PHYSICAL REVIEW B

VOLUME 40, NUMBER 7

From moduli scaling to breakdown scaling: A moment-spectrum analysis

Y. S. Li and P. M. Duxbury

Physics and Astronomy Department and Center for Fundamental Materials Research, Michigan State University,

East Lansing, Michigan 48824-1116
(Received 20 March 1989)

Conductivity and elastic moduli are related to the second moment of the appropriate field distri-
bution in a disordered material. We argue that breakdown is related to the very high moments of
this local-field distribution, and the moment spectrum thus quantifies the crossover between these
two very different classes of properties. We first analyze the moment spectrum, and hence the
moduli to breakdown crossover, for an isolated cracklike flaw in electrical, dielectric, and mechani-
cal problems. A result central to this analysis is the form of the electric field or stress distribution
due to such a crack. The Appendix collects these scaling forms for a cracklike elliptical (or ellip-
soidal) void in electrical and mechanical problems and for a long, thin metallic inclusion in a dielec-
tric and is a major component of the paper. When a distribution of flaws is present in a material,
the moment value at which crossover to extreme scaling occurs is determined by the asymptotic
form of the tail of the local load distribution. We discuss the location of this crossover for exponen-
tial, algebraic, and multifractal tails. Finally, we discuss the ability of the moment spectrum of the
local load distribution to provide nondestructive tests of the presence of large and/or sharp crack-
like flaws in a material. We show that for moment values m > 4 it is possible to detect the presence
of a sharp crack in electrical and mechanical problems. In three-dimensional dielectrics containing
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a sharp metal inclusion, it is shown that such detection is possible for m > 3.

I. INTRODUCTION

If a constant external electric field or stress is applied
to an inhomogeneous material, the local stress or electric
field shows strong spatial fluctuations.?> The size of
these local load fluctuations is quantified by a distribution
function we call the local load distribution L (x). This
distribution function has been intensively studied recently
in the context of the voltage distribution at the percola-
tion point, where it has been labeled multifractal.! In this
paper, we show that the moment spectrum induced by a
random environment provides a useful concept in which
to understand the differences between the scaling behav-
ior characteristic of transport’ and elastic* moduli and
the very different scaling behavior characteristic of
breakdown properties.’

It is known that the effective conductivity of an inho-
mogeneous material is related to the second moment of
L (x),? while the resistive noise is related to the fourth
moment of this distribution.®’ In a similar way, proper-
ties such as elastic constant and thermal conductivity are
related to the second moment of the appropriate local
load distributions. By contrast, fracture strength, dielec-
tric strength and other breakdown properties are initiated
in regions where the local load is largest.’ It is intuitively
plausible, and in this paper we give quantitative evidence
that, these load hotspots are related to the very high mo-
ments of the local load distribution. A study of the full
moment spectrum thus allows us to understand in detail
the crossover from low-moment scaling (transport prop-
erties, etc.) to high-moment scaling (hotspots and break-
down properties).
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To study this crossover, we first focus attention on iso-
lated cracklike flaws that most enhance local fields. The
low-moment—to—high-moment crossover of systems con-
taining such isolated cracks is discussed in Sec. II. To
carry out the analysis, we need simple scaling forms for
the local stress or electric field distributions near isolated
cracks. These forms are derived in the Appendix, and are
summarized in Egs. (15) and (22) of the main text.

When a distribution of flaws is present in a material, it
is not possible to find the detailed form of the stress or
electric field distribution. Despite this, we argue in Sec.
III that it is possible to estimate the point at which the
crossover from low moment to extreme scaling occurs, by
studying the form of the tail of the local load distribution.
This analysis is carried out for systems with exponential,
algebraic, and multifractal tails in L (x). A numerical il-
lustration of these arguments is provided by calculating
the moment spectrum as a function of dilution for two-
dimensional random resistor networks. These results are
displayed in Fig. 3.

In addition to a summary of the main conclusions
drawn in Secs. II and III, Sec. IV contains a discussion of
the ability of various moments of the local load distribu-
tion to detect the presence of a large and/or sharp crack-
like flaw in a material. This is an issue of central impor-
tance in nondestructive testing of materials and struc-
tures.

II. MOMENT SCALING DUE TO AN ISOLATED
CRACKLIKE FLAW

Consider an isolated crack of length, @, and with a cur-
vature at the crack tip, «, in an otherwise, homogeneous
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system with large volume ¥V =L¢ (a <<L). It is known
that such an isolated crack (which is modeled as a crack-
like void) makes negligible contribution to the overall
conductivity, =g, i.e., that

ZCW/ZONI_‘O( VinC/V) Py . (1)

where X is the background conductivity and V. is the
volume of the inclusion. By contrast, such an isolated
crack drastically reduces the electrical and mechanical
strength of the system, as near the crack tip, strong load
enhancements occur, and for the electrical case one finds,

E,/Eq~(a/2k)'"* (for a>>1), (2)
which leads to an electrical strength of order
Ey(a)/E,(0)~Ey/E;,~(2k/a)'"* (for a>>1) . (3)

E,(a) is the electrical strength of the sample with a flaw
in it, E,(0) is the electrical strength of the material with
no flaws, and the electric field is applied perpendicular to
the crack. The essential difference between the scaling
forms (1) and (3) is that a crack of size, a, has very little
effect on conductivity until a~L, while electrical
strength reduces as the square root of, a, for all
1<<a <<L.

A similar square-root reduction in mechanical strength
occurs in systems containing cracks, as can be seen from
the (plane stress) Griffith formula® o,=(2ye,/7a)'"?,
where y, is the energy needed to create new crack sur-
faces, while e is the elastic modulus of the background.
If one approaches the mechanical problem from a stress
analysis viewpoint, a similar expression to (3) holds for
mechanical strength with E, and E, replaced by
stresses.® In this paper, we use stress and electric field in-
tensity formalisms, as they provide a framework in which
to better understand the crossover from moduli scaling to
breakdown scaling.

To demonstrate that the moment spectrum of the local
load distribution contains Egs. (1) and (2) as limiting
cases, note that the maximum electric field occurring in a
system may be written,

Epox~(E™) " (4a)
so that
E, (flawed system)/E,(0)~{Ey) /{(E™)!/™
asm-—>o . (4b)

For the case of insulating inclusions, it can be seen that
the effective conductivity is related to the second moment
of the electric field distribution by noting that the power
P

P=VE}34= [ E*S(F)dr=3(E*)V , (5)
so that
Sa/Zo=(E})/{E?) . (6

Comparing Egs. (4b) and (6), it is seen that study of the
function
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R, =(Ey)/(E™)!/m M

provides a simple quantity that typifies the crossover
from low-moment to extreme moment scaling as a func-
tion of m. For a system containing an isolated crack, this
quantity shows a crossover from O(1/V) corrections
when m is small to the typical breakdown scaling of Eq.
(3) when m becomes large. We now study this crossover
analytically for electrical, mechanical, and dielectric sys-
tems containing an isolated crack.

Consider an isolated cracklike elliptical void in the
geometry shown in Fig. 1. In elliptic coordinates, &, 7,

x =c coshf cos”n, z=c sinh{ siny (8)
with the ellipse equation being
x%/a*+zr/b2=1
and &)
c2=a2—p?,

and the electric field applied in the z direction has ampli-
tude E, far from the ellipse. Solving Laplace’s equation
in elliptical coordinates yields the electric potentials,

$in=—4 csinhfsiny , (10a)
bout= — Eyc sinh€ sinn+ Be ~£siny , (10b)
with
A=Ey(a+b)/b
and (10c)

B=—Eya(a+b)/c .
The electric fields are then given by
E.=—(1/71)0¢ /3§
and (11
E,=—(1/7)3¢/0n ,

where

S

=

FIG. 1. The geometry of the two-dimensional ellipse prob-
lem.



18

r=c(sinh?¢ +sin’y)'/? . (12)

The full expression for the electric field moments is given
by

(Emy=0/V) [ (E}+E})"dV . (13)

It is known that the second moment (m =2) and in-
clusion energy scale as

(E?)/{E})~1+0(1/V), (14)

the corrections to the conductivity due to the isolated
crack are related to the second moment [see Eq. (6)], and
this implies Eq. (1) for a single crack. We have not been
able to analytically evaluate Eq. (13) for any m > 2, but
the important scaling behavior may be found by noting
that the electric field as a function of radial distance
parallel to the major axis of the ellipse behaves as shown
in Fig. 2(a). The important scaling behavior that occurs
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FIG. 2. (a) The (z =0) electric field, E,(r), as a function of
distance from the tip of an ellipse (a =200, b=1). The
mathematical form of the scaling behavior in E,(r) is given in
Eq. (15) of the text. (b) The z =0 stress field, o,(r), as a function
of r for an oblate ellipsoid (@ =200, b =1) in an elastic back-
ground. The dashed line has slope — %
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in this figure is summarized mathematically by (see the
Appendix)

1+a,,/r¢ for r>>a , (15a)
E,(r)/Ey~ {1, +cy.(a/2r)V/? for k<r<a, (15b)
ki +ky(a/26)? for r<x, (15¢)

where a,, is a dipole moment for the two-dimensional
problem of a crack in a resistive background, « is the
crack tip curvature (=b2/a) for an ellipse, and c,,, c,,,
k.., and k,, are constants for the two-dimensional (2D)
electrical problem. In fact, the scaling behavior of Eq.
(15) is highly universal, and applies (with different a, c,
and k) to ellipse, ellipsoidal, and slitlike cracks in 2D and
3D linear elastic (plain stress) and electric problems (see
the Appendix). This is illustrated for the 3D elastic prob-
lem in Fig. 2(b) where the z-direction stress is plotted as a
function of radial distance from the tip of an oblate ellip-
soidal void (in the x-y plane). Again, the near-field
square-root behavior crosses over to a far-field dipole
form, in agreement with Eq. (15). As seen from Eq. (15b),
an important singular behavior occurs near the crack tip,
and the angular dependence (to x axis) of this singular be-
havior is

E,(r,0)~Eq(a/2r)/*sin(6/2) ,

(16)
E (r,0)~Eq(a/2r)"*cos(6/2) ,

for 6 small. This more general form does not, however,
change the moment scaling behavior derived below, and
henceforth we use Eq. (15) in our scaling analysis. The
most important physical observation is that as the mo-
ment value is increased, the regions (15b) and (15¢) in-
crease their contribution to the integral (13). This is ex-
plicitly seen by subdividing and approximating the in-
tegral (13) as shown below:

VAE(N /B~ [ rdr(1+ay, /ri)"

+J

k<r<a

+fr<Kr drlky, +ky(a/26)' 721" .

rdrlc,, +cy.(a/2r)?]m

(17)

Keeping the most singular terms in each integral, we find

([E(r)/E ™) ~1+mO (V. /V)+(a/2)"*k*/V
(18)

where V. is the volume of the inclusion. The
O(V;,./V) term is estimated by considering the leading
term in the first integral, and including the correct angu-
lar terms. This is necessary, as this term is a dipole in-
tegral, in which care must be taken to ensure that all
terms are included, and that boundary terms do not pro-
duce unphysical results. The result is a term of order the
inclusion energy, which leads directly to the result quot-
ed.

From Eq. (18), we can see that R,, [see Eq. (7)] has the
following scaling forms:
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1—0 (Vi /V), m<<m,,

R~ 2k /a)'?, m >m, , (19)
where m, is found from

(a/26)™"*k*/V ~1 (20)
or

m,~21In(V /xk?*)/In(a /2x) . 1)

Due to the universality of Eq. (15), this result straightfor-
wardly generalizes to three-dimensional electric problems
and to elastic problems in two and three dimensions.

There is also a great deal of similarity between the
problem of an insulating crack in an conducting back-
ground and the problem of a conducting crack in an insu-
lating background. The former problem has been dis-
cussed as the simplest example of an electrical breakdown
problem,’ while the latter is the simplest starting point
for understanding defect-induced dielectric breakdown.>®
It is well known that in two dimensions, the electric field
enhancement at the tip of a metal ellipse oriented parallel
to the applied electric field in an insulating background,
is the same as that at the tip of a void inclusion oriented
perpendicular to the applied field and in a conducting
background (see the Appendix). The asymptotic form
(15) then applies equally well to the dielectric problem in
two dimensions, and hence that Eqgs. (17)—(21) express
the moment scaling appropriate to that problem. The
dielectric problem is different in three dimensions, how-
ever, as there the most important cracklike defect is a
fingerlike inclusion,>® which induces the following elec-
tric field behavior near its tip [see Eqs. (A28)-(A33) of
the Appendix]:

H—a3d/r3 for r>a,
E,(r)/Ey~{In(r/2a)+a/2r for k<r<a, (22)
1+(a/b)*/In(2a/b) for r <k ,

in this case the integration over the region near the crack
tip leads to

VALE (N /Eo)™) ~ [ “r2(1+as, /r¥)mdr
+ [ “r¥dr(in(r /2a)+a /2r]"

+&3[1+(a/b)*/In(a/b)]™, (23)
so that

([E(P)V/E )™)Y ~1+mO(Viy /V)+(a/2)"*/V . (24)

nc

The moment value at which crossover between low-
moment scaling and extreme scaling occurs is then given
by

m,~1In(V /i) /In(a /2x) . (25)

For extremely sharp cracks (k—0), it is seen from Egs.
(18) and (24) that if k becomes sufficiently small, a singu-
lar behavior can occur for low-moment values. For the
problems described by Eq. (18) this moment value is

m.,=4, (26)

cl
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while for the 3D dielectric problem [see Eq. (24)],
My =3 . 27

For m >m_;, moments are affected by extremely sharp
cracks, and in fact these moments are singular as k—0
(see also Ref. 7).

III. SYSTEMS WITH FLAW DISTRIBUTIONS

In this section, we consider systems with a distribution
of voids. These voids are randomly distributed and may
have any shape. When such a distribution of flaws is
present in a material, a distribution of local loads is in-
duced. The point at which extreme scaling sets in, is
determined by the form of the tail of the local load distri-
bution L (x). In this section we consider exponential,
algebraic, and multifractal load distribution tails. A
specific illustration of our results is provided by numeri-
cal studies on random resistor networks.

A. Exponential tailsin L (x)—p > p,
random resistor networks

When the dilution, f =1—p, is small, the distribution
of bond currents (and hence voltages) in the 2D L XL
random resistor network is known to be exponential.> In
this case, the largest current in a system of size L? is of
order I . ~InL, and for a fixed applied current of L
amps, the high moments of L (I) are then approximated
by

Imax
(I™y~A [ "1™ exp(— ADdI . (28)

This is true as long as m/ A4 >>1, and 4 ~ —In(1—p) for
p small. As p approaches p., A4 becomes small, and a
multifractal bond current distribution must be con-
sidered.! The integrand in Eq. (28) has a maximum at
I,e.x ~m/ A, after which it decays exponentially. If this
peak lies far above the upper limit of the integral in Eq.
(28), the algebraic term dominates, and the integral is ap-
proximated by

(I™)~(nL)"*1/(m +1) for m>m,~InL  (29)
so that

(Im"yYm~InL ~1,, . 30)

Thus, for m >m, ~InL, moments drawn from an ex-
ponential local load distribution exhibit extreme scaling.
For m <m_ the full integral in (28) must be calculated,
and in this regime the systems exhibit low-moment scal-
ing. To illustrate the crossover from low-moment to
high-moment scaling numerically, we present in Fig. 3
these moments calculated for 100X 100 random resistor
networks for a range of values of p. In these calculations
we find (I,)/{I™)!/™ for fixed external supplied current
as a function of p. As in the single crack case, m — o
yields a crossover to breakdown scaling, while low mo-
ments are nonsingular near the pure limit, as is the con-
ductivity. A plot of these moments as a function of sys-
tem size is shown in Fig. 4, where it is seen that low mo-
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FIG. 3. Moment scaling as a function of dilution for

100X 100 square lattice random  resistor networks.
(I,)/{I™)!™ is plotted on the vertical axis for (A), m =2;
(@), m =12; (0), m =30; (V), I,. For comparison the conduc-
tance is also plotted (+).

ments saturate at a finite value for large system sizes,
while extreme moments continue to decrease logarithmic-
ally as a function of system size (this is the characteristic
“size effect” of breakdown in random media®). Since
m.~1InL, we find that each moment has a critical length
associated with it, and that this critical length is given by
L.~ exp(m). For L>L_m), the moments saturate,
while for L <L (m), the moments show the 1/InL size
effect characteristic of breakdown. In this sense, the
breakdown limit is a critical point in moment space at
which L, — o exponentially.
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FIG. 4. (Iy)/{I"™)'™ as a function of system size for

p =0.90 random resistor networks, for (A), m =2; (0), m =10;
(®), m =20; (V), I,. For comparison the conductance is also
plotted (+).
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B. Algebraic tails in L (x)

Consider a bond current distribution which is algebrai-
cally decaying in I and depends on a single exponent s.
The current moments are then given by

Imax
Imy~ [ "™ rm=sar . 31
I, is found from
I SL~1,
which implies (32)
I ~L 1/s .

max

Evaluating the integral gives
Iy ~(L'm =705~ 1) /(m —s +1) . (33)

For m >s —1, the first term in the parentheses dom-
inates, and

(I")y~L*"™" form>s—1, (34)
where
x(m)=(m—s+1)v/s . (35)

Here v is the percolation correlation length exponent and
is included in the definition of x (m) for comparison with
systems having a multifractal local load distribution (e.g.,
the percolation problem at p,). From (34), we see that

<Im>1/m~1max~Ll/s (36)

provided m >>s —1. That is, the bigger s is, the more
slowly the crossover to extreme scaling occurs. As s—» o
the distribution becomes exponential, and m_, ~InL ap-
plies.

C. Multifractal L (x)

In this case, it is known that a moment scaling like that
of Eq. (34) occurs, but that x (m) is nonlinear in m [we
note in passing that a plot of (33) also looks nonlinear in
m]. However, for large enough m, the multifractal spec-
trum does become linear in m, and once this has oc-
curred, the moment scaling is strongly affected by large
currents. However, breakdown scaling does not become
dominant until the condition m >>s prevails. In the mul-
tifractal case, s is the exponent one would get if the
asymptotic linear behavior in the multifractal spectrum
were extrapolated back to the origin. For the percolation
problem it is seen from the data of Ref. 1 (Fig. 6) that
s ~4, so that extreme scaling and low-moment scaling be-
come identical for moments in the part of the multifrac-
tal spectrum that is both linear and satisfies m >>4.

IV. DISCUSSION AND CONCLUSIONS

We have shown that the moment spectrum occurring
in a random system shows a crossover from low-moment
scaling indicative of transport or elastic moduli, to ex-
treme moment scaling indicative of breakdown scaling
[see, e.g., Egs. (18) and (19) and Fig. 3]. It was found that
for m >>m_, the moments exhibited extreme scaling,
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while for m <<m_, the scaling behavior is more charac-
teristic of low-moment scaling [see Egs. (20) and (21)].
This crossover is illustrated for random resistor networks
in Figs. 3 and 4. When the disorder is stronger, so that
algebraic or multifractal tails are induced in the local
load distribution, the crossover to extreme scaling de-
pends on the exponents characteristic of the tail of L (x).
In particular, it is evident that the crossover to extreme
scaling occurs more quickly the longer the tail of the lo-
cal load distribution becomes [see, e.g., Eq. (35) and the
discussion following it].

For an isolated crack, although the crossover to ex-
treme scaling does not occur until m, as given by Eq.
(21), another question of academic as well as practical in-
terest (for nondestructive testing) is to determine the mo-
ment values at which crack tip effects first become experi-
mentally observable. It is seen from Egs. (17) and (18)
and the discussion following these equations, that for
electrical and mechanical problems, the effects of crack
size and tip curvature become important for m >4. In
the two-dimensional dielectric problem, m >4 is again re-
quired before crack effects become important. However,
it is seen from Eq. (24) that for m >3 the three-
dimensional dielectric problem shows strong crack tip
effects. In all of these cases, although measurements will
evidence the presence of a crack, the measured signal is
reduced by inverse-volume factors. Thus, although this
sort of measurement is of academic interest, it is probably
not a robust measure of the presence of cracks, as would
be required for practical applications of nondestructive
testing.’

From the foregoing discussion it is evident that
methods for measuring the full moment spectrum of a
material under load is of great practical as well as
academic interest. Unfortunately, currently there is no
experimental method for measuring other than the
second moment (moduli), the fourth moment (noise,
damping), and the infinite moment (breakdown proper-
ties).
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APPENDIX

In this appendix, we outline the derivations of the cen-
tral asymptotic forms given in Egs. (15) and (22) of the
text. These results are derived from existing solutions to
ellipse and ellipsoidal inclusions in homogeneous back-
grounds. These problems are classical and heavily stud-
ied, but to our knowledge this is the first time that the
important scaling behaviors for both electrical and
mechanical problems have been collected together and
compared.

In all cases we consider an external electric field or ten-
sile stress applied along the z direction. We also restrict
our attention to the most severe flaws, namely, ellipses
and oblate ellipsoid voids with their long axis perpendicu-
lar to the direction of applied load in the electrical and
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elastic cases, and ellipse and prolate ellipsoid perfect con-
ductors with their long axis parallel to the direction of
applied electric field in the case of dielectric problems.
These ellipses and ellipsoids are characterized by one or
two long axes, a, and one or two short axes, b, and we
consider a /b large to simulate the most severe flaws.

1. Electrical problems

a. 2D insulating void in a conducting background

The solution for the electric potential is given in Eq.
(10) of the text. The electric fields are then calculated us-
ing Eq. (11). Setting =0, yields for the electric field in
the z direction as a function of distance from the ellipse
tip (on the z =0 line):

E,(§)=E,[1+cosh§yexp(§y—E)/sinhé] , (A1)
where

coshéy=a/c
and (A2)

sinh§y,=b/c

with a, b, ¢, defined as in Egs. (8) and (9) of the text. The
electric field at the defect tip is then

Eq,=E(1+a/b)=E[1+2"%a/2x)'"?] (A3)

with k=b?/a. Equation (A1) can be written in terms of
r, the distance from the defect tip,

|+ ala +b)[(a +r)—(2ar +r2+5b2)17?]

E.(n=E, cXr2+2ar+b?)172

(A4)

A plot of Eq. (A4) is given in Fig. 2(a). When r is large,
E,(r) asymptotes to a dipole form,

E,(r)=Ey(1+a,,/r?) (AS)
with the electric dipole moment
a,,=ala+b)/2 . (A6)

Since the inclusion is sharp, the electric field becomes
large near the defect tip [as seen in Eq. (A3)], the nature
of this divergence is found from a small-r expansion of
Eq. (A4) which shows

E,(r)~E,, whenr<<k/2, (A7)
where k=b2/a and
E,(r)~Ey[1+a(a +b)/c*a/2r)'?],
when a >r>k/2 (A8)
=E,lcy, +ecylar2nt’?], (A9)

with
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c.=1
and (A10)
cyea/la—b)"?.

Note that ¢,, and c¢,, are O(1) as a — « and k—> .

b. 3D insulating void in a conducting background

The single inclusion shape and orientation that is most
effective in enhancing electric fields for this case is penny
shaped and oriented perpendicular to the electric field
direction. To simulate this we use an oblate ellipsoidal
void inclusion, and the electric fields are found by solving
the Laplace’s equation in ellipsoidal coordinates. The
geometry is like that of Fig. 1 of the text, with the ellip-
soid found by making a solid of revolution about the z
axis. The relationships between Cartesian and oblate el-
lipsoidal coordinates is given by!®

x =c cosh§ cosn cose ,
y =c cosh{ cos7 sing , (A11)
z=c sinhsiny .

The electric potential for a uniform conducting back-
ground containing this “penny-shaped” void, with a con-
stant electric field E, at infinity in the z direction, is then
found by solving Laplace’s equation in oblate ellipsoidal
coordinates to find ,

¥, = —cE, sinh& sinn[ 1 —(cot ~ 'sinh&,— 1 /sinh&y) / 4] ,
in 0 0 0

(A12)
You= —cE sinh§ sinn[ 1 —(cot ~'sinhé—1/sinh&)/ 4] ,
(A13)
where
A =cot'sinh&,—tanh&,/coshé,
=cot™!(b/c)—bc/a’ . (A14)

The z-direction electric field as a function of distance, 7,
from the ellipse tip in x =y =0 plane is then given by

E,(§)=Ey[1—(cot™ 'sinhé—1/sinh&)/ 4] . (A15)

The electric field at the tip of the defect is found by
evaluating Eq. (A15) at £=£, and gives

E;,=Ey{1—[cot™(b/c)—(c/b)]/ A}, (A16)
which for large a and small b reduces to
E i, ~Eo[2/m+4a/(7b)]
=Elk, +ky(a/26)?] (A17)
with
ki=2/m
and (A18)

ky, =42V%) /7

FROM MODULI SCALING TO BREAKDOWN SCALING: A...

4895

for large a. Rewriting (A15) in terms of the distance
from the defect (crack) tip yields

E,(r,z=0)=E,—E{cot™ '[(a +r)?*/c?—1]?
—[(a+r?/c?=11"12}/4, (A19)

and expanding for large r then shows that the ‘““far-field
solution” is of a dipole form

~Ey(1+a;,/r3) for r>>a , (A20)
where the dipole moment
a;,=c3/34 . (A21)

A small-r expansion of Eq. (A19) shows the near-field
solution yields

E,(r)~Ey[c,, +cy.(a/2r)?] for k/2<r<a (A22)
with
Ci.=2b/mc
and (A23)
., =1/4 .

When r <k/2, Eq. (19) reduces to E,(r)~Ey,.

2. Dielectric problems

a. 2D problem of a conducting ellipse
in an insulating background

The most effective-field enhancing inclusion is a thin el-
lipse with its long axis parallel to the direction of the
electric field (z axis). Mathematically, the solution is
identical to that given above for the 2D electrical case (al-
though geometrically the conducting ellipse has its long
axis parallel to the applied field), and expression for the
electric field at the crack tip, in the near field and in the
far field are identical to those given in Egs. (A5)-(A10)
for the electrical case.

b. 3D problem of a conducting ellipsoid
in a dielectric background

The most efficient-field enhancing defect is formed by
making a solid of revolution about the z axis of an ellipse
with its long axis in the z direction. This “fingerlike” in-
clusion is the most important single inclusion for this
dielectric problem. Solving Laplace’s equation in the
prolate ellipsoidal coordinates!®

x =c sinh§ sin7 cos¢ ,

y =c sinh sinn sing , (A24)
z=c cosh{ cosn
leads to the electric potentials
¥,=0, (A25)
Yo = —cEycoshé cosn
X(1—{In[tanh(£/2)]+1/coshé} /B),  (A26)
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where

B=In[tanh(£,/2)]+ 1 /cosh&, . (A27)

The electric field in the z direction at x =y =0 as a
function of distance from defect tip is then

E,(§)=E,+E,{In[tanh(£/2)]+coshé /sinh’E} /B .
(A28)

From this expression we find the electric field at the de-
fect tip to be

E, =E,{1+a?/[b*In(2a/b)]} . (A29)

tip

The far-field (large-r) solution again has a dipole form

E,(r)—Ey~a3, /r*, (A30)
where the 3D electric dipole moment

a3y =2c*/3B . (A31)
For k <r <a, the electric field reduces to

E,(r)—E,=E,{[In(r/2a)+a/2r]/B} (A32)
and for r <k,

E,(r)~Eg, . (A33)

3. Elastic problems

a. 2D void in an elastic background

We consider the geometry of Fig. 1 with the external
electric field replaced by a tensile stress. The calculation
of the stress field due to this inclusion is a standard calcu-
lation,!! and the vertical stress along the horizontal direc-
tion is given by [taken from Ref. 11(a), Eq. (130)]

0, (&;m=0)=0(1+{ A[3exp(—&)— exp(—3£)]

I8

The stress at the defect tip is then given by
Oip=0o(1+2a/b) . (A37)

Expressing (A34) in terms of r, the radial distance from
the crack tip, and doing the large-r expansion, we find

o,(r)—oy~a,, /r’ for r>>a (A38)
with the 2D elastic dipole moment

ay,=a’/2 . (A39)
A small-r expansion of (A34) yields

o,(r)—oo~aga/2r)’? for r>k,=b2/2a . (A40)

b. 3D void in an elastic background

The most important single defect is a penny-shaped in-
clusion with its long axis oriented perpendicular to the
direction of the applied tensile stress. To study this, we
form a solid of revolution about the z axis of the ellipse
inclusion of Fig. 1. The exterior stress and strain fields
are most easily found using the equivalent inclusion
method, and the z-direction stress as a function of dis-
tance from the defect tip is given by [this is found after
simplifying Eq. (126) of Ref. 11(a)],

o,(E)=0o[1+a*b(K,cot™ 'sinhé—K, /sinh&

+K,/sinh3¢)/(c5N,)], (A41)
where
K,=(12—10/v)g +2a*/c*—(25/22/v)a*?, (A42)
K,=12a*/c*—6(g +2)a%/c?+6g , (A43)

N,=6[4a*b?/c®—2(1—1/v)g?—(2a*—8a?b?)g /c*],

(A44)
+ B cosh&} /sinh®¢) (A34)  .nd
g=[a*b cot (b /c)—a?b?c]/c’, (A45)
where
- 36.)—3 , A35 where v is Poisson’s ratio. A plot of (A41) as a function
A =coshgl exp(36o) exp(§o)] ( ) of r (distance from the crack tip) is given in Fig. 2(b).
B =cosh’, . (A36)  The stress intensity at the defect tip is found to be
J
_a¥2a*/b*—(1.5—1/v)a®/b*+1—1/v]+a?A[1/v—(1.5+1/v)a?/b?]
Oiip= 0o 2,2 2 4252 4 42 ’ (A46)
[(@*/b*+1—1/v)/bc+a*A(a*/b*—2—2/v)—a*A*(1+1/v)/bc]
[
where with
A=tan"'(c/b) . (A47) kip=—m3v+2)/4, ky,=8'"2. (A49)

For large a /b and 1/v <<a /b, we find

oo~ —m(3v+2)/4+2a/b=k,, t+k,,(a/26)'* (A48)

A large-r expansion, yields the expected dipole behavior

o,(r’—og~as,/r® for r>>a, (AS50)

y
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where
Qas,, =(K2_K1/3)a4b0'0/(C2N1)

is the dipole moment. A small-r expansion yields

(AS1)

ay(r)——c70~1/r‘/2 for small-r and a >r>«k/2  (A52)
and

oy(r)~oy, forr<<k/2. (A53)
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