transi-
tion temperature from the fits which assume Eq. (5) for TBSA,
TB6A, and TB7A. Error bars represent a doubling of y .

nore the effects of the ordering Geld.
If the system crosses the field-hexatic phase boundary

in the second-order region, the scaling result of-Aharony
et al. applies.

Cn[1+(& /& e )(C 2e—/(d —2+el) 1]
—n(n —1)/10

boundary in the second-order region of Fig. 1(a), the in-
terpretation is slightly different. Scaling does not hold
for a first-order transition; therefore, Eq. 7 does not ap-
ply. However, once the system is in the hexatic phase the
structure is the same regardless of the order of the transi-
tion into the phase. Thus, Eq. (7) may be used to calcu-
late the C6, , but the identification of u4/u4 as the Lan-
dau coefficient is no longer necessarily valid. In the criti-
cal region, Eq. (8) applies. In mean-field theory or at a
tricritical point, A, =O, while A, -0.3 is expected at the
3D-XY phase transition. One can determine whether or
not a given system is tricritical by measuring the values
of A, or equivalently u4/u 4. At a tricritical point, u4 =0
and X=O. For a first-order transition, we expect the Lan-
dau expansion parameter k & 0.3 due to the decreased im-
portance of fluctuations. u4 is expected to be small for a
first-order transition by the same argument.

IV. ANALYSIS OF THE HEXATIC-TO-FLUID
PHASE TRANSITION

Deep in the SF phase, where C6 —1, the y scan data
can be fit to Eq. (1) assuming the relation between the
harmonics given by Eq. (7) to determine the ratio u~/u 4.
The TB7A system has an average u 4/u 4

= 1.5+0.4
where the error is one standard deviation, whereas
u4/u 4 =0. 1+0.2 for the TB6A sample. The smallness of
u4/u4 for the TB6A indicates that it is very close to a
tricritical point. The TBSA result is u4/u4 =0.5+0.3.
u&/u4 as a function of temperature for each of the sam-

ples studied is illustrated in Fig. 6. The apparent growth
of the ratio, u4. /u4, near the phase transition is due to
the breakdown of the assumption that C6 —1.'

To study the scaling behavior near the phase transi-

tion, we fit the data using Eq. (1) with C6„=C6' where
cr„=n+A, n(n —1). The solid lines in Fig. 3(a) and Fig. 4
are the results of such fits assuming this scaling relation.
This form is, strictly speaking, only valid in the critical
region. For TBSA and TB6A, A, is close to zero deep in
the SF phase, consistent with a mean-field, tricritical or
first-order transition. The scaling relation can be approx-
imated in this region as C6„=C6. As the system ap-
proaches the phase transition, A, grows. This behavior
may indicate that the system is crossing over to the
three-dimensional XY critical regime where k has the ap-
proximate value 0.3. Unfortunately, k cannot be well
determined experimentally when the system is close to
the phase transition. In that region C6 is small and the
contributions of the higher Fourier coefficients to the
scattering become negligible. In the TB7A system,
A, =O. 3+0.05, even deep in the SF phase. The TB7A sys-
tem thus stays in the three-dimensional XY critical region
and there is never an indication of any crossover to
mean-field behavior. k( T) is shown in Fig. 7 for all of the
samples.

The value of A, for TB7A system is very close to that of
8OSI which shows another kind of hexatic phase, the SI
phase. The approximate scaling parameter A, for 8OSI is
virtually constant as a function of temperature with the
value 0.295+0.02. The scaling analysis in the three-
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dimensional XY critical region describes the two different
tilted hexatic phases, SF and SI, amazingly well. The na-
ture of the orientational fIuctuations appear to be identi-
cal for SF and SI phases although they have different
symmetry.

The order parameter curves, the values of the u4/u4's
and the A, 's consistently imply that a tricritical point
should exist someplace near the TB6A system. However,
the finite ordering field produced by the molecular tilt ei-
ther formally destroys the phase transition or requires it
to be first order. Therefore, the experimental paths
drawn in Fig. 1(b) are not in the critical plane and the
tricritical point is not accessible in a tilted system. Even
though these systems are not in the critical plane, it is
possible to observe the tricritical behavior or the cross-
over phenomena if they are close enough to the critical
plane.

At the S&~SF phase transition, the smectic layer
spacing undergoes a discontinuous jump. The size of the
jurnp as a function of alkyl chain length has a minimum,
close to zero, at roughly TB6A. This is consistent with
the observation that C6( T) grown most continuously in
TB6A. The jump of the layer spacing and the growth of
C6 curve indicate that the TB7A system has a more first-
order-like phase transition than the TB6A system. This
is in contrast to the fact that the TB7A system shows the
fluctuations of a three-dimensional LY system, while the
TB6A apparently exhibits tricritical behavior.

The rapid narrowing of the longitudinal scans near the
Sc —+Sz phase transition indicates that the positional
correlation length, g, increases rapidly. To analyze this
effect quantitatively, one must use an explicit model. %'e
have chosen a simple harmonic fluctuation model where
the scattering is described as a mosaic average —due to
the orientational fluctuations —of a two-dimensional
Lorentzian fluid structure factor. In the limit of large
fluctuations, this model predicts that a longitudinal scan
will be described by a square root of a Lorentzian (SRL),
while with no fluctuations, a longitudinal scan would be
described by a simple Lorentzian. In the S& phase, longi-
tudinal scans are indeed well described by a SRL line
shape; and, as expected, deep in the SF phase the simple
Lorentzian line shape works better. To interpolate be-
tween these two forms, we allowed the exponent of the
L'orentzian to float between —,

' and 1. The exponent
varied from -0.5 at the phase transition to -0.7 deep in
the SF phase. The solid line in Fig. 3(b) is the result of
such a fit. Clearly this line shape works well. The posi-
tional correlation length, /=A ', obtained from the SRL
line shape for TB6A is plotted in Fig. 8. The rapid
growth of g while C6 is changing rapidly suggests that
the growth in g is due to a coupling between the position-
al order and the bond orientational order.

V. THE CRYSTALLINE SG PHASE OF TB6A

The SF~S& phase transition of TB6A is first order.
Around 142 C, a sharp Bragg peak appears at the center
of the hexatic peak. From the positions of the Bragg
peaks, we confirm the previous experimental finding that
the SG phase is triclinic. ' The in-plane lattice spacing
along the axes +30 from the field direction is 4. 52 A and
the layer spacing is 29.8 A. The angle between the crys-
tal axis and the smectic layer normal, y, is -37. y is
very close to the tilt angle of the molecules measured
from the peak of the molecular form factor at the
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FIG. 10. The temperature dependence of the elastic constant,
p V, (001), deep in the smectic-6 phase.

trometer configuration, no information about the Bragg
component of the scattering is obtainable; however, an
unusually large diffuse component of the scattering al-
lows the extraction of information about the elastic prop-
erties of the SG phase. The diffuse scattering originates
in the thermal vibrations of the crystal lattice.

Since each unit cell contains two molecules, in the limit
of perfectly rigid molecules, there are three optical and
three acoustic branches of the phonon dispersion surface.
For simplicity, we ignore the distortion of the triangular
lattice in the smectic plane and assume a simple hexago-
nal lattice structure. This simplification doubles the Bril-
louin zone, leaving only the three acoustic branches of
the dispersion surface.

To include the effect of phonon modes, we include
first-order thermal diffuse scattering in our line shape.
This can be done simply in a harmonic theory,

3

~(Q)=e ' IF(Q)I'ge'~" 1+pe'" g Q &luj(k)l'& (9)
R k ij=i

where e is the Debye-Wailer factor, IF(Q)l is the molecular form factor, Q is the scattering vector, and u(k) is the
displacement vector of the phonon mode with wave vector k. The index j runs over the three branches of the disper-
sion surface. Phonons with polarization vectors normal to Q do not contribute to the diffuse scattering. In particular,
in a (0, l, e) scan, only those phonon modes with kll [001]will contribute to the diffuse intensity.

Along the high-symmetry directions of the crystal, phonons can be classified as either pure longitudinal or pure trans-
verse. Thus, if we let Q=(0, 1,k ), the above equation becomes

21T 3 ~a
S(Q)=e IF(Q) I

5(k )+ [Go,ou. (k )+k uI (k )]
p (2m)

where Qo is the volume of the unit cell. Here, Go,o is the magnitude of (0, 1,0) and Vo is the volume of the sample.
%'hen temperatures are not too low, the equipartition theorem applies and

2k~ T(I.(k)l'&=
NMco (k)

(10)

where ¹isthe number of molecules and M is the mass of a molecule. If we now assume dispersion relations of the form
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co(k) = V(k)—sin(mk/G),G
(12)

where V(k) is the velocity of sound in the k/~k~ direction, the scattering is given by the simple form

2 3 2~ k TG
S(Q)=e ' I+(Q)l' fi(k)+

Qo p Vt QOGooi sin (nk/Goo, )
(13)

where the contribution of the longitudinal mode along
the [Olk ] direction is ignored since Go, o is much greater
than the magnitude of k.

Due to the coarse resolution of the spectrometer
configuration, we can compare the intensity of the Bragg
component convolved with the resolution function to the
intensity of the diffuse component of the scattering.
Thus, we can estimate the absolute magnitude of the
transverse sound velocity V, (001). The measured trans-
verse resolution function is well approximated by a
Gaussian of width 0.007 A . Using a numerical in-
tegration, the measured scattering from a (O, l, e) scan
was fit to the convolution of Eq. (13) and the assumed
Gaussian resolution function. The (0, l, e) data and fits to
Eq. (13) are shown in Fig. 9. As expected, the diffuse part
of the scattering becomes smaller with decreasing tem-
perature. The temperature dependence of the elastic
stifFness constant, p V, (001), is plotted in Fig. 10.

As a last check on the positional order in the SG phase,
we changed the spectrometer to a high-resolution
configuration using a Ge(111) monochromator and
analyzer. The Bragg component of the scattering was
still within the instrumental resolution indicating that the
positional correlation length, g, is greater than 3000 A.
Therefore, the SG phase is a true three-dimensional crys-
talline phase but with elastic stiffness constants much
smaller than those found in most other crystals.

VI. CONCLUSIONS

First, using a single-domain S+ sample, we have
confirmed that the SF phase is a three-dimensional,

stacked hexatic phase analogous to the SI phase. The
hexatic fluctuations of both the 8OSI (SI ) and the TB7A
(Sz) systems are well described by a scaling analysis in
the three-dimensional XY critical region. By studying the
behavior of both A, and u~/u „* as functions of alkyl chain
length and temperature, we find indications of a tricriti-
cal point someplace nearby in the phase diagram. How-
ever, TB7A is clearly returning to first-order behavior,
contrary to the hypothesis of Aharony et al. Thus, al-
though the fluctuations behave as predicted, the transi-
tion itself does not. The growth of A, near the transition
for the TB5A and TB6A systems suggests a possible
crossover to three-dimensional XY' critical behavior.
After slowly cooling a single-domain S~ phase sample to
obtain a single-domain SG phase sample, we showed that
the SG phase is a true crystalline solid with long-range
positional order but very soft elastic stiffness constants.
The hexatic-to-solid transition is first order and the crys-
tal has a triclinic structure with A 3 stacking order.
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