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A free carrier of spin ~, placed in a Heisenberg antiferromagnet, may form a ferron, which is a

quasiparticle in which the free carrier is surrounded by a localized region with a net magnetic mo-

ment. Type-I ferrons (core not fully saturated) are unstable in lattices with dimensionality D ~ 2, al-

though they are stable for D (2, in mean-field theory. With D =2 in mind, we examine the

influence of zero-point spin Auctuations on the stability of ferrons, to find they oppose the formation

of type-I ferrons, although scaling relations for various contributions to the binding energy are

unaffected. We comment on the possible relevance of these results to the high-T, superconductors;
the ground state for a single hole may be a type-II ferron (saturated core), if this picture is applied
to these materials.

I. INTRODUCTION

A free carrier (electron or hole) injected into a local-
ized spin magnet will couple to the 1ocal moments by
means of an exchange interaction. We then have a quasi-
particle referred to as a magnetic polaron.

Of particular interest is the case where the host is an
antiferromagnet, supposed for the moment to be at the
temperature T=O and described by the Neel ground
state. The following mechanism can lead to formation of
a self-trapped magnetic polaron. Let the free carrier be
localized spatially, and orient its spin to be perpendicular
to the two antiparallel sublattices of the host. The free-
carrier —local-moment exchange wi11 lead to a canting of
the two sublattices in the host, within the wave packet, so
one has a local distortion of the antiferrornagnet ground
state of spin-Aop character. This produces a potential
well that may trap the free carrier; the resulting entity
can also have a substantial magnetic moment. These
self-trapped magnetic polarons are referred to as ferrons.

In earlier work, ' we have explored the stability and
properties of such ferrons in the perfect crystal, and when
the entity is trapped by a donor in an n-type antiferro-
magnetic semiconductor such as EuTe. It is then re-
ferred to as a bound magnetic polaron. We used an adia-
batic approximation to describe the wave function of the
free carrier in the sea of local moments, whose ground
state was taken to be a Neel state distorted by the local-
ized free carrier.

Two types of ferron emerge from the analysis. In the
type-II ferron, the free-carrier —local-moment exchange is
so strong that the object has a fully saturated ferromag-
netic core. The core is unsaturated in the type-I case.

The stability of the type-I ferron realized for modest
values of the local-moment —free-carrier exchange de-
pends strongly on the dimensionality of the system. For
D =1, the ground state is the self-trapped ferron. For
D =3, there is no such self-trapped object, and the free-
carrier wave function is always spatially extended. Two
dimensions emerge as a marginal dimensionality.

The case of D =2 is of current interest, since one pic-
ture of the holes crucial to superconductivity in the high-

T, oxides is extra carriers confined to oxygen sites, which
interact with an antiferromagnetically coupled array of
local moments localized on the Cu sites. An important
question is whether the basic quasiparticle in such a sys-
tem is a self-trapped magnetic polaron, or spatially delo-
calized quasiparticle dressed weakly by virtue of the ex-
change coupling to the local moments.

In the two-dimensional (2D) antiferromagnet, zero-
point Auctuations in the spin system contribute impor-
tantly to the ground-state energy. These will be
inAuenced locally when one attempts to localize a free
carrier added to the system, and thus affect the binding
energy of the ferron. The inAuence of the zero-point Auc-

tuations on the ferron binding energy was not explored in
the earlier work cited above. The purpose of this paper is
to explore this issue, with particular attention to the case
D =2.

Our procedure is to consider a carrier added to an anti-
ferromagnetically coupled lattice of spins S, and evaluate
the correction to the ground-state energy the order of
I/S in its presence. We can then examine the eA'ect of
the ferron on the zero-point Auctuations in its near vicini-
ty, and the inAuence of this modification on the ground-
state energy. We find, of course, only the first term in the
expansion of the ground-state energy in inverse powers of
S, so its extrapolation to the case S =

—,
' of interest in the

context of high-T, superconductivity is of questionable
virtue, but it does provide us with an indication of the
role of zero-point fluctuations. Our conclusion is that it
decreases the tendency of the ferron to bind, but in the
presence of the zero-point Auctuations, D =2 remains
marginal.

The picture which emerges from this work is the fo1-

lowing, for D =2. For small values of the free-
carrier —local-moment exchange, the quasipartic1e wave
function is delocalized. As the strength of the exchange
is increased, there is a collapse to a highly localized fer-
ron of type-II character. The strength of the exchange
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II. THE FERRO% STATE

We start with the basic Hamiltonian employed in our
earlier work, '

V' + —,
' g J;,S; S, —A V, g S; s5(r —R; )

IJ 1

y.Hos, —ysHoS (2.1)

We use an effective-mass approximation for the free car-
rier, 3 is the exchange-coupling constant, V, the volume
of the unit cell, and s the spin of the added carrier. We
have an external magnetic field applied perpendicular to
the staggered magnetization of the localized spins. The
nearest-neighbor exchange constant J,. is positive, so in
the ground state we have antiferromagnetic order. As
earlier, we assume for the moment that the energy associ-
ated with the exchange field HE =zJS exerted on a given
spin by its z neighbors, the free-carrier bandwidth 8' and
the exchange energy H = AS/2 are ordered as follows:
HE ((H ((8'. Then, as argued earlier, the wave func-
tion of the system is well approximated by

%=/, (r, [S, ] )N( [S; ] ), (2.2)

where r is the coordinate of the free carrier, and [S, I

denotes the set of quantum numbers required to specify
the configurations of the local moments. We have argued
earlier that in the parameter regime just outlined, the
terms in the free-carrier —local-moment interaction in-

must be the order of the free-carrier bandwidth to initiate
the collapse. As the exchange constant increases still fur-
ther, the type-II ferron evolves continuously into a spa-
tially localized singlet state (when S =

—,
'

) physically
equivalent to that considered by Zhang and Rice.

S;"=Scos(Q.R; )cos(g; ) —S;~sin(g, ),
S,'=S,'sing;+icos(Q R; )cos(g; ),
s~= —s,~,

(2.3a)

(2.3b)

(2.3c)

where Q is the wave vector of the antiferromagnetic
structure, i.e., Q=(~/ao)(1, 1) in the case of the 2D
square lattice with lattice parameter a o. The factor
cos(Q R, ) assumes the value +1 at each site. The angle
0; describes the orientation of the local moment at site i
with respect to the master coordinate system. This is a
variational parameter, to be determined below.

For a given choice of g, in Eq. (2.2), one may derive an
effective spin Hamiltonian by taking a partial expectation
value by integrating out the free carrier coordinate r.
One finds

volving S;+s and S; s+ can be ignored. Consequently,
the spin of the free carrier is aligned parallel to the z axis.

In the limit S is large, the array of local moments may
be described classically, as assumed in our earlier work. '
For EuTe, the material of primary interest there, S = —',

and this approximation is quite valid. As remarked ear-
lier, we begin with this limit, and examine the quantum
corrections to the ferron binding energy of order S

The localized free carrier induces a spatially dependent
canting of the local-moment array. It is useful to intro-
duce a coordinate system with axes labeled by (e, g, rl) at
each lattice site. The x axis of the master coordinate sys-
tem is parallel to the staggered magnetized of the ground
state of the antiferromagnet unperturbed by the ferron,
the g axis of the (e, g, g) system at site i is aligned along
the direction of the local moment there (with ferron
present), and the e, g axes lie in the xz plane of the master
system. Then we relate the (x,y, z) to the (e, g, i)) com-
ponents of S; by the relations

(H) =(T)+—,
' g Jj.[(S S~'+SfSf)[cos(Q R; )cos(Q R~)cosg;cosg~+sing;sing ]

+2S Sf[cos(Q R )cosg sing; —cos(Q R;)cosg;sing ]+S,"S"]
—g[—,

' A V, ~it(R;)~ +ysHo][S~cos(Q R;)cosg;+S sing;] . (2.4)

The Zeeman term y, Hos' has been omitted, since it adds
only an overall constant to the energy.

One problem is to find the ground-state energy of the
above spin system, perturbed by the spatially nonuniform
effective field produced by ~g(R;)~ . As we proceed, we
shall assume the ferron has a spatial extent suKciently
large the 0, varies slowly on the scale of a lattice con-
stant. Thus, when site i and j are nearest neighbors,
cos( 8; )cos( g~ ) may be replaced by cos ( 8, ).

At T =0, the ground-state energy of the system includ-
ing the inhuence of zero-point fluctuations may be de-
scribed by the Holstein-Primakoff transformation. We

divide the lattice into the two sublattices 3 and 13. For
the A spins, cos(Q.R;)=+1 and for the 8 spins,
cos(Q.R, )= —1. For the A spins,

and

S =S —a;+a;,
S;+ =(2S)' a;

S, = (2S)' a,+,

(2.&)

and a transformation of the same form applies to the B
spins, with a;,a,+ replaced by b, , b,+. [The factors of
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cos(Q R; ) incorporated in Eqs. (2.3) mean we write
S =S b—; b; for B spins, rather than —S+b,+b, ]

With this transformation introduced, the spin Hamil-
tonian becomes

Ho = — g cos(28& ) —S g h& sin(8I )
zJS

l„
zJS g cos(8& ) —S g h& sin(8& ),

B B

(2.7a)

&H&= g H„,
m=0

(2.6)

where H contains products of m boson operators. For
our purposes, we retain only those terms with m ~2,
whose form is

H, = —g(zJS sin28, —h, cos8, )(a, +a, )
S +

2 2 A A A A A

S—g(zJ sin28I —hI cos8I )(aI +a, ),+
2 2 8 8 B B B

B

(2.7b)

H2=+(zJScos28( +h( sin8I )a(+a( +g(zJScos28( +hI sin8( )b(+bI
I l~

+ —,'JS g g(l+cos281 )(aI+b&++&+aI bI +s)+ —,'J~ g g( os28I„)(I„bt„+sar„br„+s).
l~ 5 1~ 5

(2.7c)

In these expressions,

hI =y SHo+ —,
' 2 V, ~ l(r( Rl )

~

The summations of 5 range over the B sites nearest
neighbor to I„.

The ground-state spin configuration is found by requir-
ing that the terms linear in the spin deviation operators
vanish [Eq. (2.76)]. These lead to the condition

and

+
1~ 5

X(al+bI++. s+al b(++s+H. c. ) .

(2.10b)

hl
sinO& =

2zJS
(2.8)

H =H")+H(&)
2 2 2

where

(2.9)

H~ '=zJS ga(+al +gbt+b(
la

+JS g (aI bI +s+aI+b(++s)

If we ignore the presence of H2 and feed this angle back
into Eq. (2.7a), we then generate an expression for the en-
ergy of the spin system from which the binding energy of
the ferron may be extracted, when the presence of ( T ) in
Eq. (2.4) is recognized. At this point, we recover a
description of the ferron at the temperature T =0 identi-
cal to that contained in our earlier analyses.

The efFect of zero-point fluctuations in the spin system
is contained in H2. These give a contribution to the ener-

gy of the spin system smaller than those considered so far
by a factor of 1/S. Upon using the explicit expression for
the canting angle given in Eq. (2.8), we split H2 into two
parts,

1 +ik l~
a( = —ge a» (2.11)

then introducing new boson operators

1—«»+b»»
q

1
B» = —(a» —b»),

2

(2.12a)

(2.12b)

and their Hermitean adjoints. After these are intro-
duced, a standard Bogolinbov transformation diagonal-
izes H2 '.

Here 0 is the canting angle in the antiferromagnet far
from the ferron, where ~l(t~ =0. We have sin(8„)
=y&HO /2zJS.

The terms in Eq. (2.10a) describe the spin excitations in
the infinite antiferromagnet, in the absence of the ferron.
When this form is diagonalized and its expectation value
is taken at T =0, we have a description of the zero-point
Auctuation contribution to the ground-state energy of the
antiferromagnet, which here is a spin-Aop state. One
proceeds by first transforming to a plane-wave represen-
tation,

—JS y y sin'(8„)(a,+b,++, +a,++, +H. c. )

A

(2.10a) One finds

(&) (&) (2.13a)

(2.13b)
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H2' ' = —zNJS+ —,
' g[e](k)+e2(k)]

k

+y [e](k)] k +k+ ~2(k)Pk Pkl
k

Here

and

e2(k) =zJS[(1—yk)(1+ykcos28 )]'

e](k) =zJS[(1+yk)(1—ykcos28„)]]i

(2.14)

(2.15a)

(2.15b)

g[(h]) (ysHo) ]+(H2)T=o1

(2.20)

where the first two terms are those which emerge from
our earlier treatment, and the final term is the first quan-
tum correction. If the various terms are gathered togeth-
er, and we note that the free-carrier wave function is nor-
malized so that

(2.21)

= 1(H ) = Fg,8zJ

where

(2.16)

zJS z 1 + 1

2NS ~k e.](k) e,(k)

1+yksin (8 )

e](k)

1 —y„sin8„)
e2(k)

(2.17a)

and

Fo =g 2 V, ~
]tj( R] ) ~ [2y,H, + —,

' & V, I g( R] ) I
'1

1

The present treatment then provides the following ex-
pression for the total energy of the system:

ET= ( T) +HoH+2+(H2 ) T=o (2.18)

where, upon using the relation sin(8 )=ysHo/2zJS, we
find

H = — g(I] )
1

0 43J I
1

(2.19)

with yk —z gk exp(l k'5).
In zero external field, the term —zJNS contributed by

H2 ' combines with the term —zNJS to give the energy
zNJS—(S+1) of N singlet pairs, while the second term

in H2 ' is the zero-point energy of the spin waves. The
net effect of H& ' is to lower the energy of the spin system
below that of the Neel state by quantum effects the order
of S '. In zero external magnetic field, the spin-wave
dispersion relations in Eqs. (2.15) reproduce those found
for the Heisenberg antiferromagnet. ' Since we have no
anisotropy field, an arbitrarily small external field gen-
erates the spin-Aop configuration in the system.

We can express Hz~' in terms of the annihilation and
creation operators, then take its expectation value at
T =0 to generate an expression for the change in
ground-state energy of the system produced by the fer-
ron. The result of this calculation, which is straightfor-
ward but tedious, is the following:

we find

AHo A (1—g)V,HEI=(T) — (1 —g) — I d xi/, i4zJ 16zJ

(2.22)

Sums over lattice sites have been converted to an integra-
tion, and D is the dimensionality of the lattice.

When g is set to zero, this expression reduces to our
previous result. The only effect of the zero-point Auctua-
tions is to renormalize the various coe%cients in Eq.
(2.22) (one has g ( 1). For the case where the added parti-
cle is in a delocalized state (g, is a plane wave), the last
term vanishes, and the second term represents the shift in
the band edge upon adding the quasiparticle. This shift is
thus renormalized by the factor (1—g).

Our previous analysis of the question of whether a lo-
calized ferron exists was based on applying the scaling ar-
guments of Emin and Holstein to the energy functional
of Eq. (2.22). Indeed, a functional quite equivalent to
this, with different physical origin, was explored in their
paper. Clearly, inclusion of the inAuence of zero-point
fIuctuations on the binding of the ferron does not change
the structure of the functional, to first order in 1/S. It
then remains the case that ferrons exist in D = 1, no bind-
ing occurs in D =3, and D =2 is marginal, so long as we
consider a type-I ferron for which the angle 0I, which
emerges from Eq. (2.8), is smaller than vr/2 everywhere.
(If, for some sites l near the center of the ferron,
h] ) 2zJS, the angle 8] saturates at vr/2. This is the type-
II ferron, with ferromagnetic core. )

The physical picture of the ferron in two dimensions is
then identical to that put forward in our earlier work. In
D =2, there is no bound state when A is less than a criti-
cal value A, . Here the free carrier is in a plane-wave
state, dressed by coupling to the spins. For
there is a collapse to a "small ferron, " a self-trapped free
carrier in a state with spatial extent the order of a lattice
constant. This is a type-II ferron. Since g) 0, zero-point
Auctuations lower the binding energy of this object, and
raise A, by the amount (1 —g)

We may estimate A, through use of a variational wave
function in two dimensions of the form

When the energy of the infinitely extended lattice is sub-
tracted from that within which the ferron resides, one
finds the change in energy of the system upon adding the
free carrier is

]I(,(p) =
]~, exp( —

—,]Pp) .
(2~)' '

A short calculation gives the result

(2.23)
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Sm.zJA'

mao(1 —g)

1/2

(2.24)

It is widely believed that the high-T, superconductivity
in the copper oxides arises from holes in the Cu02 lay-
ers. In the La2 Sr Cu04 family of compounds, for
example, electron transport is dominated by holes which
predominantly occupy p orbitals on 0 sites, and interact
with the array of spins on the Cu sites. Moreover, in the
limit of strong Coulomb repulsion, the Hubbard model
can be mapped on to the Heisenberg antiferromagnet. '

The 2D Heisenberg antiferromagnet thus can be used to
describe the Cu spins, if they are indeed localized.

The nature of the ground state of the 2D Heisenberg
ferromagnet for spin S =

—,
' is still under discussion. "'

For the 1D case, the exact solution is available, and the
ground state does not have long-range order. ' For D =2
and larger spin (8 ~

—,'), rigorous calculations show that
long-range order exists in the ground state, ' a result
compatible with the spin-wave analysis that is the basis of
the present work. We also find that in one dimension, the
zero-point fluctuations destroy long-range order, because
e, 2(k)-k as k~o. Our calculation is thus compatible
with the results obtained more rigorously, though the ex-
trapolation down to S =

—,
' must be treated with caution.

The problem of whether or not long-range order is
present for D =2 and S =

—,
' remains controversial. '

However, while stoichiometric La2Cu04 may be an ex-
ample of a quantum spin liquid, ' ' nearly stoichiometric
La2 „Cu04 is antiferromagnetic' and becomes super-
conducting on doping with Sr or Ba.'

In such high-T, superconductors, J estimated from the
Neel temperature T~=—220 K, is J—=0.025 eV, while 8'
may be expected to be in the electron volt range. Hence,
Eq. (2.24) yields A, —W in numerical magnitude, which
is in the range envisioned in earlier work. Thus, if this
estimate is correct, the assumption H (& 8'necessary for
the validity of the adiabatic approximation breaks down.
Such large values of 3 mean the s S+ terms neglected
above enter the analysis importantly. A more appropri-
ate trial wave function for this case has been derived re-
cently by Loh et a/. ' Their wave function produces a
larger bindings energy for the ferron in the regime 2 —8'
than does ours; our analysis may then over estimate the
value of A, . It is then quite possible that type-II ferrons
are stable in the high-T, materials, while in conventional
antiferromagnetic semiconductors, the values of 3 real-
ized fall well below those required for the type-II ferron
to exist.

where ao is the lattice constant. If 8'is the free-carrier
bandwidth ( &=A/2ma0 ), then we see that

=4'' ( WzJ)'
C

The critical value of A is thus quite substantial.
We conclude with remarks on the possible implications

of the results above for the high-T, superconducting ma-
terials.

III. RELEVANCE FOR HIGH-T,
SUP ERCONDUCTORS

Finally, we would like to comment on recent very in-
teresting results obtained by Loh and co-workers ' in a
model that may be viewed as mimicking one-dimensional
Cu0 chains. At least in regard to the description of fer-
rons, such models are not relevant to the high-T, materi-
als, because of the very substantial difT'erence in the sta-
bility criteria for ferron formation in one and two dimen-
sions. However, the one-dimensional case is interesting
in its own right, particularly since the authors of Ref. 21
put forward exact results for rings of six atoms. It is of
interest to compare these results with those produced by
our picture. This comparison leads to a physical inter-
pretation of a key result which emerges from the numeri-
cal work reported by Loh et al. '

Since we have a one-dimensional problem, the ground
state of a single hole in the one-dimensional antiferro-
magnetic chain is a ferron. For small values of A, we
have a type-I ferron, and as 2 increases, this state evolves
into one of type-II character is a continuous manner. In
Ref. 7, two holes are placed on the ring, which means we
have a large hole concentration, c& —

—,'. The ferrons thus
interact strongly in this circumstance. The nature of this
interaction can be appreciated from the schematic draw-
ing in Fig. 1, which shows two ferrons in an antiferro-
magnetic chain. If the edges of the two ferrons touch or
overlap, clearly antiparallel alignment of the hole spins is
favored; there is an attractive interaction at large dis-
tance, for singlet hole pairs. However, if two localized
holes are placed very close together in a single state, the
spins in the host are frustrated. This suggests the ferron-
ferron interaction should become repulsive at short dis-
tances, in the singlet state. We shall see this conclusion is
consistent with the results of Ref. 21. (Of course, to mod-
el a real material, one would need to take explicit account
of Coulomb interactions in this limit. )

We assume the presence of repulsion at short distances.
Then as the hole (and thus the ferron) concentration is in-
creased, there must be a first-order "insulator-metal"
Mott transition, at the hole concentration c& -rF/ao,
with rF the linear size of the isolated ferron. In conven-
tional magnetic insulators, such insulator-metal transi-
tions are realized experimentally in a given material (i.e. ,
one has W, J, and A fixed) by changing the carrier con-
centration cz. ' The calculations presented by Loh
et aI., ' carried out at fixed hole concentration instead
with model parameters varied, produce a first-order

,
i' B

FIG. 1. A schematic illustration of two type-II ferrons on the
one-dimensional antiferromagnetic chain. The double arrow
refers to the spin polarization of the localized hole, while the
single arrows describe the orientations of the spins in the host
matrix. If 3 and B are neighboring spins, the exchange energy
JS is gained if the hole spins are antiparallel. But if the ferrons
merge with hole spins antiparallel, the core spins are frustrated,
leading to a repulsive interaction at short range.
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phase transition whose physical character is not dis-
cussed in detail in their paper. We argue they realize the
insulator-metal transition just described. Indeed, if we
use the parameters where the first-order phase transition
occurs in the calculations presented in Ref. 21, the Mott
criterion cited above places the critical hole concentra-
tion near c& —

—,'.
As a function of the coupling strength 3 between the

hole and the localized spins, our picture is the following.
The insulator-metal transition occurs at 2 = 3*. For
2 & A*, the ferron size rI; exceeds the separation be-
tween the holes, the cores thus overlap strongly, and frus-
tration inhibits ferron-ferron binding. We thus realize a
metallic state, of course, with each hole a quasiparticle
dressed by coupling to the local moments. For A ) A*,
the ferrons are "small, " and the attractive couplings illus-
trated schematically in Fig. 1 lead to spin singlet ferron
pairs. The ring breaks into weakly communicating parts.

The authors of Ref. 21 deduced from their results that
the interaction between holes is repulsive, ' our conclusion
is the opposite, so long as the cores do not overlap. We
see in their results, as 3 is increased, the onset of real
space pairing as soon as rz is small enough for the ferron
pair to fit on the six membered ring. At this point, we
have a singlet pair from two ferrons, each formed with
three spins each, each hole localized within its ferron, i.e.,
at opposite sides of the ring. This position of the holes is
consistent with the hole correlation function calculation
(the function g; ) reported by Loh et al. In the limit of
strong coupling, A ~ ao, their Eq. (III.4) gives r = —~/4
for the mixing angle which enters the variational wave
function of Ref. 21. This leads to an isolated ferron bind-
ing energy 3A/4= AS(S+ I)/2, where S =s =

—,'. This
state may be identified with the spin singlet discussed by
Zhang and Rice.

If we extend the above picture to two dimensions, the
ground-state phase diagram is more complex. As we

have seen, for 2 & A„asingle hole does not form a fer-
ron (self-trapped magnetic polaron). Instead, we have a
quasiparticle of plane-wave character. For 3 & 3„the
single quasiparticle collapses to a small ferron. These
may bind into real-space singlets at small hole concentra-
tion, then unbind to form an itinerant gas of spin- —, fer-
rons for A ) A *. If the ferron extends to nearest neigh-
bors of the central spin, we would expect the critical hole
concentration to be the order of z '. lt would be intrigu-
ing to explore this question analytically, or within numer-
ical calculations similar to those report in Ref. 21. Either
approach appears formidable.

IV. CONCLUDING REMARKS

We have investigated the ground state of holes in an
antiferromagnetic medium, with emphasis on the case of
dimensionality D & 3. For D =1, our picture agrees with
that based on exact numerical calculations, ' though our
view of the underlying physics diA'ers from that put for-
ward earlier. In D = 1, the ground state of a single hole is
always a ferron, which evolves continuously from type-I
to type-II character as A increases. We have a spin sing-
let when 3 ~~. We argue that the attractive coupling
between two ferrons is not specific to one dimension, as
has been suggested by other authors in the context of
high-T, superconductivity. However, in the case
D =2, the exchange constant 3 must exceed 3, for a sin-
gle hole to form a ferron. Upon further increase of 3, at
least in theory one may achieve real-space pairing of the
ferrons.
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