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Two new strictly deterministic lattice-gas automata derived from Ehrenfest’s wind-tree model are
studied. While in one model normal diffusion occurs, the other model exhibits abnormal diffusion
in that the distribution function of the displacements of the wind particle is non-Gaussian, but its
second moment, the mean-square displacement, is proportional to the time, so that a diffusion
coefficient can be defined. A connection with the percolation problem and a self-avoiding random
walk for the case in which the lattice is completely covered with trees is discussed.

I. INTRODUCTION

Ehrenfest’s wind-tree model! has contributed much to
the understanding of kinetic processes in gases. Original-
ly introduced to clarify the nature of the Stoszzahl ansatz
in the Boltzmann equation, it was further studied about
20 years ago by Hauge and one of us? in connection with
the divergences that occur in the density expansion of the
transport coefficients in a moderately dense gas. The
model consists of randomly placed diamonds (trees) in
the plane, with parallel diagonals between which indepen-
dent point (wind) particles can move, reflecting from the
trees in one of four directions, that can be taken to be the
+x and Xy axes. The wind particles all have the same
speed. The trees, although hard for the wind particles,
can be “hard” for each other (nonoverlapping, NOV) or
“soft” for each other (overlapping, OV). By using density
expansions to compute the diffusion coefficient D of the
wind particles through the trees, it was found that in the
NOV case, the mean-square displacement A(?) of the
wind particles was proportional to the time ¢, so that a
diffusion coefficient could be defined and computed to
second order in the tree density p. In the OV case, how-
ever, an abnormal diffusion process was discovered, due
to excessive backscattering of wind particles by overlap-
ping trees. In this case A(z) was not proportional to t—
in fact, it increased slower than t—and no diffusion
coefficient could be defined.? Furthermore, in analogy
with the percolation problem it was surmised that, for the
OV case, a critical tree density p, existed below which
the model exhibited —albeit abnormal —diffusive behav-
ior, while above p, no diffusion would occur, since all
particles would be trapped, and A(¢) would be bounded
by a constant for large time t.>® Later, Gates* intro-
duced several lattice versions of the wind-tree model and
rigorously proved for those models that for sufficiently
high p, there is a complete absence of diffusion.

In all these cases the abnormal behavior implied that

Ilim A(t)= lim (Ax?)=2Dt (1)
— © t— 0
was violated in that either A(z) grows slower in time or is
bounded by a constant. Here Ax is the displacement of a
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wind particle in the x direction and the average is over a
canonical ensemble of trees.

Recently, with the advent of -cellular-automaton
fluids,’ lattice gases with particles moving through fixed
scatterers have been considered.®’ The model mainly
studied in this paper (model A4) is a new deterministic
lattice-gas wind-tree model.® This model is introduced in
Sec. II, where the diffusion coefficient in the Boltzmann
approximation is also derived. In Sec. III the simulation
results for the diffusion coefficient and the deviations
from the Boltzmann result are discussed. In Sec. IV the
non-Gaussian distribution function and the kurtosis of
the diffusion process are given. In Sec. V, the connection
with the percolation problem and the possible evidence of
a dynamical phase transition will be considered. In the
last section, Sec. VI, results for a different lattice wind-
tree model (model B) are presented.

II. THE MODEL AND THE BOLTZMANN
DIFFUSION COEFFICIENT

The model considered here is a lattice wind-tree model.
In this model scatterers (the trees) are randomly put at
the sites of a square lattice with unit lattice constant,
which then behave as two-sided mirrors. These mirrors,
that can align along either one of the diagonal directions
of the square lattice, will be called left or right mirrors,
depending on the direction of alignment (Fig. 1). A wind
particle (photon) with unit speed and four possible direc-
tions can propagate along the bonds of the lattice and be
reflected by the scatterers. Two versions of the model
have been considered: the mirrors are fixed (model A4) or
they flip to the other diagonal direction after being hit by
the wind particle (model B). In this paper we will mostly
be concerned with model A4.

Starting from a particular lattice site at ¢ =0, the posi-
tions of the wind particles are considered only at integer
times, so that the system is a deterministic, time-
reversal-invariant lattice-gas cellular automaton and the
Boolean field description introduced by Frisch et al.® can
be used for the motion of the wind particle. Thus, the
basic equations of motion for the wind particles are
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right mirror left mirror

FIG. 1. Typical mirror configuration on the lattice. Dotted
and dashed lines indicate the two sublattices, respectively, dou-
ble arrows indicate the mirrors.

n(r+e;,t+1)=(l—m;, —mg)n;+mgn; ., +myn; _,,
(i=1,3)

(2)
n(r+e;,t+1)=(1—m; —mgln;,+mpn;, _+myn;,,

(i=2,4)

where e;(i=1,2,3,4) is the unit velocity in the direction i
(see Fig. 1). The n;, m;, and my are the Boolean fields of
the wind particle with velocity e;, the left and the right
mirrors, respectively. They all have the values O or 1 and
on the right-hand side of Eq. (2) the dependence on r and
t has been suppressed. Here r is the position of the wind
particle at time ¢ and the components of r as well as ¢
take only integer values. In the Boltzmann approxima-
tion, the collisions of the wind particle with the scatterers
(mirrors) are uncorrelated, and the Boltzmann equations
for the one-particle distribution functions

f,-(r,t)=<n,-(r,t)) ,

the ensemble average of the Boolean fields of the wind
particle, reads

4
filtte,t+D)=fir,0)=3 T,f;(r,1),
j=1

(i=1,2,3,4), (3

where the T}; are the elements of the collision matrix:
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—Cr—C,  Ci 0 c,
Cr —Cr—C, C, 0
r= 0 c, —Cr—C,  Cp g
c, 0 Cr —Cr—C,
(4)
with
e =(my),Cr={mpg) , 5)

the concentrations of the left and right mirrors, respec-
tively. When C, =Cpg, Eq. (3) is very similar to the
Boltzmann equation for the continuous Ehrenfest wind-
tree model.'°

The diffusion coefficient Dp associated with the
Boltzmann Eq. (3) can be derived straightforwardly, us-
ing the method of Ernst and Binder.” One finds

Dy=dz—1, ©6)

where ¢ is the Boltzmann approximation to the usual
velocity autocorrelation function formula of the diffusion
coefficient

6= (0,0, (1))
t=0

so that’

1

1—E£(1+T) @

¢B = <Ux Ux> .
£=1

Here the (row) vector (v, |=(1/v"2)(1,0,—1,0), while its
transpose, the (column) vector |v, ), is the x component
of the velocity of the wind particle in the e; basis. The
— 1 contribution to Dy is a contribution that appears in
general in the Green-Kubo autocorrelation formulas for
the transport coefficients due to the discreteness in space
of the lattice gas (see the Appendix).

The eigenvalue problem associated with the matrix (4)
is easily solved and yields the eigenvalues

A,=0, A,=—2(C,+Cr)=—2C,
}\’3=—2CL> }\’4=—2CR

(8)

with the corresponding orthonormal eigenvectors

1 1
|}»1>='5 s l}\42>=3 11>

— ke

)
1 1

1 1
—1 ) |}\‘4>_E _1
—1 1

=1
3=+

Inserting the projection operator
4

S A (A

i=1
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into (7), one obtains
C

= 10
95 8C, Cg (1
For the case C; =Cp =C /2, one has then
1 1
= —1 11
DB 2C i ( )

consistent with previous results.

III. THE DIFFUSION COEFFICIENT
FROM THE SIMULATIONS

The simulation results reported in this and the follow-
ing sections were obtained for square lattices of typically
1024 X 1024 sites with several thousand wind particles on
it. Unlike Ref. 8, where the wind particles always started
at the lattice sites of a close-packed region in the center
of the lattice and where consequently nearby particles
had a good chance of following the same path, here the
particles are put randomly through the lattice, which re-
sulted in much better statistics. The simulation usually
ran for several thousand time steps, occasionally extend-
ing to 100000 time steps. In all simulations, periodic
boundary conditions were used for the configurations of
the scatterers. That is, while the wind particle moves in
the infinite checkerboard, the trees are arranged periodi-
cally.

The time dependence of the diffusion coefficient D, as
defined by Eq. (1), is for some mirror concentrations and
C,=Cr=C/2, given in Fig. 2. One sees that D indeed
reaches a flat plateau, independent of ¢, after a rather
long time, in agreement with Ref. 8. In fact, the number
of time steps for this to occur can be in excess of 2000 for
concentrations around C=0.8. The dependence of D on
the concentration C of the mirrors is given in Fig. 3 for
fixed t=4000, when D has reached its plateau value for
all C. It is clear that D only agrees with Dy [Eq. (11)] for
small C, as expected, but the deviations from Dy are
small for all C. The deviations are positive, except for
concentrations C close to 1, contrary to those caused by
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FIG. 2. Time dependence of CD with D defined by Eq. (1),
for C; =Cr and C=0.25, 0.5, 0.8, and 1.0. The error bars in
this figure and all the following figures indicate the standard de-
viations; no error bar means that the deviation is smaller than
the size of the symbol.
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memory effects (long time tails), that are always nega-
tive.>3 The reason for these positive deviations of D from
Dy are indeed due to an entirely different mechanism:
the fast zigzag diffusion through local patches of parallel
aligned mirrors in the lattice. That is, although the aver-
age concentration of left and right mirrors are fixed and
their left and right orientations occur on the average ran-
domly in the lattice, there will be local fluctuations of the
mirror orientations around this average random orienta-
tion that tend to align them parallel, either oriented to
the left or to the right. In both cases these parallel mir-
ror orientations will speed up the diffusion process, lead-
ing to a positive deviation of the diffusion coefficient D
from the Boltzmann value Dy.

We estimated the effect of the local concentration fluc-
tuation by computing the diffusion coefficient D corre-
sponding to a lattice with concentration C and then
averaging. This assumes that the particle stays long
enough in a parallel aligned region that the method of the
last section can be used to approximate the local behav-
ior. Defining a fluctuation away from the average con-
centration C; =Cp =C/2 of the mirror concentrations
by & through

C,=(C/2)(1+38), Cr=(C/2)(1-35), (12)

where C; and Cj are the actual concentrations and using
the Eqgs. (6) and (11), one obtains, for the fluctuating
diffusion coefficients D, the expression

= 1 52

D=———"—1=Dp+—

2c(1-82) * P 2cC

for 5% small. Averaging Eq. (13) and assuming that
(§?)=aC, one finds that a=1 or

(13)

D=(D)=Dg+1, (14)

fits the simulation results very well for 0<C <0.8 (cf.
Fig. 3, dashed line). It is interesting to note that around
this same concentration the histograms of the closed or-
bits of the wind particles given in Ref. 8 show a marked
change in behavior. On the other hand, the negative de-
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FIG. 3. Concentration dependence of CD at t=4000 (solid

circles) for model 4 and CD’ at t=2048 (open circles) for model
B for C;, =Cpg. The dotted (dashed) lines is the Boltzmann re-
sult without (with) the fluctuation term added.
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viations from Dy found for C>0.8 are due to the
preponderance of closed orbits at these high concentra-
tions, which slows down the diffusion.

In Fig. 4 a plot is given of the diffusion coefficient D as
a function of Cy for C;#Cy and C=1. The dotted line
is given by Egs. (6) and (10), while the dashed line, given
by Eq. (14), agrees well with the data. For C, =0 or
Cr =0, i.e., when all mirror are parallel, ¢, given by Eq.
(10), diverges, so that D is no longer defined. However,
as Fig. 4 shows, for very small random mixtures of left
and right mirrors a value for D close to Dy is already ob-
tained for al 0<C = 1.

IV. THE DISTRIBUTION FUNCTION
AND CLOSED ORBITS

For a normal diffusion process, Fick’s law holds, i.e.,

BPD) _ pyp(r,s), 15)
ot

where P(r,t) is the probability density to find the
diffusing particle at r at time ¢. The solution of this equa-
tion for P(r,t) is a Gaussian distribution function, which
implies Eq. (1) for the mean-square displacement. Con-
versely, however, Eq. (1) does not necessarily imply Eq.
(15), i.e., a Gaussian distribution function, as was already
pointed out by Gates.* In Fig. 5, we plot a typical radial
density distribution function for the C;p=Cpy case,
P(r,t)—2m7rP(r,1), i.e., the probability of finding the par-
ticle between » and r+dr at a finite time ¢. Indeed one
clearly sees that the distribution function of the wind par-
ticles is not a Gaussian, although A(z)~t¢.- The non-
Gaussian character of P(r,?) is most visible in the peak at
the origin and is caused by the large probability for a par-
ticle to be trapped in a small finite area near its starting
point, i.e., repeating its motion periodically on the lattice
in a closed orbit. The “peakedness” of the distribution
function can be characterized by the kurtosis'!

_ (ax*)y
(Ax2)? 77

which vanishes for a Gaussian distribution function. Fig-

(16)
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FIG. 4. Cy dependence of the diffusion coefficient D, scaled
by 4C;, Cr /C, for C, +Cr = % The dotted (dashed) line is the

Boltzmann result without (with) the fluctuation term added.
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ure 6 shows the density dependence of K. It is clearly
only for very low mirror concentrations, when the
diffusion process is Boltzmann-like, that the distribution
function approaches a Gaussian. It is interesting to note
that, nevertheless, Eq. (1) holds for all concentrations, in
spite of the many closed orbits. This is related to another
deviation of the distribution function from a Gaussian
relevant at large distances. This deviation is due to the
fact that the particle diffuses somewhat faster than nor-
mal due to the presence of the aforementioned zigzag
motion, which appears just to compensate the slower
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FIG. 5. (a) Typical radial density distribution function
P(r,t)=2mrP(r,t) for C=0.5 and Cx=C, at t=2000 (dots).
The dashed (solid) line is a Gaussian curve using the Boltzmann
(measured) value for the diffusion coefficient; (b) contribution
from open orbits; (c) contribution from closed orbits.
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FIG. 6. Concentration dependence of the kurtosis K at

t=4000.

slower spreading at small distances due to the closed or-
bits, leading to A(z)~t, in spite of the non-Gaussian char-
acter of the distribution.

V. RELATION WITH THE BOND
PERCOLATION PROBLEM

Relations between the wind-tree model and the per-
colation problem have been noted before.?”* For our
present model, the precise relation to the bond percola-
tion problem has been pointed out to us by Nienhuis.!?
The mirrors on the original lattice can be considered as
the bonds of a bond percolation problem on two sublat-
tices, indicated by dashed and dotted lines, respectively,
in Fig. 1. At a given lattice site left and right mirrors be-
long to a bond of different sublattices. The percolation
threshold of these two square sublattices corresponds in
our model to a lattice fully occupied by mirrors, so that
C=1 and C;, =Cy, and the bonds of the two sublattices
have an equal chance of 1 to be occupied. In this case
(Cp =Cg=1) the trajectory of a wind particle will trace
out the boundary of a percolation cluster. In fact, our
C, =Cr=1 case of a fully mirror occupied lattice is
directly related to the ring-forming smart kinetic walk
(SKW) without trapping sites of Weinrib and Trugman.!?
In such an SKW, only the origin, i.e., the starting point
of the walk, but no other previously visited sites, can be
revisited by the walker. Weinrib and Trugman have
shown that the ring-forming SKW on a honeycomb lat-
tice traces out the external perimeter of a critical site per-
colation cluster. They argued that for the mean-square
displacement of the N-step walk holds

(RE)~N¥»=N?¥T, (17

This was later proved by Saleur and Duplantier!* for a
square lattice. The difficulty that Weinrib and Trugman
noticed with the SKW on a square lattice, viz., that of a
self-intersection of the walk at single sites, is eliminated if
one considers our mirror model and bond percolation. In
that case, a mirror will define the trajectory of a wind
particle at a twice visited mirror site unambiguously (cf.
Ref. 13, Fig. 4), so that a non-self-intersecting walk re-
sults. Coniglio et al.!> have used the interacting self-
avoiding random walk to describe the SKW. They
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showed that the weights of an SKW and a self-avoiding
walk (SAW) for a given trajectory are related by

Wekw =Wsawe™'™ (18)

where M is the number of probability 1 steps. In our mir-
ror model, this M is just the number of mirrors visited
twice by the wind particle. Assuming then that the tri-
critical temperature ® for polymer collapse is equal to
the temperature ® of Coniglio et al.>~!" and, in addi-
tion, that universality holds, the C=1 case of our mirror
model corresponds to the polymer collapse case of the
polymer problem. This is supported by our result that,
within the experimental accuracy, we find indeed v=2%
for our model.

Furthermore, for our model, Eq. (17) implies asymptot-
ically, that for open orbits

(Ar¥ (), ~t37, (19)

where the average is only over open orbits. It has been
argued by Nienhuis!? that the probability p(z), that a
particle orbit is still open at a long time ¢, is given by

p(t)~t =17, (20)

We have checked Egs. (19) and (20) in our model by
counting the number of closed and open orbits. Figures
7(a) and 7(b) show that our simulations are consistent
with the predictions. Our numerical estimates of the ex-
ponent in Eq. (19) is 1.141+0.003 and of the exponent in

0.000

T, (a)
-0.5004 O,

—1.000+ RN

log P(t)

-1.500 1+ RS

—2.000 1+ Sl

—2.500 4t 4ttt
01 2 3 45 6 7 8 91011121314 151617
n

1.000

(b)

0.800 1

O

i S
1 ‘I__i_-I—-i"I"I'-}—}—}_f-I‘i_{-{ i I
~F

-
’

() e
o o
> [+2]
o (e}
o o

0.200 {

0.000
0

2500 5000 7500 10000

t

FIG. 7. (a) Logarithmic (base 2) plot of the probability for an
orbit still open at time #=2". The dashed line is a plot of Eq.
(17) with proportionality constant equal to 1; (b) plot of
{Ar(2)?),/2t, where the dashed line is a function ~¢!/7.
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Eq. (20) is —0.142+0.003, in agreement with the predict-
ed values.

As pointed out in the Introduction, there are systems
for which a critical density, p., exists, such that for
p <p., independent particles diffuse (normally or abnor-
mally) through a set of scatterers, but for p >p,_, the par-
ticles are always trapped in finite regions of the system.
At this critical density then a dynamical phase transition
occurs.!® Such a situation could obtain for the present
lattice-gas automaton for C=1, since then Eq. (20) im-
plies that every particle orbit eventually (i.e., for t — o)
closes. Thus, it seems reasonable to conjecture that C =1
is the critical density for this lattice gas, since
C, =Cg =1 coincides with the percolation threshold in
the corresponding percolation problem. To check this,
we have plotted in Fig. 8 the ratio of the number of
closed orbits to those of all (closed and open) orbits as a
function of concentration at the fixed time ¢t =25, The
curve shown does not quite reach the value 1 at C=1, as
it is expected to do, since =2 is not long enough for
this to occur. A variation of the present model that ap-
pears to exhibit a critical density below C=1 is currently
under investigation.!'®

VI. THE FLIPPING MIRROR CASE

Finally we will give some results for the flipping mirror
model, model B. There are some important differences
between this model and model A, the fixed mirror case.
First, it is impossible in model B to have the wind parti-
cle trapped in a closed orbit, so that one expects a Gauss-
ian distribution function. Second, if we start with more
than one wind particle on the lattice, there will be an in-
teraction between these wind particles through the flip-
ping of the mirrors. Thus, for this model, the numerical
results will depend on both the wind-particle density and
the mirror concentration in the system. In Fig. 9, we plot
a typical density distribution function for the flipping
mirror model, which is very close to a Gaussian distribu-
tion.

In Fig. 3 the density dependence of the diffusion
coefficient D’ of the flipping mirror model is shown (open
circles). D’ is obtained by putting randomly about 2600
particles on the 1024X 1024 size lattice, using periodic
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FIG. 8. Ratio of the number of closed orbits at ¢t =2'7.
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FIG. 9. Radial density distribution function for flipping mir-
ror model for C=0.5, t=2048 (dots). The solid line is a Gauss-
ian with the measured value of D’.

scatterer boundary conditions. We remark that the devi-
ations of D' from the Boltzmann result Dy are negative
for intermediate concentrations and positive for high
concentrations. The negative deviations can be related to
memory effects connected with such events as ring
events, while the positive deviations can be related to the
zigzag motions mentioned before. For this we first note
that if one extrapolates the values of D’ for intermediate
concentrations to C=1, one arrives at a value of D’ close
to the value of D for fixed mirrors. Similarly, the actual
value of D’ at C =1 is close to that given for D by Eq.
(14), which we shall denote by D, and which incorporates
the effect of zigzag motions. In fact, within the accuracy
of our computer simulations, one has for C=1,

D'=D—(Dy—D)=D+(D—Dy) . 21)

This suggests that the increase of the diffusion coefficient
D' for the flipping model when the concentration ap-
proaches C=1 is due to the zigzag motion of the wind
particles at these high mirror concentrations, since the
difference (D—Dj) in Eq. (21) is due to the zigzag
motion. One could wonder why this zigzag effect is not
present at lower concentrations. The reason is the in-
teraction of the wind particles through close successive
collisions with the same mirror. To see this, we distin-
guish two characteristic lengths: the mean free path ! of
the wind particles due to their collisions with the mirrors
and the average distance a between wind particles. If
a <1, as is the case at low mirror concentrations, the zig-
zag effect will disappear, because the positions of the mir-
rors will be randomized by the successive collisions they
suffer with many wind particles. This can be demonstrat-
ed experimentally by setting up a close-packed wind-
particle region of 50X50=2500 wind particles in the
center of the lattice. For a short time, t=500 say, the
wind-particle density in this region will remain high,
since the wind particles will not have time to move very
far out of this region. As a consequence the diffusion
coefficient D'~Dp, because the mirrors flip very fre-
quently by successive collisions with nearby wind parti-
cles. This is confirmed in Fig. 10.

The similarity of the increase of D', due to zigzag
motions, and the decrease of D, due to closed orbits, to
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FIG. 10. Concentration dependence of CD' at =500, if the
wind particles start in a close-packed region.

their respective values at C=1, as seen in Fig. 3, might
well be related to the compensation of the contributions
of closed orbits and zigzag motion to D, that lead to a
mean-square displacement proportional to ¢ in model A4,
in spite of the non-Gaussian distribution function.

In conclusion, we remark that although we believe that
we understand the physical basis of the diffusion process-
es in the two models discussed in this paper, a quantita-
tive theory beyond Boltzmann, i.e., understanding quan-
titatively the deviations from the Boltzmann approxima-
tion, remains an open question.

ACKNOWLEDGMENTS

The authors are very grateful to Dr. B. Nienhuis for
very helpful correspondence concerning the percolation
problem. They are also indebted to Professor H. van
Beijeren for discussions. This work was performed in
part under Department of Energy (DOE) Grant No.
DE-FGO02-88ER 13847.

APPENDIX: DISCRETIZATION EFFECT
ON THE TRANSPORT COEFFICIENTS
OF LATTICE-GAS FLUIDS

The effect of the space discretization of a lattice on the
transport coefficients will be discussed for a two-
dimensional lattice with lattice constant b and particles
with the same speed v, so that the time 7 for a particle to
traverse the distance between lattice sites is given by
7=b/v. As in the continuous case, we can associate a
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dynamical variable G (¢) with any transport coefficient
L, so that if

N—1
G()=3 J(n)r, (A1)
n=0
where J (n) is the current related to G, then
. (Gt )
L=1
tLII; 2t (A2)

where t=N7, and { ) denotes an equilibrium ensemble
average. From (A1) follows immediately

N—1N-—-1

(G)=3 3 (J(n)J(ny))7* (A3)
ny=1n,=0 ’
Using stationarity in time, i.e.,
<J(n,)J(n2)>=R(n1—n2)=R(n2—n1) N (A4)
one has, with n, and n =n, —n,, as new variables,
N—1N—1
(G(t*)=3 I R(n)7
n,=0n,=0
N—1N—1-n
=23 3 Rm?+tR(0)r
n=1 n;=0
—1
=2 2 (t—n7)R(n)r+tR(0)r (AS5)

n=1

In the continuous case the last term would not contribute
to {(G(t)*), but in the discrete case, considered here, it
does. For sufficiently fast decay of R (n),

o

lim 1 3, nR(n)?=0,

> n=1

so that
2
L =lim————-<G (@
t—0

§ n)7+1R(0)r

=§< J(0)J(n))r—1{(J(0)J(0))T (A6)
n=0

In (A6), the first term corresponds to the usual Green-

Kubo formula for the transport coefficient L, while the

second term is a correction due to the discreteness of the

lattice. Taking J=v,, (A6) leads directly to Eq. (6) for
=1.
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