
PHYSICAL REVIEW B VOLUME 40, NUMBER 7 1 SEPTEMBER 1989

Theory of antiferromagnetic superlattices at finite temperatures
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Magnetic properties of antiferromagnetic superlattices at finite temperatures are investigated
theoretically by a multisublattice Green-function technique which takes into account the quantum
nature of Heisenberg spins. The results of various physical quantities and the magnetic transition
temperature are shown for difterent sets of intraplane and interplane interactions. In particular, in

the case of stacking of alternative weak and strong layers, we find a crossover between layer Inagne-
tizations due to quantum fluctuations at low temperatures, which has no counterpart in ferromag-
netic superlattices. Monte Carlo simulations of the corresponding classical Heisenberg model spins
have also been carried out, and a comparison between the two methods is given.

I. INTRODUCTION

Magnetic superlattices have been extensively studied in
the past decade. Experimentally, successful growth and
characterization of magnetic superlattices by advanced
techniques have been realized. In particular, magnetic
superlattices Dy/Y have been obtained by molecular-
beam epitaxy, ' and superlattices of transition metal and
Mg have been fabricated by magnetron sputtering. In
general, small magnetizations and lower magnetic transi-
tion temperatures with respect to the bulk values have
been observed. Theoretically, many investigations on
magnetic superlattices have been done with different
models and methods. Dobrzynski and co-workers have
studied, by a Green-function technique, the bulk and sur-
face magnons in a Heisenberg ferromagnetic superlattice
consisting of two semi-infinite films, and in a ferromag-
netic film sandwiched between two different semi-infinite
ferromagnets. Lin and coworkers ' have investigated
magnetic excitations of a Heisenberg ferromagnetic su-
perlattice consisting of alternative layers of 3 and B
atoms, by a local density of magnon states, and by a
Green-function method. A similar system has been
studied by Schwenk et al. using a Ginzburg-Landau
analysis. On the other hand, Camley et al. have investi-
gated spin waves and the light-scattering spectrum of a
system consisting of alternative ferromagnetic and non-
magnetic films, taking into account the Zeeman and dipo-
lar interactions but neglecting exchange. Similar systems
were also studied by other authors. Hillebrands' later
generalized these systems to take into account the ex-
change and surface anisotropy contributions. Hinley and
Mills" have studied systems formed by alternative
Heisenberg ferromagnetic and antiferromagnetic films,
using a classical ground-state analysis and a spin-wave
theory. Other studies of superlattices include the works
by Thibaudeau and Caille' and by Zhou and Gong' who
investigated magnetic polaritons in systems of magnetic
layers separated by dielectric layers. Finally, systems
consisting of alternative layers of Ising and Heisenberg
spins were investigated by Valadares and Plascak, ' and
quasiperiodic ferromagnetic superlattices were also

probed by Pang and Pu. '

To our knowledge, at present there has not been inves-
tigation on antiferromagnetic superlattices at finite tem-
peratures. The above-mentioned works have dealt ex-
clusively with the zero-temperature properties (except
Ref. 6) and with ferromagnetic superlattices (except Ref.
8). This defines the purpose of the present work.

The aim of this paper is (i) to work out a general
Green-function formalism to study the critical tempera-
ture and properties of magnetic superlattices with quan-
tum Heisenberg spins at finite temperatures, (ii) to apply
the formalism to a few examples of antiferromagnetic su-
perlattices, and (iii) to simulate by Monte Carlo (MC)
technique the same model with classical Heisenberg spins
in order to compare with the quantum case.

Section II is devoted to the Green-function formalism.
Although the equations shown are derived for the case of
binary antiferromagnetic superlattices consisting of
stacked layers of square lattices for the sake of concrete-
ness, the formalism can be generalized to include systems
such as antiferromagnetic superlattices of three or more
different kinds of layers and other lattice structures. Ap-
plications are shown and discussed in Sec. III. Results of
MC simulations are presented and compared to the quan-
tum case in Sec. IV. Concluding remarks are given in
Sec. V.

II. GREEN-FUNCTION METHOD

We consider the following Hamiltonian

H =2+ J;~.S;.Sl+2D gS Sf

where J, is the exchange integral between two spins S;
and S at the lattice sites i and j, respectively. All in-
teractions J& are assumed to be antiferromagnetic ( )0),
but with different magnitudes. D denotes an anisotropy
introduced for numerical calculation convenience but
having a microscopic origin. D is small and therefore as-
sumed to be site independent. Let us define the z axis to
be perpendicular to the layers A and B. When D is nega-
tive the spins lie in the planes 2 and B, and when D is
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G,, (r, t') = ((S,+(r);S, (t') )) .

The equation of motion for G,~(t, t') reads

1 dG,, /dr =([S+(r),S, (r')])6(r r')—
—(([H,S,+(t)];S, (t') )),

(2)

where 5(t t') is the—Dirac delta function, (. . . ) means
the thermal average, and A= 1 has been used. The second
term on the right-hand side of Eq. (3) will generate
di6'erent kinds of Green functions of lowest order defined
by (3) as well as higher-order Green functions. The latter
can be reduced to lowest-order Green functions by using
the so-called Tyablikov decoupling scheme, for example

«S,'S,+(i);S,-(r') » -=& S,'& «S,+(r);S,-(r') )& . (4)

Due to the symmetry, there are four Green functions
for the four-sublattice model considered here, namely two
of the type G;~ (t, r ') where i and j belong to the same sub-

I

positive, the spins will be directed in the +z or —z direc-
tions. Anisotropy of the latter kind of found, for exam-
ple, in compounds of Cu -+ with spins one-half. ' Hereaf-
ter, D is assumed to be positive for simplicity.

Let us consider a four-sublattice model in this section,
although the formalism presented here can be generalized
to many-sublattice models as seen later on. In the four-
sublattice model, the exchange interactions in the A and
B planes are denoted by J~ and J~, respectively, and the
interplane interactions between neighboring spins on two
adjacent A and B planes are JA21 (see Fig. 1). By magnet-
ic symmetry, there are two sublattices corresponding to
up and down spins for the A planes and two other ones
for the B planes.

Following Zubarev, ' we define a double-time Green
function by

AB

FIG. 1. Side view of binary superlattice with alternative lay-
ers of 3 and 8 atoms stacked in the stacked in the z direction.
Intraplane interactions are denoted by Jz and Jz, and inter-
plane interaction by J».

lattice (one for layer 3 and one for layer B), and two of
the type F;~.(t, t') where i and j belong to different sublat-
tices as seen explicitly in the following. Furthermore, to
emphasize the layered structure we shall use first the fol-
lowing Fourier transform in the xy plane

H, (r, r')=(1. /~2) f Jdk, dk
2~

X dc' H~m co, k~, ky

X exp[ ice(t t')—]—
X exp[ik (r —r )],

where H;z(t, r') stands for any of the four Green functions
previously defined, k~~ is a wave vector parallel to the xy
plane, co is a spin-wave eigenfrequency, and n and m
denote the z components of the positions of the spins r;
and r, i.e., indices of the layers to which r,- and r. be-
long, respectively. Assuming that the nth layer is of the
3 type and the (n + 1)th layer is of the B type, one ob-
tains the following set of equations:

(E —A„)g„„.=2@„5„„.+B„f„„+C„(f„+,„+f„,„),
(E+ A„)f„„.= B„g„„. C„(g—„~,„,+—g„,„),

~n + 1)gn + l, n' 2Pn + l~n + l, n'+Bn + lfn + l, n +Cn +1('fn +2, n'+ fnn')

(E+ A„+1)f„+1„,= B„+,g„—+, „—C„+,(g„+2 n, +gnn ),

(6a)

(6b)

(6c)

(6d)

where the following notations have been used:

E =co/JA, g„„,=JA G„„,, f„„,=JAF„„, ,

gn+l, n' AGn+l, n'~ fn+l, n' JAFn+l, n'

A „=2(1+d)(4i2, „+eP„+1+elM„1),

A„+,=2(1+d)(4alM„+, +elM„+2+ elL1„),

B„=sp„y,
B„+i

=So'p„+ Iy,
C„=2'„,
c~+ i =2' „+

&=J~a ~~~

&=Ja/JA

d =D/JA,

y=cos(k„a/2) cos(k~a/2),

a being the in-plane lattice constant, and

p„=I&S &I,

i belonging to the nth layer.
It is worth noting at this stage that one can easily gen-

eralize the set of equations (6) to the case of the six-
sublattice model consisting of three diff'erent magnetic
layers in the unit cell in the z direction, namely A, B, and
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Mg=u,
where

(7)

C. In that case, one has to write two other equations for
the (n +2)th layer and one obtains a set of six equations
instead of four. Thus, the interest of expressing the
Green functions under the form (6) is to elicit the layer
character of this system. In the case of thin films, one
just has to modify the conditions at the surfaces. Our
previous work on single thin films' ' has shown that this
method is powerful for investigating finite-temperature
behavior including the magnetic transition.

Now, taking the advantage that the system is periodic
with two lattice spacings in the z direction, one intro-
duces the following plane waves:

f„,=f„+,exp( —ik, c ),
g„,=g„+,exp( —ik, c),

where c is the lattice periodicity in the z direction. The
set of equations (6) is now readily rewritten under the fol-
lowing matrix form:

The spin-wave spectrum of the four-sublattice model is
easily obtained by solving the secular equation of the set
of equations (6). Though complex, it gives four real solu-
tions which are

where

—+ [0 5[P~(P2 4g)l/2] I
I/2 (10)

and

P = —A„~1+B ~1 —A„+B„+2Z„*~1Z

Q =( —A„ i, +B„~,)( —A„+B„)
2~n ~n+1ZnZn+1

—2B B ~1Z Z*~1+Z Z*~1

These four solutions will be denoted hereafter as Ek
(i =1—4). E/, relates the neighboring layer magnetiza-
tions p„, p„+1, and p„1. Now, using the spectral
theorem' which relates the correlation function
(S,+S ) to the Green functions, one has

p =(s' ) =-,' —(s+s-)—Bn

E+ 3„
0

Z.

—Zn

0
=

—,
' —lim (1/m )f f f dk f dE&(i /2')

g~o
M=

0 —Z.*+1 E-~.+1 —B.+1 X[g (Eq+ig) g(E—k
—ig)]

gnn'

nn'

n+1 B.+1 E+ A„~1

(9a)

X [exp(Ek /8) —1]

where m stands for n and n + 1, i on the third equality is
the imaginary number, and 8=k~T/J„. From (7), one
has

gn+1, n'

n +1,n'
g (E„)=l& (E„)l/l&(E„)l, (12)

2Pn &nn'

I n+1~n+1, n'

0

(9b)

where lb, (Ek)l is the determinant of M and lb, (Ek)l is
obtained from lb, (Ek ) l by replacing the first (if m =n) or
the third (if m =n +1) column by (9b), taking n'=m.
Writing lb(Ek )l =11;(E E/, ) (i =1—4—), one can express

gmm as

Z„=2'„[1+exp( —ik, c)],
Z„~~=2~p„+~[1+exp( —ik, c)],
and Z* is the complex conjugate of Z.

The case of an isotropic simple-cubic antiferromagnet
(one kind of exchange interaction) can be recovered by
noticing that there are only two sublattices which allow
one to write

h„~, „=h„„.exp(+ik, a),
where h stands for g and f. One then has only two cou-
pled equations with g„„.and f„„whose secular equation
yields the well-known spin-wave spectrum of the simple-
cubic antiferromagnet

E„=+1 2p[(1+d) —y ]'

where

yk = [cos(k„a )+cos(k a )+cos(k, a )]/3 .

g (E)=pa (E/ )/(E —E/ ) (i =1—4),

where it is easy to show that

a (E/, )= l~ (Ek)l/g(Ek Ej ), with j W—i .
J

Using (12) and the relation

1/(x —i g) 1/(x +i g) =—27ri5(x),

i being the imaginary number, one finally obtains

p„=—,
' —(1/vr )f f f dk ga„(E/ )[exp(E/ /8) —1]

p„,———,
' —(1/~ )f f f dk g a„~)(E/, )

X [exp(E/ /8) —1]

(13)

(14a)

(14b)
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Equations (14) couple the magnetizations of three neigh-
boring layers via E/, [see Eq. (10)]. However, for the
binary structure considered here, one has by symmetry
p„ i=p„+i, therefore, there are only two equations
(14a) and (14b) for p„and p,„+, to be solved self-
consistently.

The layer magnetizations at zero temperature are given
by

0.5

0.2—

p„=—,'+(I/~ )f f fdkga„(Ek), (1Sa)

p„+,= —,'+(I/m )f f fdkga„+, (E/, ), (15b) 00

where the sums run over only negative values of Ek.
These equations allow us to estimate the zero-point spin
contractions in a self-consistent manner.

The Neel temperature T& can be obtained by setting
p„and p, „+, on the left-hand sides of the two equations
(14) to zero and using

exp( E/, /8) —1 =E/, /8~ ( 8~ =k~ T~ /J „)
as T~T~. These two equations give two following equa-
tions which determine T& self-consistently:

8~'=(2/n. )f f f d kg['a„(E/, )/E/, ] (i =1—4),

(16a)

8~'=(2/m )f f fdkg[a„+)(E/ )/E/, ] (i =1—4) .

FIG. 2. Layer magnetization p vs temperature T for a=0.2
(lower curve) and 0.5 (upper curve), with a=1 and d =0.1.
Calculated points are shown by solid circles.

between the spins via the nonmagnetic layer are weak-
ened (e(1). It can also be viewed as a quasi-two-
dimensional system. By symmetry, one has p,„=p„+,
—p.

The Neel temperatures calculated from Eq. (16) are
2.595, 2.110, and 1.746 for @=1,0.5, and 0.2, respective-
ly. The zero-point spin contractions 6 are 0.048, 0.055,
and 0.067 for these respective values of e, representing
from about 10% to 13% of the spin magnitude. Figure 2
shows the layer magnetization versus temperature for
@=0.2 and @=0.5.

(16b)

In the case where u = 1, one has p„=p„+ i
=p,' the quan-

tities in the square brackets tend to a finite value [the
coe%cients a„, a„+&, and Ek are proportional to p, there-
fore the right-hand sides of (16) are in fact independent of
p]. In the case where a%1, p, „and p„+, do not tend to
zero in the same manner at T~; however, the quantities
in the square brackets still tend to a finite value which
has to be determined self-consistently.

III. APPLICATIONS

Numerical calculations have been carried out for
different sets of parameters e, a, and d. To calculate the
layer magnetizations at a given temperature, guessed
values for p„and p„+, are used to calculate the spin-
wave spectrum Ek [Eq. (10)] which is then used to calcu-
late p„and p„+, by (14). An iteration procedure is used
until a self-consistent solution for p„and p„+, at each
given temperature is obtained. In doing so, one obtains
also the self-consistent temperature dependence of the
spin-wave spectrum. A total of 40 points were taken in
the first Brillouin zone. At low temperatures, a few itera-
tions suffice to get a precision of 0.1%. In the following
we show the results for some special cases taking d =0.1.
The effect of d will be shown later.

A. e(l, a=1

This case simulates a system which consists of identical
layers separated by nonmagnetic layers. The interactions

B. @%1, a+1

This is the most interesting case which corresponds to
the binary antiferromagnetic superlattice with alternative
layers of weak and strong interactions.

Figure 3 shows the layer magnetizations versus tem-
perature T for a=1.5 and 3, with @=0.5. Several in-
teresting remarks are in order:

(i) The most striking feature is that at zero and low
temperatures, the magnetization of the layer with
stronger in-plane interaction (B layer) is smaller than
that of the layer with weaker interaction (A layer). At
first, it seems to be paradoxical, but this effect results
from quantum fluctuations: Qualitatively, the stronger
the antiferromagnetic interaction is, the smaller the mag-
netization will be, because the Neel antiferromagnetic or-
dering suffers more fluctuations. A similar efFect has
been observed in the case of antiferromagnetic thin films
where the zero-point contraction of surface spins is small-
er than that of inside layers, ' and in the case of a frus-
trated system.

(ii) At higher temperatures, there is a crossover be-
tween the two layer magnetizations: The stronger layer
has the stronger magnetization. Quantum fluctuations
are now dominated by thermal fluctuations.

(iii) The curvature of the magnetization of the weak
layer depends rather sensitively on a. It can be concave,
convex, or linear at high temperature. The self-consistent
calculations, however, are very di%cult near T& for very
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FIG. 4. Neel temperature Tz vs a= J&/J& obtained by
Green-function method (solid curve) for @=0.5 and d =0.1.
Results from Monte Carlo simulations of the corresponding
classical Heisenberg spins of unit length are also shown (dashed
curve) for comparison (see Sec. IV). Vertical bars indicate er-
rors.

FIG. 3. Temperature dependence of magnetizations of A and
8 layers (dashed and solid curves, respectively) for a=0. 5,
d =0.1, and (a) a=1.5, (b) o;=3. Calculated points are shown
by solid circles, and dotted curves in (b) are extrapolations to
the calculated Neel temperature.

large a (Fig. 3).
It is noted that T& is found between the values of Neel

temperatures for two respective bulk materials. Figure 4
shows the Neel temperature versus a in the case a=0. 5
and d =0. 1 (solid curve). The results from our MC simu-
lations (see Sec. IV) are also displayed (dashed curve) for
comparison. Although for the simulations, classical
Heisenberg spins of unit length have been used, the agree-
ment between the two methods concerning the variation
of T& is remarkable. We will return to this point later.

spins are now classical with magnitude equal to 1.
The MC method used here for vector spins has been

described in detail elsewhere. ' We recall only briefly
here: MultiAipping trial procedure was used and periodic
boundary conditions were employed. The first 10 MC
flipping trial steps per spin (MCS/spin) were discarded
for equilibrating the system and the following 10
MCS/spin were used for averaging physical quantities.
The lattice sizes used are X =L with L =8, 10, 12, and
14, though the results shown in the following are for
L = 14 (the size effects are not significant for those sizes).
Many independent runs with different random number
sequences were performed to ensure the reproducibility
of the results.

Figure 6 shows the internal energy per spin U as well
as the specific heat per spin C calculated from the energy
Auctuations, for a typical set of interactions @=0.5,
o.=1.5, and d =0.1. The phase transition is recognized

C. Eft'eet of anisotropy N - 0.5

Figure 5 shows the effects of the anisotropy d on Tz
(solid curve, left scale) and on the layer magnetization
(dashed curve, right scale) at T =0 in the case where
+=1 and @=0.5. The zero-point spin contraction de-
creases as d increases. When a is larger than 1, T~ in-
creases strongly with increasing d. For example, when
ca=1.5, T~=2. 18, 2.30, and 2.9 for d =0.05, 0.1, and
0.2, respectively. 0

I

0.1 0.2

- p.46

- 0.42

p.3

IV. MONTE CARLO SIMULATION

In this section, we show the results from our MC simu-
lations of the system described by Hamiltonian (1) but the

FIG. 5. T& (solid curve, left scale) and layer magnetization p
at zero temperature (dashed curve, right scale} as functions of
anisotropy d, for a = 1 and a=0.5.
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FIG. 6. Monte Carlo results for internal energy per spin U
(open circles, left scale) and specific heat per spin C (solid cir-
cles, right scale) vs temperature T, for +=1.5, @=0.5, and
d =0.1.

FIG. 7. Monte Carlo results for magnetizations per spin of A

and 8 layers vs temperature T (open and solid circles, respec-
tively), for +=1.5, a=0. 5, and d =0.1. As expected for classi-
cal spins, there is no crossover at low las in the quantum case
(see Fig. 3).

by the sharp peak of C associated with the change of cur-
vature of U.

The layer magnetizations versus temperature are
shown in -Fig. 7. As expected for classical spins, the
stronger layer has stronger magnetization at all tempera-
tures, unlike the quantum case considered in Sec. III.

The Neel temperature as a function of a is shown in
Fig. 4 together with that obtained from the Green-
function method. One cannot compare the values of Tz
of the two methods because of the difference of spin mag-
nitudes used in the two methods. However, the variation
of T~ with n is very similar.

V. CONCLUSION

The Green-function formalism for antiferromagnetic
superlattices at finite temperatures presented in this pa-
per can be easily generalized to study many other mag-
netic superlattices. Applications have been made to a few
special cases. In particular, the case of binary antiferro-
magnetic superlattice has been studied. The results show
several interesting effects at low temperatures which have
no counterpart in ferromagnetic superlattices: zero-point

spin contractions and the crossover of layer magnetiza-
tions at low temperatures due to quantum fluctuations.
Monte Carlo simulations of the corresponding classical
Heisenberg model have also been performed. The results
show that the behavior of layer magnetization and the
Neel temperature at high temperatures are in qualitative
agreement with the quantum case.
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