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Soliton theory for realistic magnetic domain-wall dynamics
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The dynamics of a 180 ferromagnetic domain wall subject only to uniaxial anisotropy and ex-
change potentials can be described by the sine-Gordon equation. We extend these treatments to
more realistic cases by adding terms due to an external magnetic field, Gilbert damping, and magne-
toelastic interaction. The dynamical response of the above added physical couplings, which disturb
the soliton's motion as well as modify the soliton's profile, can then be studied in detail via perturba-
tion theory. Results concerning field driving and Gilbert damping are found to coincide with
Walker's solution up to the second perturbation order, whereas magnetoelastic coupling modifies
the shape of the domain wall in a way which reveals the possibility of a resonant dependence on the
wall's traveling velocity.

I. INTRODUCTION

The dynamical behavior of a sine-Gordon soliton in
the presence of external perturbations has been discussed
in depth by Fogel et a/. , where they concluded that sine-
Gordon solitons in many respects behave as deformable
classical particles whose dynamics are governed by
Newton's law. ' The dynamics of the interaction of a
180 ferromagnetic domain wall with a planar defect
characterized by an abrupt change in both the magnetic
anisotropy and exchange energies was considered by Paul
where, via solitary wave theory, he obtained the general
algebraic expressions for the resonant domain-wall oscil-
lation frequency, the effective wall stiffness, and the coer-
cive force. In this paper, we add perturbations to the
original sine-Gordon equation, which describe more real-
istically the physical couplings to the motion of a 180
ferromagnetic domain wall. This is done by using
effective-field theory and is contrasted with the conven-
tional Hamiltonian approach, which starts from a formu-
lation of the exchange and anisotropy potentials in addi-
tion to the kinetic energy associated with the spin s pre-
cessing motion within the wall. ' Whereas the Hamil-
tonian approach is difticult to generalize to include any
other physical interactions, the effective-field approach
lends itself more readily to physical interpretation and is
consequently more transparent in its applicability and
limitations. '

Based on effective-field theory, a derivation of the
first-order perturbations to the sine-Gordon equation due
to an external magnetic field, Gilbert damping, and mag-
netoelastic interaction is presented in Sec. II. The tech-
nique of solving such a perturbed sine-Gordon equation
and its physical interpretation can be found in Ref. 1. In
Sec. III we examine the perturbation solution of a
soliton's motion in the presence of Gilbert damping and a
quasistatic field applied in the easy direction. We find
that a balance between the field-driven acceleration and
Gilbert damping is achieved and the terminal velocity the
wall acquires is the same as that derived conventional-

ly. ' It is noted that the perturbation force correspond-
ing to the driving field is difFerent from that considered
by Fogel et a/. in Ref. 1. The driving field considered by
Fogel et a/. is spatially uniform, whereas the true Zee-
man torque is nonvanishing only within the domain-wall
region. Therefore, the Zeeman perturbation is accentuat-
ed at the soliton's center. The uniform or long-range
effect of the force suggested by Fogel et a/. results in an
overall shift of the wings of the soliton by an amount pro-
portional to the magnitude of the driving force. This is
not the case for a magnetic accelerating field, where the
associated perturbation has no first-order efFect in chang-
ing the domain-wall's magnetization profile. The viscous
term used by Fogel et a/. is coincidentally the same as
the Gilbert damping force considered here only if the
lowest perturbation order is considered. The perturba-
tion results are found to coincide with Walker's solution
up to the second perturbation order, although only the
first-order effects of the couplings are attempted in the
calculations.

Magnetoelastic coupling to the domain-wall s motion is
considered in Sec. IV. It is found that the soliton's profile
is slightly modified by this coupling and dynamic strains
are induced through the motion of the domain mall.
These strains are localized about the domain-wall's
center. Moreover, the dynamically induced local strains
give rise to a resonant dependence on the wall's velocity
such that large strains could be induced if the wall travels
with a velocity equal to that of acoustic waves. This
effect should be accessible to direct experimental observa-
tion. Magnetoelastic coupling is found to not disturb the
soliton's motion in first-order perturbation.

II. PKRTURBATIONS TO SINK4 ORDON
EQUATION AND ACOUSTIC-WAVE EQUATIONS

The geometry related to a 180 domain-wall
configuration is defined first. Let x be the easy axis with
a uniaxial anisotropy K and z be the direction normal to
the wall. Assume all the physical boundaries are relaxed
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and, hence, all the physical quantities have spatial varia-
tions only in the z direction. Gaussian units will be used
in this analysis. Magnetization reversal for a single
domain-wall soliton is shown in Fig. 1, and the spherical
coordinate system used is shown in Fig. 2. Here

M=M, u,
M =M, sin8cosg,

M~ =M, sin8 sing,

M, =M, cos8,

and M, is the saturation magnetization. Note that the
coordinates used here are different from that used by
Walker. In Walker's coordinates the wall is parallel to
the xz plane with z being the easy direction. Walker's
solution was derived by assuming all the magnetization
vectors of a moving domain wall to be restricted to a sin-
gle azj,muthal half-plane with the azimuthal angle de-
pending on the wall's moving velocity. Therefore, in or-
der to more readily compare a perturbed domain-wall
solution with Walker's solution, one might wish to adopt
Walker's coordinate configuration as long as the sine-
Gordon equation is still derivable as the zeroth-order
equation in that configuration. However, it turns out not
to be the case, although an erroneous derivation has been
deduced in Ref. 10.

It is also noted that for a moving domain wall of low
velocity the small out-of-plane angle g=m. /2 —8, which
measures the departure of the spins within the wall away
from the xy plane, is nonzero and is treated as the "small-
ness number" used in our perturbation scheme. For a
moving domain wall it is the out-of-plane magnetization
that produces a demagnetizing field which acts back on
each individual spin inducing precession motions of the
spins in the xy plane. This, in turn, results in a displace-
ment of the wall as a whole in the z direction and hence
sustains the wall's traveling motion. Therefore, the
demagnetizing field gives the wall an inertial mass.

The equation of motion for magnetization is

P

F1G. 2. Coordinate notations: x is the easy direction, P the
azimuthal angle of the magnetization, 0 the polar angle, and
g=m/2 —0.

where y is gyromagnetic ratio, and H„, denotes the total
effective field experienced by the spins. * For a given en-
ergy density distribution w(M, aM/ax;), which, in gen-
eral, depends not only on the magnetization M but also
on the magnetic strains aM/ax;, the effective field is

aw a aw

aM, +,~, ax, a(aM, /ax, )
(2.2)

In this analysis we assume the total effective field H„, to
be composed of the following physical components:

aM = —yMXH„, ,at
(2.1)

Hoot =Hp+ Hd +HG +H&&+ H +H

where Hp is the external field, Hd the demagnetizing
field, HG the Gilbert damping field, and H,„, H,„, and
H, are the effective fields associated with anisotropy,
exchange, and magnetoelastic interaction, respectively.
When expressed in spherical coordinates, Eq. '(2. 1) takes
the form

ao
a

=r«t. t)P,at
(2.3a)

sin8 = —y(H„, )s .
at

(2.3b)

Let the dc field Hp be applied along the easy direction

FIG. 1. Magnetization reversal for a 180' domain-wall soli-
ton.

Hp=Hpx

=IIo(sin8 cosPu+ cos8 cosg8 sing/) . — (2.4)
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In a magnetic substance the demagnetizing field is defined
by the two relations

V-Hd = —4m V.M

VXH, =O.

2A 82M
X

2A

M,

2
ae . 2 ap+sin 8

2

The evaluation of demagnetizing effects for an arbitrary
excitation is a fairly complicated problem, but if we as-
sume the magnetization varies only in one direction, the z
direction, the demagnetizing field has the form

a'e a+ —sinO cos6I
az2 az

2

+ sine
2

+2 cose P . (2.8)
a'y ae ay
az Bz Bz

Hd = —4', z

= —4vrM, cose(coseu —since) . (2.5)

Here K is the anisotropy constant and 3 is the exchange
stiffness. The magnetoelastic energy density is"

2 2 2
mag

= b](ax xx+a»e»»+azexx )

The Gilbert damping field is

aM
G

+2hz(a a e, +a a,e, +a,a e„)
aR, aR aR

=b&a, +b2 a„a, +a»a,
Bz

(2.9)

ae- . ay-e+ sine
y Bt ai

(2.6)

where b, and b2 are the magnetoelastic constants, e s
are the direction cosines of the magnetization M, R,. s are
the displacement fields, and e; 's are the strain fields
defined by

where k denotes the Gilbert damping constant. The uni-
axial anisotropy field is

BR; BR

2 ax�. Bx;

H,„=(2K/M, )M I
= (2K/M, )sine cosg(sine cosPu

+cose cosine
—sing/ ),

and the exchange field is

(2.7)

Note that e, ex, and e ~ vanish in the present one-
dimensional geometry and e, =

—,'(aR„/az), e~,=
—,
' (aR» /az), and e„=(aR, /az). In this analysis we

consider only the infinitesimal strains. For a discussion
of the finite strains, see Ref. 12. The effective field associ-
ated with the above magnetoelastic energy density is, ac-
cording to Eq. (2.2),

BR BR BR, BR M
Z

—1 aR, M BR. 2 cose b, cose +bzsine cosP +sing
M, az ' az Bz

BR, BR BR+ —b, sin28 +b2cos28 cosP +sing
az 2 az az

BR BR
8—b2cose sing —cosP

az az

(2.10)

For q=+/2 —0 ((1 we expand all the above expressions for the effective fields to the first order in g and sum them up.
The results are

2K 2~ a'y x ay b2 aR. aR,
(H„,) = —Hosing — sing cosP+ —— + sing —cosP-

M, az' y ~t M, az az
(2. I la)

2K 2 2A ay a(H„,)9=Hocosg g+4vrM, g+ cos P g —
2 +g

S S Z

b2 BR BR„2b, BR,

2

(2.11b)
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In order to derive the coupled acoustic wave equations, we apply the Lagrangian formalism to the material s deforma-
tion. Under the assumption of elastic isotropy, the Lagrangian density associated with elastic deformation in the
present geometry is"

el

aR„
at

2
aRy+ aR,

at
4

p X eij X eii ~mag
l,J l

aR„
at

aR,
"

aR,
'

at at
C) ) aR, C44

2 az 2

aR„ aR
+

az az

, aR, BR BR—b&a, b2 —axa, +a~a,az
(2.12)

aL, i

aR,

gives the following magnetoelastically coupled acoustic-
wave equations:

where p is the mass density, p the bulk modulus, A,L the
Lame constant, and C, z ( =A.L ), C44 ( =p), and
C» (=C,z+2C44) are the elastic constants. Substitu-
tion of Eq. (2.12) into the Lagrangian equation of motion

aL„, a aI.„ =0 (2.13)
at a(aR, /at) az a(aR,. /az)

the inverse of the natural frequency,

coo '=(8mKy )
' =5X10 " s .

The transverse sound velocity,

c, =(C44/p)' =3X 10 cm/s,

and longitudinal sound velocity,

ci =(C&& /p)' =5 X 10 cm/s,

a'R„
at2

a Ry' at

aR,
p

a Ry
C

az

aR,
az

a=bz ( q sing ),
az

=2big a7I

Bz

a'R.—C44 =b2 (q cosy),
az2 az

(2.14a)

(2.14b)

(2.14c)
Perturbation parameters are defined by

are normalized with respect to the (virtual) magnon's ve-
locity, c0=5coo= 10 cm/s. The resultant dimensionless
transverse and longitudinal sound velocities are, respec-
tively, P, =c, /co=3 and P =ic /ic =o5. The strains are
normalized with respect to

S =(K/pc )' =6X 10

The above equations are valid only in the lowest order of
g 0

To be specific, we adopt the following parameters for
the magnetic material:

y=2X10 Oe ' s

E =3X10 ergcm

A =10 ergcm

4~m, =104 G,
p=s gcm

C44=2C» =2X10' erg cm

b& =b2=10 ergcm

vH =Ho /4n. M, = 10

v' =X(8~K)'"/4~M, = 1O

v =(4~K)'"/4~M, =1O-',

v„(4~Sb, )' "——/4~M, = 1O

vi, ~=(4n.Sb2)'i /4aM, =10

Perturbations considered in this paper are confined to the
regime where all the following parameters are of the same
order:

'g ~ 'yg ~ 'yH ~ 'PG ~ 'Pb ) ~ 'yb 2 ~ 10

In terms of the dimensionless parameters Eqs.
(2.14a)—(2.14c) can be rewritten as

The magnetic field is chosen to be 10 Oe and the intrinsic
spin-relaxation time ~=10 s. This implies the Gilbert
damping constant

BR BR 2

(g cosP),a
az

(2.15a)

A, =(4mM, yr) =10

Dimensionless variables and parameters are now
defined. Let space coordinate z be normalized with
respect to the wall thickness,

aR aR

BR, BR, +b 1

'2

(rj sing),
az

(q') .
az

(2.15b)

(2.15c)

5 = ( A /K) ' =5 X 10 cm

and the time coordinate be normalized with respect to
Substituting Eqs. (2.11a) and (2.11b) into Eqs. (2.3a) and
(2.3b) and using dimensionless parameters, one obtains



4812 H. HOW, R. C. O'HANDLEY, AND F. R. MORGENTHALER

—+2v =2v —sing cosP —v sing —va~, a'y, , ay
K g E 6 at

+sing — = f—sin +—I
QZ2 2 Bt

BR BR~
+vb~rt sing —cosP

az
(2.16a)

where

+O(ri ), (2.18d)

82R 8 R
+B cos+ ' +sin+

2 azat 2 azat

—v'2vz ' =g+2vx icos P— z'

+vH g cosP+ vG +2v&iq
3

BR,
Bt az

M„BR@+vb~ cosP +sing
az Bz

(2.16b)

&2 Bg
2

~+
Bt

Up to the second perturbation order, Eq. (2.16b) becomes

+sing=0
at2 BZ2

(2.19)

f =vH /vx. =HO M, /K = 10

r =v3 /(2v' ) =XM, (2~/rC)'"=10-',
B =v 2vi~/vx =b~(4nMy) '(Ap) ' =10

are three newly defined parameters which characterize,
respectively, the coupling strength of the Zeeman driving
field, the Gilbert damping, and the magnetoelastic in-
teraction. A11 of them are of the same order as q.

Perturbation theory associated with the sine-Gordon
solitons can be found in Ref. 1 and is only briefly summa-
rized here. The sine-Gordon equation

2 Bz 2 az
(2.17)

has single-particle soliton (+) and antisoliton ( —) solu-
tions

g~~(z, t) =4 tan '
I exp[+y'(z Pt)]I— (2.20)

Here P is defined to be twice the azimuthal angle of the
magnetization away from the easy direction. When g has
been eliminated by using Eq. (2.17), differential equations
(2.15a)—(2.15c), and (2.16a) become, up to the lowest per-
turbation order, respectively,

with y'=(1 —P )
' and P being the normalized velocity

of the particle. Infinitesimal excitations of Eq. (2.19)
form a continuous spectrum characterized by the disper-
sion relation

BR„28R—
/3, =B sin++0(g ),

Qt2 Qz 2

BR ()R—P, = Bcos+—+O(g ),
Bt c}z BzBt 2

—Pi ~
=vii +O(g ),

QZ2 Qz

(2.18a)

(2.18b)

(2.18c)

co —1+k (2.21)

In a magnetic medium we call the above excitations vir-
tual magnons to distinguish them from the rea1 magnons.
Virtual magnons are merely mathematical entities be-
cause they do not couple to electromagnetic waves.

Let the perturbation term(s) denoted as R appear on
the left-hand side of Eq. (2.19). R has the general depen-
dence R(g;d/dt, B/Bz, t, z) When t. ransformed to the
(anti)soliton's rest frame under a Lorentz boost L~, R
takes the form

I-'(R)=R g;y' ——P,y' —P,y'(t+I3z), ) (z+pt)a a, a a
Bt Bz Bz Bt

(2.22)

In the presence of perturbation(s) and in the
(anti)soliton's rest frame, the (anti)soliton solution now
has the form

where f&(z) and fk(z) are, respectively, the bound (Gold-
stone) state and the scattered continuum states of the vir-
tual magnons in the presence of the (anti)soliton, and

g(z, t) =Po+(z)+ g(z, t), (2.23) f„(z)=2 sech(z ), (2.25a)

where P+(z) is given by Eq. (2.20) with P =0 and

~g(z, t)
~
((1. g(z, t) is expanded in terms of the scattered

virtual magnon spectrum as'

g(z, t)= —,'ui, (t)fi, (z)+ f dk uk(t)fk(z), (2.24)

fk(z)=(2n. )
'

mi, '[k+i tanh(z)]exp(ikz) . (2.25b)

Here cok and k still satisfy the dispersion relation Eq.
(2.21). Therefore, the (anti)soliton's profile is modified by
an amount, say, g, (z, t), and its center of mass, with locus
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defined as z, (t)=+ub(t)I8, is subject to an effective
force F(t) as

d zc =F(t) .
2

From Ref. 1 one can write

2
+ry' +M2uk =0

dt2 dt

d z~ f dz=+ ——rr' +13
dt 2 dt

(3.3)

(3.4)

F(t)=+—,
' f dz f (z)L~(R ),

g, (z, t)= f dk uk(t)fk(z),

(2.26a)

(2.26b)

In deriving Eq. (3.4) the translational meaning of the
Goldstone mode has been used. For t &)I y' the tran-
sient part of the solutions to Eqs. (3.3) and (3.4) decays
away and the steady-state solutions are

with u&(t) satisfying the following differential equation: (uk) =0, (3.5)

d uk
2

+a)k u„+f dz f„*(z)L~(R ) =0 . (2.26c)
dz~ f=+
dt 2I y' (3.6)

III. ACCELERATION AND DAMPING
OF A DOMAIN-WALL SOLITON

Let the domain-wall soliton be driven by a quasistatic
field applied in the easy direction and subject to Gilbert
damping. The corresponding perturbations, according to
Eq. (2.18d), are

R =f sin++ I
2 ai

(3.1)

After Lorentz transformation to the soliton's rest frame
Eq. (3.1) becomes, according to Eq. (2.22),

Note that the present perturbation theory only deals
with how the added perturbations can infIuence the
soliton's motion and the soliton's (axial) profile but not
the domain wall's planar geometry. It is pointed out by
Winter' that the wall excitations with sinusoidal varia-
tions in its geometric shape contribute most to nuclear
resonance. Slonczewski' suggests that at intermediate
applied fields a spatially corrugated wall might be a stable
wall configuration when both Walker's solution (low-field
configuration) and the oscillating wall solution (high-field
configuration) become either unstable or nonexisting.
These nonplanar wall excitations reAect the limitations of
the present perturbation theory. However, due to its
elegant mathematical representations, soliton perturba-
tion theory can still be very valuable in formulating
domain-wall dynamics if the restriction of the problem to
one dimension does not preclude treatment of the effect
of interest.

From Eqs. (2.26) and (3.5) we conclude that to first order
the Zeeman and Gilbert perturbations have no effect at
all in changing the domain-wall s shape. This situation
differs from that in Ref. 1 where an overall shift of the
soliton wings occurs as a consequence of an unusual
long-range driving force. When Walker's solution is
written in terms of the spherical coordinates shown in
Fig. 2, a comparison of it to the soliton solution, Eq.
(2.20), shows that soliton solution coincides with
Walker's solution up to the second perturbation order.

The solution for (dz, /dt ) derived in Eq. (3.6)
represents the terminal velocity the wall acquires when
observed in a coordinate frame moving initially with the
wall. When viewed in the laboratory frame, the above ve-
locity becomes

dz.
dt iab

f
2I y' (3.7)

where

fCO
p

~22 y&
2

)
—1/2

1/2

K

(3.8)

(3.9)

is defined to be the initial mobility of the wall in an ap-
plied field. Equation (3.8) is plotted in Fig. 3. In the ini-
tial low-field regime y'= 1 and

When expressed in terms of ordinary space and time
units, Eq. (3.7) becomes

L&(R)=f. ++ry '& —P'&
2 at az

1/2
y~o

v =+piiHO=+ E (3.10)

=f.;.'-+r,= "n2 '.at d

=f sech(z)+ I y' + 213 sech(z)
a
at

(3.2)

where expression (2.23) has been used for f(z, t). Note
that in deriving Eq. (3.2) the velocity p, which is propor-
tional to the out-of-plane angle g, has been treated as a
small number. From Eqs. (2.24), (2.26a), and (2.26c) one
obtains

This linear relationship, Eq. (3.10), was first derived by
Kittel by considering energy conservation between the
applied driving force and the Gilbert damping. ' Con-
sideration of higher-order effects of the present perturba-
tions can be carried out in a straightforward manner.
However, the calculations will become quite involved as
the virtual magnon modes begin to couple among each
other.

The terminal velocity of the wall derived via perturba-
tion theory is compared to that predicted by Walker's
solution. As shown in Fig. 4 for various vz values,
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initi o I mobi lity

0.5

2

+oH0/co

FIG. 3. Domain-mall velocity v vs driving field strength Ho.
For large values of Ho U approaches a constant value co which
characterizes the velocity of the massless virtual magnons.

2.0

b,c

2.0
0.08

0.5
0.0 I I

0 2 4 6 8
p.oHo /Co

2.0
0.1

0.0
0

2.0
0.2

Q.O
0

0.0
8 0

2.0
0.5

2.0
0.8

0.0 0.0

FIG. 4. Comparison of the Kittel s initial linear relationship
(curves a), soliton's relativistic results (curves b), and %'alker's

analytic solutions (curves c) for different vz values. vz
[=(4vrIC)' /4aM, ] represents the relative strength of the an-

isotropy field to the saturation magnetization.

curves labeled (a) represent the linear relationship of Eq.
(3.10), curves (b) show the results of Eq. (3.8), and curves
(c) are the velocities from Walker's analytic solution.
Dashed lines denote velocity bounds beyond which
Walker's solution does not exist. Actually, prior to the
breakdown of those velocity bounds, Walker's solution
can be unstable as long as the differential mobility of the
wall becomes negative, as shown in Fig. 4 for the cases

vz ~0.08. The perturbation theory also yields a limiting
velocity co for the domain wall's motion, but its nature
lies entirely in the relativistic nature of the original sine-
Gordon equation, Eq. (2.19). From the derivation of the
perturbed sine-Gordon equation, Eqs. (2.16)—(2.18), we
see that the behavior of a ferromagnetic domain wall can
resemble that of a real soliton only in the limit of high
magnetization (vz « 1) and low demagnetization
(il, f3«1). This is also revealed in Fig. 4 where the per-
turbation results approximate Walker's solution only
when the wall is moving in the initial regime of low veloc-
ity or for the cases that v~ is small.

There exists another perturbation scheme due to
Slonczewski' which deals with the limit of low magneti-
zation (vz » 1). These two perturbation schemes, soliton
perturbation and Sloczewski's, are complementary to
each other. As noted in the literature, a sine-Gordon sol-
iton is always (linearly) stable against disturbance since

cok in Eq. (2.21) is always non-negative. "' A stability
analysis in Slonczewski's scheme (vs »1) shows' that at
intermediate field strength Walker's solution (low-field
configuration) and the oscillating wall solution (high-field
configuration) could both be unstable. When this
happens, as suggested by Slonczewski, the stable

configuration might be a spatially corrugated wall. The
correspondence of the soliton solution and the uniform
mode of Slonczewski's solution to Walker's solution in
the low vz and high vz limits, respectively, provides sup-
port for the validity of Walker's solution. As noted by
Dillon in presenting %'alker's solution, the assumption
leading Walker's solution that restricts the whole magne-
tization reversal process to a single azimuthal half-plane
cannot be physically justified. We also mention here that
the dynamic response of the breather solutions for the
soliton perturbation scheme may merit further attention.
This is because the breather solutions exhibit internal os-
cillations and may play a role related to the oscillating
wall solution modes in the high-Geld con6guration of
Slonczewski's perturbation scheme.

IV. MAGNKTOELASTIC COUPLING
AND DYNAMIC STRAINS

Elastic strains exist locally about a static domain wall
when the magnetoelastic coupling is nonzero. This is due
simply to the spatial variation of magnetization direction
within the wall. Similarly, time-dependent magnetoelas-
tic strains could be induced dynamically through the
motion of the domain wall as expressed in Eqs.
(2.18a)—(2.18c). Since the longitudinal displacement field

R, does not couple in first order to the domain wall's
motion in Eq. (2.18d) and the induction of R, through
magnetoelastic interaction b, occurs only in second order
in Eq. (2.18c), we shall omit further discussion of R, in
the following analysis. The lowest-order expressions for
the transverse displacement fields R and R are obtained
by replacing g in Eqs. (2.18a) and (2.18b) with P+ given
by Eq. (2.20). The resultant acoustic-wave equations then
admit the following set of solutions which move with the
soliton:
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R„(z,t) = — sech[y'(z p—t)],8
p2 p2

R, (z, r)= T, , tanh[y'(z —pr)].8
J' '

p2 p2

(4.1a)

(4.1b)

X sech (z —vt) tanh (z —vt)
y' y'

1/2

e, (z, t) = +-
p2 p2 2

I

Xsech (z —vt)
5

(4.2a)

(4.2b)

Here e, and e, are expressed in terms of ordinary space
and time units. Profiles of magnetization and dynamic
strain components are shown in Fig. 5. Note that the dy-
narnic strains are localized in the vicinity of the domain
wall. For the quasistatic case with p=0. 1, the dynami-
cally induced strains are of magnitude equal to 4X 10
which is about 10 times the static strains caused by
macroscopic magnetostriction. However, for a magnetic
material whose transverse sound velocity c, is less than
the virtual magnon's velocity co, these dynamic strains
could be anomalously enlarged as long as the wall is mov-
ing with a velocity approaching c, . This is because only
when the wall moves with a velocity close to that of

These solutions can be verified by directly substituting
them back into Eqs. (2.18a) and (2.18b). They actually
represent the unique set of solutions which permits only
localized strains. The associated strain fields can be ob-
tained by differentiating Eqs. (4. la) and (4.1b) with
respect to z and the results are

8 y'p K
~xz(z, r) =

neo

R = —B cos~ +sin~
2 BzBt 2 BZBt

(4.3)

Substituting Eqs. (4.1a) and (4.1b) into Eq. (4.3) and then
performing a Lorentz transformation to the soliton's rest
frame, one obtains, up to the second perturbation order,

T

L~(R ) = 8—(- ')
p. p2

0+ d sech(z) . 0+ d tanh(z)X —cos + sin
Qz 2 dz2

g2 2 12=+ tanh(z) sech(z) .
p2 p2

(4.4)

acoustic waves can the wall carry significant amount of
elastic deformation with it.

One important implication of the above-mentioned
domain-wall velocity resonance might be the following.
Under certain circumstances magnetic domain walls may
penetrate deeper or with greater velocity into a material
than would be dictated by classical eddy current (skin
depth) considerations. This effect is contrasted with the
phenomenon of "anomalous microwave transmission"
proposed by Heinrich' and Alexandrakis. ' While
anomalous microwave transmission occurs by coupling of
small amplitude spin waves and elastic waves, our model
suggests the possibility of anomalous domain-wall motion
by coupling to elastic waves under certain conditions
through the same magnetoelastic interaction. A detailed
analysis of this resonant domain-wall behavior demands a
full consideration of the whole set of equations (2.14a),
(2.14b), (2.16a), and (2.16b), since the present perturba-
tion scheme breaks down at resonance and the sine-
Gordon equation (2.19) can no longer describe satisfacto-
rily the zeroth-order domain-wall dynamics. This re-
quires numerical calculations and merits further investi-
gation.

The lowest-order perturbation associated with magne-
toelastic interaction appearing in the sine-Gordon equa-
tion is, according to Eq. (2.18d),

Mx

From Eqs. (2.25a} and (2.25b) one performs the following
integrations:

j dz f (z)L~(R )=0, (4.5a)

oo &' 'y' k~I dz fk (z)L~(R )=+—%2m y coksech
4 p2 p2 k

XZ

FICx. 5. Magnetization components M„and M„and the mag-
netoelastically induced transverse strains e, and e~, .

(4.5b)

Note that Eq. (4.5a} can be obtained by considering the
parities of f&(z) (even) and L~(R ) (odd). The effective
force defined in Eq. (2.26a) associated with the present
perturbations is consequently zero. This means that the
soliton's motion is not disturbed up to the second pertur-
bation order by the dynamically induced strain fields
shown in Eqs. (4.2a) and (4.2b). This is true only when
the strains are small and are not resonantly enhanced.
From Eq. (2.27) the steady-state solution of the decompo-
sition amplitude uk(t) is
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1 km.

uk = + —'&2~ sech
4 P P, ~k— (4.6)

The continuum contribution to g(z) is, according to Eq.
(2.26b),

g2 2 l2

g, (z)= I dk ul, fk(z)=+ —sech(z) . (4.7)

Therefore, the domain-wall's profile suffers modification
in the presence of magnetoelastic coupling. This is
shown in Fig. 6. Domain-wall modification g, (z) can be
large if )33 approaches P, . In this case, higher-order con-
sideration is required.

FIG. 6. Modification of domain-wall profiles due to magne-
toelastic interaction: f= f&&+0.3z sech(z). fo represents an un-
perturbed sine-Gordon soliton.

effective-field theory. The soliton perturbation scheme is
most appropriate for materials of high-saturation
magnetiza- tion and is therefore complementary to the
perturbation scheme developed by Slonczewdki, which is
appropriate for materials of low-saturation magnetiza-
tion. While there are three different domain-wall
configurations existing in Slonczewski's perturbation
scheme, the soliton profile of a domain wall is stable
against any (internal) perturbation in the present soliton
perturbation scheme.

When the motion of a domain wall is considered under
the inhuence of a static field and Gilbert damping, the
soliton perturbation results coincide with Walker's solu-
tion up to the second perturbation order. This provides a
support for the assumption admitting Walker's solution.
Magnetoelastic interaction has also been considered as a
perturbation to domain-wall motion. We found that
magnetoelastic interaction modifies the wall's profile
without changing its velocity in lowest order. Local dy-
namic strains can also be induced through the motion of
the wall via magnetoelastic interaction. Dynamic strains
are usually small except at resonance where the wall
moves with a velocity equal to the transverse sound ve-
locity. In this situation the wall will drag a large amount
of elastic distortion along with it and, as in the case of
anomalous microwave transmission, this might cause
anomalous domain-wall velocity or penetration. For
most magnetic materials the virtual magnon velocity co
and the transverse sound velocity c, are roughly of the
same order. Therefore, depending on the temperature
and (dopant) composition, it is desirable to choose a ma-
terial in which co ))c, such that the domain-wall velocity
resonance can be achieved. This is most likely to happen
for a material which is magnetically stiff (high Curie tem-
perature) but mechanically soft (low Debye temperature).
Finally, we note here that, due to the linearity of the soli-
ton perturbation theory, Eqs. (2.16a) and (2.16b), the re-
sults concerning applied field and Gilbert damping de-
rived in Sec. III are additive with those for magnetoelas-
tic interaction derived in Sec. IV.
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