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We study the zero-temperature critical behavior of the dilute Ising spin glass. In our model
nearest-neighbor exchange interactions randomly assume the values +J, 0, —J with probabilities
p/2, 1 —p, and p/2, respectively. We have generated 15th-order series for the Edwards-Anderson
spin-glass susceptibility as a function of concentration p on hypercubic lattices in general dimension.
Their analysis leads to critical concentrations and exponents that differ from those of percolation.

I. INTRODUCTION

Elucidation of the properties of the diluted Ising spin
glass (DSG) has been the focus of considerable recent in-
terest. ' The Hamiltonian of this system is written

g JISS~, (1.1)
(, )

"'''
where S;=+1, while the nearest-neighbor exchange vari-
ables J; =J; assume the quenched values —J, 0, and J
with the respective probabilities p2, 1 —

p&
—p2, and p, .

When p2 =0, this problem reduces to that of the dilute Is-
ing ferromagnet, and the transition temperature T, (p, )

decreases monotonically from its pure Ising value T, (1)
to zero at the percolation threshold, p& =p, . The transi-
tion at T=O, as a function of p&, is characterized by the
percolation critical behavior.

Much of the recent interest in this problem concerned
the three-dimensional phase diagram, in the T —p, —p2
space. ' For fixed p, and p2, one qualitatively expects a
transition from the paramagnetic state into an ordered
magnetic state (ferromagnetic, antiferromagnetic, or spin
glass), at a temperature which decreases with (p, +pz).
In this paper we concentrate on the symmetric case,
p ~ =pq =p/2. Here, one expects spin-glass (SG) ordering

F = —[lnZ], = —lim [Z"—1],/n,
n —+0

(1.2)

where [ ], denotes the configurational average over the
J; s. In this method, each site is assigned n spin vari-
ables [S, , u= 1,2, . . . , nI, having 2" states. The average
replicated Hamiltonian then involves (2"—1) order pa-
rameters, S;, p;~=S; S;P, . . . ,p;~:—S; S,~. . .S;", . . . ,

p,
' "—=S,'. . .S,", and one can study the critical proper-

ties via the generalized susceptibilities

~'"—= y[&S,S, )e],—= y &&,
' "l,' ")„. (1.3)

J J

below Ts(p), with Tg(p) decreasing to zero at pso. We
shall specifically address two questions: First, is ps~
equal to the percolation threshold p„as recently suggest-
ed, or is it higher than p„as indicated in Refs. 4, 5, and
7—9? Second, what is the critical behavior of the zero-
temperature dilute spin glass (ZTDSG), i.e., the sym-
metric problem at T=O with p approaching ps&?

A convenient method to approach the second problem
follows the treatment of Stephen and Grest' of the per-
colation problem. They used the "replica trick, " in
which the quenched averaged free energy is calculated
via
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Herc ( ) denotes the thermal average for a given
quenched configuration, while ( )„denotes the average
using the replicated (nonrandom) Hamiltonian.

For the percolation problem (T=O, p2=0), all the 2"
states are equivalent. This implies that all the y'~'s
diverge at p, as ~p

—p, ~

~, with the exponent y~ result-Vp

ing from the limit q —+1 (n ~0) of the q =2"-state Potts
model. '

For the ZTDSG problem, y' ' vanishes for odd q, and
one is left with 2" ' states (and order parameters). Tak-
ing the limit T~O before n ~0, Aharony and Giri and
Stephen found that all these states are equivalent, yield-
ing the critical behavior of the q~ —, limit of the q-state
Potts models, However, it was soon realized that this or-
der of limits is inappropriate, since it eliminates some of
the frustration effects. More recently, Harris used the
limit of large coordination number (z =o + 1 ))1), which
means a relatively small number of loops, or high dimen-
sionality, to show that the y' q's diverge at diferent
thresholds, p, &p2&p4&. . . . At the ZTDSG transi-
tion, we expect the Edwards-Anderson susceptibility
gE~—=y' ' to diverge. If Harris's result persists at low
dimensionalities, this implies that the divergence of yEA
at ps& is governed only by the SG order parameters p; ~,

similar to the spin-glass thermal transition at p=1. One
would thus expect the same critical behavior along the
whole line T (p). On the other hand, if the thresholds

p2 are very close to each other, then the crossover at
T=O from percolation to the —,

' state Potts and/or to the
thermal behavior may be slow and complicated. Indeed,
preliminary series expansions of GAEA by Aharony and
Binder (AB), based on eight terms in p, were unable to
separate ps~ =p2 from p„and the exponents were close
to those of percolation. In this paper we extend these
series by seven additional terms in order to obtain im-
proved accuracy.

In order to evaluate the significance of our new results
we shall need to compare them with the best available es-
timates for the three systems: percolation, the q ~—,

' lim-

it of the q-state Potts model, and the thermal spin glass,
in general dimension. A summary of the best extant ex-

ponent estimates for the susceptibility exponent y for
percolation and spin-glass models in general dimension is
given in Table I. For percolation, the third-order e ex-
pansion" converges very well, and our new 15th-order
series results' are in excellent agreement with its predic-
tions for d=4, S. In three dimensions (3D) the new series
and recent simulation' results for both thresholds and
exponents are in excellent agreement. There are exact'
results for 2D percolation and the 2D q =

—,
' Potts model

(y =3.267). For the higher-dimensional q =
—,
' Potts mod-

el and the thermal spin glass, we will have a serious prob-
lem with comparisons. For the thermal spin glass the
third-order e expansion' fails to converge, and the series
results are also problematic in the lower dimensions. We
shall discuss this in more detail in the conclusion and in
Ref. 16. Previous exponent estimates for the thermal
spin glass are given in Refs. 17 and 18. For the q =

—,
'

state Potts model the best general result is of first order in
e, videlict y = 1+3e/17. If we compare the
first-order results for percolation ( y = 1+e/7), and
thermal spin glass (y = 1+e), with the more accurate cal-
culations we see that the first-order results are not very
reliable. Thus from a practical viewpoint we do not have
any —,

' state Potts results available for comparison in gen-
eral dimension; and it is really only for percolation that
we have a complete picture.

The remainder of this paper is organized as follows. In
Sec. II we describe the series generation, and present the
series in Table II. The analysis is discussed in Sec. III,
with results for the thresholds from both the present and
previous calculations being given in Table III. Table IV
contains the results of our exponent measurements. We
conclude in Sec. IV with a discussion.

II. GENERATION OF THE SERIES

In order to determine the location and nature of the
zero-temperature dilute spin-glass (ZTDSG) critical point
we have obtained low-concentration 15th-order exact
power series expansions of the Edwards-Anderson sus-
ceptibility,

TABLE I. Estimates for y from the literature.

Thermal spin glass
Series'
Series
Series'

Percolation
Exact
Series'

ZTDSG
Series'

5.3+0.3

2.38

2.7

2.9+0.5

1.805+0.02

2.0

2.0+0.4

2.0+0.2

1.435+0.015

1.4

2.23
1.7+0.2

1.185+0.005

'Reference 27.
Reference 18.

'Reference 16.
Reference 14.

'Reference 12.
Reference 5.
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=—g [(S;SJ) ],„=1+g a (m, n)p d"EA

E,J mn

=1+ gb(m)p -(p p)
—r

(2.1)

for the bond dilute +J Ising model on general d-
dimensional hypercubic lattices. This calculation is part
of a project to calculate extended series for many systems
in general dimension; recent calculations include lattice
animals, ' isotropic random percolation, ' and the finite-
temperature dilute and nondilute Ising spin-glass sys-
tem. ' The identification of and distinction between
different critical behaviors and thresholds for the ZTDSG
required citation of some of the new results for percola-
tion and spin glasses in Table I.

The series have been generated via the Harris scheme
that uses only no-free-end (NFE) diagrams. This in-
creases the eSciency of the calculation considerably rela-
tive to using total enumerations of the graphs as was
done by AB. A detailed description of the application of
this method to the calculation of the first three moments
of the +J spin glass will be given in Ref. 16, so we give
below only a brief survey. According to the Harris
scheme we write

where

f, =e"xp PJ; gS; S

and

p;=exp h g S; SP
a&P

We write

[Z"],=Tr g p;g (S;,h)' /
(, &g S;,hg S,h

where z =2d, and S; = [S; j, with a = 1, . . . , n being the
replica index and n the replica number. To eliminate
free-end diagrams, g (S;,h) should obey

d-dimensional hypercubic lattice. 8'd(r) is the weight of
the NFE diagram I, and 5g( I ), is the cumulant contri-
bution of this diagram to g

We calculate 5g for each of the NFE diagrams, which
are tabulated through to 15th order, ' by introducing a
function g ( S;,h ) into the replicated partition function

Z "],=Tr II p; II f,j

y' =y', ",+ y w, (r)s~(r), ,
r

(2.2)
Trs g(S, h) p f)

g(S;,h)=
Trs g(S,h)'pJ

(2.4)

where

FACT =(1+p)i(1—ap)

and cr=2d —l. FACT is the susceptibility for the Cayley
tree that has the same coordination number (2d) as the

After solving Eq. (2.4) we substitute g(S;,h) into (2.3),
and by differentiating (2.3) twice by the field h and taking
the limits n ~0 and h ~0, we finally obtain the contribu-
tion of the diagram I to the zero-temperature spin-glass
susceptibility,

5g(r)= gz, p 2nb(r)p(1—+p)+ g [1+[1—zk(I )]p] [1+[1—z&(r)]p] g P( r,p) C&k( r)
(1—o.p) kWl rmr

(2.5)

where z;(r) is the number of neighbors of site i in the di-

agram I, and n&(I ) the total number of bonds in dia-
gram I . I" is a subdiagram of I, and the probability of
obtaining a subdiagram I" when we average over the di-
lution is

P(l ', )= '(r ~(1 — )
'

~P =P P
where nb(I") is the number of bonds in subdiagram I".
Ck& is the Edwards-Anderson correlation between the two
sites k, l, and equals [(SkSi) ],. The early terms of the
new series are in agreement with AB modulo some very
minor discrepancies that are caused by misprints in AB.
We are certain that the NFE graph enumerations are reli-
able for both spin-glass and percolation problems (and
thence for the ZTDSCx), as the 15th-order series that we

generate' ' from them agree with existing series' ' for
both problems in low dimensions. The coeScients
a (m, n ) from Eq. (2.1) of the series are given in Table II.

The series are extremely well behaved, with the
coefficients b (m) being positive in all integer dimensions,
and monotonically increasing for d 3. To illustrate this
we quote the b(m) to three-digit accuracy in 3D. The
terms for m=1, . . . , 15 are 6, 30, 150, 675, 3.13X10,
1.32 X 1Q", 5.83 X 10, 2.3 X 1Q, 1.03 X 1Q, 4.Q5 X 1Q,
1.75 X 10, 6.70 X 10, 2.90X 10, 1.08 X 10, and
4.73X10 . As one can see, the ratio between successive
terms does not fluctuate very much. In contrast, the
thermal spin-glass series for g have alternating signs in
3D. More accurate values of the coefBcients can be cal-
culated from the data in Table II.
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TABLE II. Series coefficients fory, where' =I+ g „a(m, n)p d"

1

2
3
4
4
5
5
5
6
6
6
7
7
7
8

8
8
8
9
9
9
9
9

10
10
10
10
10
11
11
11
11
11
12
12
12
12
12
12
13
13
13
13
13
13
13
14
14
14
14
14
14
14
15
15
15
15
15
15
15

1

2
2
1

3
1

3
5
2
4
6
2

6
1

3
5

7
1

3
5
7
9
2
4
6
8

10
2
4
6
8

10
1

3
5
7
9

11
1

3
5
7
9

11
13
2
4
6
8

10
12
14

4
6
8

10
12
14

a(m, n)

0.000 000 000 000 000
0.000 000 000 000 000
0.000 000 000 000 000

—0.125 000000 000 QOQX 10'
0.000 000 000 000 000

—0.210000 000 000 000 X 10
0.000 000 000 000000
0.000 000 000 000 000
0.367 166 666 666 666 X 10'
0.000 000 000 000 000
0.000 000 000 000 000

—0.145 705 SSS 555 55S X 10'
0.000 000 000 000 000
0.000 000 000 000 000
0.989059 722 222 222 X 10
0.117311 111 111 111X 10
0.000 000 000 000 000
0.000 000 000 000 000

—0.467 875 388 888 888 X 10
—0.585 261 333 333 333 X 10

0.312 500 000 000 000 X 10
0.000 000 000 000 000
0.000 000 000 000 000
0.160726 554 194444 X 10
0.427 582 566 666 666 X 10'
0.625 000 000000 000 X 10'
0.000 000 000 000 000
0.000 000 000 QQO 000

—0.729 493 746 496 030X 10
—0.216 626 836 460 317X 10'

0.555 55S 555 555 556 X 10
0.000 000 000 000 000
0.000 000 000 000 000
0.729 656404493 169X 10
0.167 777 029 477 126X 10
0.166997 203 014726 X 10

—0.113888 888 888 889 X 10
0.000 000 000 000 000
0.000 QOQ 000 000 000

—0.2S4 103 676 069 280 X 10'
—0.690 282 099 418 361 X 10
—Q.819453 285 667 176X 1Q

0.134233024691 357 X 10
0.500 000 000 000 000 X 10
Q.QOOQOQ QOQOOOOOO

0.000 000 000 000 000
0.257 097 092 989 665 X 10"
0.146 994 632 570 225 X 10"
0.701 763 332 276 203 X 10
0.238 118827 160494 X 10'
Q. 100000000 000000 X 10'
Q.OOOOQOOOOOQQOOO

0.000 000 000 000 000
—0.77S 694318 509 213 X 10"
—0.557 493 969 5QQ Q21 X 10"
—0.329 627 612 241 148 X 10'

0.276 784 074 074 074 X 10
-0.391 111 111111111X 10'

0.000 000 000 000 000
0.000 000 000 000 000

2
3
3
4
4
5
5
6
6
6
7
7
7
7
8
8

8
8
9
9
9
9

10
10
10
10
10
11
11
11
11
11
11
12
12
12
12
12
12
13
13
13
13
13
13

14
14
14
14
14
14
15
15
15
15
15
15
15
15

1

1

3
2
4
2
4
1

3
5
1

3
5
7
2

6
8

2
4
6
8
1

3
5
7
9
1

3
5

9
11
2
4
6
8

10
12
2
4
6
8

10
12

1

3
5
7
9

11
13

1

3
5
7
9

11
13
15

a(m, n)

0.000 000 000 000 000
0.000 000 000 000 000
0.000 000 000 000 000
0.125 000 000 000 000 X 10
0.000 000 000 000 000
0.210000 000 000 000 X 10
0.000 000 000 000 000

—0.224055 555 555 555 X 10
—0.143 111 111 111 111X 10

0.000 000 000 000 000
0.886 944444444444 X 10'
0.570 111111111111X 10'
0.000 000 DOQ 000 000
0.000 000 000 000 000

—0.192 669 583 333 333 X 10
—0.235 475 000000000 X 10'

0.000 000 000 000 000
0.000 000 000 000 000
0.936 192 722 222 222 X 10
0.113819000000000X 10'
0.000 000 000 000 000
0.000 000 000 000 000

—0.719 566 346 944444 X 10'
—0.125 950463 944444X 10
—0.564021 222 222 222 X 10

Q.OOO 000 000 000 000
0.000 000 000 000 000
0.311073 803 265 872 X 10
0.607 017 394 928 571 X 10
0.278 988 292 063 491 X 10
0.125 000 000 000 000 X IQ'

0.000 000 000 000 000
0.000 000 000 000 000

—0.180782 346 645 061 X 10
—Q.7S1 32495S 81.3 112X 10
—0.152 890 911265 432 X 10'

0.250 000 000 000 000 X 10'
0.000 DQQ 000 000 000
0.000 000 000 000 000
0.678 364 192 531 764 X 10
0.340 262 523 719297 X 10
0.769 074227 860671 X 10

—0.477 777 777 777 778 X 10
0.000 000 000 000 000
0.000 000 000 000 000

—0.953 043 555 667 327 X 10'
—0.271 368 449 001 112X 10"
—0.439 S76 632 715 S57 X 10'
—Q.479 Q83 6Q6 52S 573 X 10
—0.145 555 555 555 555 X 10

0.000 000 000 QQQ 000
0.000 000 000 000 000
0.26240790O926066X 10"
0.914204795 517 114X10"
0.187 162 694 985 778 X 10"
0.237 261 553 155 515X 10
0.465 543 209 876 S43 X 10
0.200 000 000 000 000 X 10
0.000 000 000 000 000
0.000 000 000 000 000
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Percolation
Ref. 12

—'(Exact)
0.2488+0.0002
0.16005+0.000 15
0.118 19+0.000 04
0.094 20+0.0001
0.078 685+0.000 03
0.067 70+0.000 05
0.059 500+0.000 05

Percolation (1/o. )

Ref. 26

0.518 5

0.232 0
0.153 3
0.1157
0.093 30
0.078 32
0.067 56
0.059 42

TABLE III. Estimates for p, .

DSG (15th)
This work

0.69+0.02
0.266 5+0.001 0
0.164 5+0.000 5

0.120 1+0.000 5

0.095 08+0.000 05
0.079 15+0.000 02
0.067 98+0.000 05
0.059 67+0.000 05

DSG (AB)
Ref. 5

0.55

0.26
0.16

0.068

DSG (1/cr)
Ref. 4

0.566 5

0.240 2
0.155 9
0.1168
0.093 91
0.078 68
0.067 78
0.059 57

DSG (PB)
Ref. 6

0.22 —0.25
0.155—0. 166
0.117—0. 120
0.0935—0.0955
0.078 —0.0795
0.0673 —0.0683

III. ANALYSIS

The methods used in the analysis of the series have
been discussed in depth in Refs. 12 and 19. There and
here, we have analyzed the series for integer dimensions
1 ~ d 9. We assume critical behavior that includes non-
analytic con Quent corrections to scaling, which arise
from the irrelevant operators. This gives the form

and

(p p) r)1—+a (pso —p) '], d&6

X'"-(pso —p) 'l»lps& —pll',

(3.1)

(3.2)

We have obtained graphs of Pade approximants to y as a
function of the correction exponent 4, for selected
thresholds in the range p )p, . All analyses were made
by two different algorithms ' for fitting Eq. (3.1) which
we call Ml and M2. We have fitted Eq. (3.2) with an
analysis method from Ref. 24. In addition to these
threshold-biased analyses, we have made estimates of y
via a technique that is not threshold biased. This
method' involves division of series term-by-term, map-
ping the threshold to 1.0. Since we only have one series
in this case, we have divided the terms of the square of
the series by the terms of the series itself.

In the threshold-biased analyses we searched for the
threshold that gave optimal convergence of the different
approximants. In each case we checked for consistency
between the exponents at the best converged thresholds
and the exponents obtained from the unbiased analyses.
This consistency was achieved in all dimensions above
two. It must be noted that convergence is very good for
all the series above two dimensions.

We present the results of the analyses in Tables III
(thresholds) and IV (exponents). The results of threshold

estimates for percolation from our new series' and from
the I/O. expansion for percolation are given in Table III
for comparison purposes. The errors for all our new re-
sults have been estimated as follows. For the results of
the divided series in Table IV there is an error of about
+0.5 of the last quoted digit from limit of reading prob-
lems. The errors for the threshold-biased exponents and
the thresholds themselves are quoted explicitly in the
tables on a case-by-case basis. These are based on the ex-
tremes of the regions of convergence of the Pade approxi-
mants for the range of threshold choices that were con-
sistent with the divided values. We believe that it is very
unlikely that the true result for a series of this length lies
outside the ranges that we have given, but there may be
effects that appear only in higher-order diagrams that we
cannot take into account. We quote four significant
figures for the 1/o expansion. The expansion may not be
accurate for so many figures, but errors are dificult to es-
timate in this expansion.

From a comparison of the results from the 15-term
series for percolation from Ref. 12 and the results of the
present calculation for the dilute spin glass, we see that
there is no overlap of the ZTDSG threshold ps& with the
percolation critical point p, . This distinction holds in all
dimensions. We consider these results to be decisive, and
note that in most cases the distinction would hold even if
the error ranges for both sets of results were substantially
increased. The high-dimensional thresholds are close to
the 1/~ expansion values ' for both the percolation
and ZTDSG (Ref. 4) problems. The difference between
percolation and ZTDSG values is about the same for
each technique, although the 1/o. results are consistently
lower. Overall, we obtain a clear separation between per-
colation and ZTDSG thresholds.

The exponent estimates are not as clearcut as the

TABLE IV. Our estimates for r and 5& for the ZTDSG.

Divided series
(b, )

= 1.0)
r (M1) r (M2) r(M1)

Divided series
(best convergence)
5,{M1) r(M2) 5)(M2)

Threshold biased

r

1.44
1.2

2. 1

1.48
1.22

2.0
1.45
1.2

1.4
1.5
1.0

2. 1

1.46
1.22

1.2
0.9
0.7

5'4 —0.8

2.05+0.05
1.46+0.06
1.22+0.07

1.7+0.3
1.2+0.2
1 0+-o.'3

1.0+0.7
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threshold ones, and we shall discuss these on a
dimension-by-dimension basis. It t

hasizep asized that with the exception of percolation and the
20 q =

—,
' otts model, we do not have clear exponent

e . n we can observeva ues for comparison purposes. I 20
rom Tables I and III that our estimate of 5.4+08 has

definitely crossed over from th
( =2.3

m e exact percolation
y= .38) and q =

—,
' Potts model (y=3.267) crjtieal ex-

D=2 PC=0, 690

9-.

8 —.

(a)

7

6

5

4 —.

3
I I I I I I

(
I I I I I I I I I

(
I I I I I I I I I

i
I I I I I I I I I
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I I I I I I I I

[
I I I I I I I I I

)
I I I I I I I I I I I I I I I I I I

]
I I I I I I I I I

0. 5 1.0 1.5 2. 0 2. 5 3.0 3.5 4. 0 4. 5 5. 0

D=2 PC=0.690

8:
(b)

7.

6:

4 —.

3

1.0 1.5 2. 0 2. 5 3.0 3.5 4. 0 4. 5 5.0

FIG. 1. Graphs of selected central and near dia
p, =0.69 at d=

ra an near diagonal Pade approximants to (a) as a fun
e ana ysis at p, =0.69 at d=2 c

ysis a

o the divided series in d= 3' (d) y as f ' f 6,
=2(b) f tio of4 fo th M2 l ; (c) y+ 1 as a function of 6 from the M2 1

t e M2 analysis of the divided series in d= S.
ana ysis at p, =0.165 75 at d=4; (e) y+ 1 as a function of 6

&
from
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The divided series analyses are poorly converged at d=2.
By analogy with the thermal spin glass, which has order
only at T=O, it could be implied that the threshold for
the d=2 case should be at p=1.0. We cannot rule out
this possibility from a 15-term series. We have, however,
made a careful study of threshold as a function of series
size and see that the convergence to 0.69 from M1 sets in
by 12th order, and does not move as the series length is
further increased.

In 3D we have made a comprehensive study of the ex-
ponen as at as a function of series length for the ZTDSG us-

le = 1.8ing the unbiased approach and find, for examp e, y =
at 11 terms from M1. For the 15-term series we find

=2.05+0.05, from the threshold-biased analysis, and
consistent results from the divided series. A grap h of the
divided series with M1 is given in Fig. 1(c). The error
bounds on our ZTDSG exponent do not overlap with the
percolation exponent range, nor with the first-order e ex-
ponent for the —' state Potts model, nor with the series re-

2

suits of Ref. 17 for the thermal spin glass, y =2.9+0.4.
For d=4 and 5, the central ZTDSG values are higher

than those of percolation. There is, however, some over-
lap in the error ranges. The exponents are clearly higher
than the first-order e expansion for the q =

—,
' Potts but do

not reach the series values for the thermal spin-glass ex-
=0.164 75ponents. Graphs of the analysis with M2 at p =

in d=4 and of the divided series with M2 in d=5 are
given in Fig. 1(d) and 1(e), respectively.

In six dimensions, the logarithmic correction 0 is close
to, but above, that of percolation. It is not inconsistent
with the value of —,', , which corresponds to 8 for the —,

'

state Potts model [8=2(B Ide), 0= —,', =0.353]. In

higher dimensions, y=1.0, as in all the problems dis-
cussed in this paper.

IV. CONCLUSIONS

In conclusion, we find that ps& in the ZTDSG is al-
ways above the percolation threshold. This result is clear
in every case.

As regards the exponent values, however, we cannot
claim any decisive result. There is a general trend that in
lower dimensions the exponent is not inconsistent with
that of the thermal spin glass. At d=4 and d=5 we have
a reasonably reliable comparison with the new thermal
spin-glass estimates and can observe that the ZTDSG
values fail to overlap with the thermal spin-glass values.
On the other hand, the lower ends of the ZTDSG ranges
are below the central percolation estimates. Thus we can

ly conclude that there is no evidence from the 15-term
hseries that y(ZTDSG) =y(SG) for general d (6, althoug

it may be observed in the lower dimensions.
All the numerical evidence is consistent with the

scenario that there is a crossover from percolation to
q =

—,
' Potts to spin glass, and this crossover becomes

more pronounced as the length of the series increases. It
should occur for relatively shorter series in the lower di-
mensions, as we are sampling more loops t ere. The
crossovers do not appear to be symmetric in the sense
that the percolation to q =—,

' Potts crossover occurs rela-
tively quickly as the series length is increased. Since the
splitting between the different correlation functions
(which causes the model to be in the same universality
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class as the thermal spin glass) is very small in high di-
mensions, we expect that the q =

—,
' Potts to spin-glass

crossover will be very slow. In this case the value of
y(ZTDSG) that we have determined may not represent a
true asymptotic value. The fact that our 3D value of
y(ZTDSG) does not coincide with that of Ref. 17 may be
a consequence of this slow crossover and/or of the Ref.
17 value being a little too large. This rnatter will be dis-
cussed further in Ref. 16. It would be useful in the future
to obtain better estimates for the q =

—,
' state Potts model

exponents in order to clarify these crossovers.
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