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The phases and phase transitions of solid xenon monolayers on a graphite single crystal were in-
vestigated using high-resolution synchrotron x-ray scattering. As the temperature is lowered a se-
quence of incommensurate solid phases (aligned— rotated—reentrant aligned) occurs. This se-
quence is followed by an incommensurate-commensurate transition. Zero-temperature mean-field
theories are able to explain the C-IC transition but not the reentrant rotational transitions. The cor-
rugation of the adsorption potential and the width of domain walls are estimated using relaxation

simulations at zero temperature.

I. INTRODUCTION

In nature, there are many physical systems whose
phases are governed by two competing interactions or
periodicities.! Among these are solids with charge-
density waves,? adsorbed monolayers,® and modulated
magnetic systems.* Perhaps the most thoroughly studied
competing interaction system is that of the monolayers of
rare gases adsorbed onto a graphite surface.®> These sys-
tems are especially attractive for a number of reasons. (i)
The interactions between constituent atoms are simple
and well known. (ii) There are novel features of the phys-
ics which are unique to two dimensions. (iii) The two-
dimensional nature of the system makes numerical calcu-
lations on large systems tractable. (iv) The high anisotro-
py of the binding energy of graphite allows one to study
an atomically smooth surface of a macroscopic size
without much difficulty. (v) The basal plane of graphite
is very inert to contamination, so the surface can be easily
cleaned.

In spite of the extensive work done on the rare gas on
graphite system many questions remain unanswered and
new developments continue to occur. For example,
renormalization-group calculations have produced finite-
temperature phase diagrams,”® computer simulations
with realistic models have provided detailed information
about energetics of the phases and defects,”® and experi-
mental controversy about the nature of the phases and
the order of the phase transitions remains.

We have investigated xenon monolayers on a graphite
basal surface. A series of experiments has been per-
formed using synchrotron x-ray scattering as a probe of
adsorbed layers on single-crystal graphite substrates.’
The experimental configuration allows for much better
resolution than previous electron diffraction'® or x-ray
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diffraction!! measurements in the same area of the phase
diagram.

The use of crystalline graphite instead of powdered
graphite as a substrate automatically provides orienta-
tional structural information. Furthermore, we were able
to select a graphite crystal which was of unusually high
quality so that scans were typically resolution limited. A
brief synopsis of part of these results appears elsewhere.!?

Below its melting temperature, the xenon monolayer
goes through a sequence of solid phases. Starting from
the high-temperature phase, the xenon monolayer has an
incommensurate solid aligned with respect to a substrate
axis, an incommensurate solid rotated from this axis, a
realigned incommensurate solid and, finally, the com-
mensurate solid. In the above phases and the transitions
between them, domain walls play an important role.

In Sec. II we discuss the relevant theories, most of
which begin with the domain-wall limit. We will then
present our data in the light of these theories. In the
course of this we will try to examine the energetics pre-
dicted by computer simulations and other theories. We
will clarify some of the results for the commensurate to
incommensurate (C-IC) transition which appear to con-
tradict previous results either from this group or oth-
ers.'®!! Finally, a speculative explanation for one of the
rotational transitions will be given.

II. THEORY

Although the lateral corrugation of the adsorption po-
tential between the graphite substrate and the rare-gas
adatoms is small, this energy is important in deciding
what structure the monolayer of rare-gas atoms will have.
The periodicity imposed by the substrate potential is usu-
ally different from the periodicity favored by an unper-
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turbed monolayer. For exangple monolayer Xe and Kr
prefer lattice constants (4.38 A for Xe and 4.00 A for Kr)
which are close to, but different from, that of the
V73X V3R 30° superlattice (4.26 A) on a graphite surface.

As the lattice constant of the monolayer approaches
that of the commensurate phase, one can imagine that
the corrugation in the substrate potential would induce a
set of domain walls separating commensurate regions,
which are large in extent when compared with the width
of the wall. (Some authors use terms like “discommen-
suration”!? or “misfit dislocation”!®* instead of domain
wall.) The C-IC transition then can be regarded as a
transition in which the size of the domains tends to
infinity. In this treatment, we consider the free energies
of the monolayer in terms of the size of the domains.!

Let us assume that we have a hexagonal array of
domain walls. In the case of a weakly incommensurate
phase, the wall energy per unit length and the wall cross-
ing energy (f;) can be assumed to be independent of the
size of the domains. In the case of a superlight wall one
can calculate the free energy per unit areal®
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where [ is the length of one side of the hexagonal domain.
¢ is the chemical potential, which is added to the free en-
ergy because the wall has a xenon areal density which is
lower than the commensurate density. The first term is
the domain-wall formation energy which is proportional
to 1/1. From dimensional considerations it is evident
that the crossing energy (f;) of the walls contributes as
1/12

In addition to the hexagonal domain wall phase, it is
also possible to have a striped phase in which the walls
are oriented in one direction. According to this form of
mean-field theory, at T =0 the sign of the crossing energy
determines whether there will be a striped phase and
whether the C-IC transition will be first order or continu-
ous.!® If the sign of £ is positive, a striped phase will be
energetically favored and the C-IC transition will be a
continuous one between the striped phase and the com-
mensurate phase. Otherwise, the C-IC transition will be
a first-order transition to a hexagonal domain phase.

At a nonzero temperature, the walls should fluctuate.
For the striped phase this will cause an effective entropic
repulsion between the walls due to wall collisions, adding
a T/I3 term to the free energy. For the hexagonal
domain system, the collision term can be ignored.

Villain'® pointed out that a hexagonal array of domain
walls has a degeneracy due to the breathing modes be-
cause the hexagonal domains can expand or contract
without changing the total length of the walls or the
numbers of crossings. The number of these modes is I /@
where @ is the order of the lattice constant of the mono-
layer. Therefore the free energy should become
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From the free energy we can obtain the equilibrium value
of I by minimizing F (/) with respect to /. At the same
time the free energy should be negative for the hexagonal
incommensurate phase to be stable against the C phase.
From Eq. (2), the critical chemical potential is then

(==t T, ®

where L, =ae

One should notice here that for the same chemical po-
tential the free energy of the striped phase (with positive
1) will be positive.

Coppersmith et al.!” suggested that a crystalline array
of domain walls as a lattice can be unstable against the
creation of dislocations. In this case, the system goes
through a “domain wall liquid” (or “reentrant fluid”)
phase in the course of the transition from the commensu-
rate solid to the incommensurate solid. The stability of
the domain wall lattice depends on the behavior of its
elastic constants near the C-IC transition. If the domain
wall liquid does not exist, then for positive f; there will
be a first-order transition from the hexagonal domain
phase to the commensurate phase.

Kardar and his collaborators investigated rare
gases on graphite using real-space renormalization-group
techniques. They have been able to produce phase dia-
grams for the rare-gas layers using a striped helical Potts
model for the domain wall network. These phase dia-
grams match some features of the experimental results
quite well. The main predictions of their calculations for
krypton layers are that there is a reentrant fluid phase be-
tween the C-IC transition, and that at low temperatures
there should be a striped incommensurate solid.

The reentrant fluid phase that is associated with the
krypton C-IC transition was originally discovered experi-
mentally!® and has been studied thoroughly since that
time. However, the predicted Kr striped phase has not
been observed. Recently, Fain and co-workers have re-
ported observation of a striped phase for D, monolayers
on graphite.?®

Halpin-Healy et al.'® showed that with some specific
choices of the microscopic parameters, the xenon layer
may have a striped phase, as well, but the reentrant fluid
was excluded. In their phase diagram, at constant pres-
sure, the solid xenon monolayer goes through a hexago-
nal incommensurate (HIC) phase, striped incommensu-
rate phase, commensurate (C) phase, and a bilayer phase.
Depending on the strength of corrugation of the surface
adsorption potential ( V), we may have bilayer condensa-
tion anywhere between the HIC phase and the C phase.
The value of V,, varies by as much as a factor of 3 in the
literature. In the Halpin-Healy et al.'® calculation, a
value of the wall crossing energy (f;) was chosen to give
a striped phase in the phase diagram. As the wall cross-
ing energy changes, the region of the striped IC solid can
become extremely small. Furthermore, their real-space
renormalization-group technique does not include the
effect of the breathing modes which tend to stabilize the
hexagonal domain wall network at the expense of the
striped phase.

(1+2£,/D

5,6,18



40 SYNCHROTRON X-RAY STUDY OF THE STRUCTURES AND. ..

Up to this point, both the two-dimensional solid and
the domain-wall network have been assumed to be
aligned along symmetry axes of the substrate. However,
this is an unnecessary restriction. Novaco and
McTague?! have calculated the linear response of a two-
dimensional solid to the substrate potential in the har-
monic approximation at 7=0. They showed that an in-
commensurate monolayer may rotate from the aligned
orientation to minimize the strain energy density. This
rotation occurs when ¢; >V'2¢,. (c; and c, are, respec-
tively, the longitudinal and transverse sound velocities of
the monolayer.) For a two-dimensional floating solid,
which has a Lennard-Jones—type interaction, ¢;=V 3c,.
This relation is called the two-dimensional Cauchy rela-
tion. Thus the condition given by Novaco and
McTague?! is satisfied for almost all solids except those
very close to the C-IC transition. Villian?> showed that
in the domain-wall limit, a monolayer can be rotated by
tilting the walls. In this case, the condition for rotation is
C; > 2Ct .

Shiba?*?* accommodated both of the above possibili-
ties. He treated interactions between adatoms as an elas-
tic continuum and added discrete interactions between
the monolayer atoms and the substrate. He showed nu-
merically that a monolayer will rotate when the misfit is
larger than a certain critical value. This critical misfit is
about 0.7/l for a Cauchy solid. /, (dimensionless wall-
width parameter) is a constant representing the ratio be-
tween the interactions of adatom to adatom and adatom
to substrate.

The above theories were calculated at zero tempera-
ture. For the behavior at a finite temperature, there does
not appear to be any thorough theoretical treatment.
Some authors'>?’ briefly mention that the rotation can be
suppressed by a sudden change of wall direction from 6
to —6. If this kink occurs many times on a single, long
wall, the average rotation angle will be zero. When the
distance (y,) between kinks is much longer than the
domain size, domain walls will rotate by 6. Consequently
the lattice of the adatoms will rotate, too. If y, is of the
order of the size domains, the situation becomes more
complicated. In this case, we can imagine that the rota-
tion angle will be reduced and that there could be a
thermally induced transition from the aligned phase to
the rotated phase.

III. EXPERIMENTAL TECHNIQUE

The x-ray scattering experiments were carried out at
the IBM-MIT beam lines X-20A and C, at the National
Synchotron Light Source (NSLS), Brookhaven National
Laboratory. A full description of the beam lines can be
found elsewhere (Ref. 19, Specht et al:). The scattered
beam from the sample was detected after being collimat-
ed by the Ge(111) analyzer with the scattering plane per-
pendicular to the floor. The in-plane transverse resolu-
tion results from the vertical angular divergence of the
beam (0.013° full width). On the beam line X20A, Si(111)
crystals were used for the monochromator. Asymmetri-
cally cut Ge(111) crystals were used on X20C. The re-
sulting radial resolutions were_ 0.000 24 A~ (with Si
monochromators) and 0.00032 A ™! (with asymmetrical-
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ly cut Ge monochromators) half-width at half maximum
(HWHM).

We will now discuss briefly the substrates and the sam-
ple cell. We used two different graphite crystals as sub-
strates. The first graphite crystal used was a natural one
picked out from a piece of limestone from New York.
The second one was a byproduct of steel production
(KISH graphite). The samples were about 1X2X0.05
mm? in volume with the ¢ axis along the narrow direc-
tion. The substrate was held by tantalum tweezers. To
heat the substrate a current was passed through the
graphite itself in the direction of the z axis. A
5%W95%Re-26%W74%Re thermocouple attached to
the tantalum holder near the substrate was used to mea-
sure the temperature during the cleaning procedure.

In addition to the single crystal described above, the
sample cell contained a mass of vermicular graphite
which was prebaked at 600°C outside of the cell. The
chamber holding the vermicular graphite had Be win-
dows on opposite sides. This large surface area ballast
(~10 m2/g) of vermicular graphite was used to control
the surface coverage on the single crystal. That is, by
keeping the single crystal and the large mass of vermicu-
lar graphite at the same chemical potential, the coverage
on the single crystal could be controlled. At the end of
the experiment, by scattering from the xenon physisorbed
on the vermicular graphite we confirmed that the cover-
ages on the single crystal and the vermicular graphite
were the same within the errors.

The temperature control was better that £0.01 K over
an hour, while the overall temperature drift was less than
0.1 K per day. A typical scan took less than 1 h. The
sample cell, gas handling system, flexible vacuum tube
line, and turbomolecular pump were baked overnight to
obtain a base pressure of 1077 Torr. As we shall discuss
below the overall cell was quite clean with the sample
surface coverage remaining fixed for times in excess of a
week.

To obtain the precise coverage of the xenon atoms on
the graphite surface, we measured a Kr isothermal ad-
sorption; this gives a clear signature of the commensurate
to incommensurate (C-IC) transition. We defined one
monolayer (1 ML) to be the coverage at the onset of the
C-IC transition for krypton, that is, at completion of the
commensurate phase. This corresponds to point A4 in
Thomy and Duval’s designation for the various transition
points on an isothermal adsorption curve.?

We tested the quality of the graphite surfaces using
diffraction from the monolayer Kr commensurate phase.
For both single crystals we obtained Kr peaks which
were resolution limited in the longitudinal direction.
This implies that the graphite surfaces have a coherence
length of at least a 1 um. We also obtained the in-plane
and out-of-plane mosaicity of the graphite single crystal
surfaces from the transverse scans of the Kr commensu-
rate phase. During data analysis, each model function
was convoluted with the resolution function and the mea-

 sured mosaicity. We found that the natural graphite

crystal had a complicated in-plane mosaic structure.
This mosaic gave some difficulties in analyzing data for
the transverse scans. Fortunately, the Kish graphite
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FIG. 1. Transverse scan of commensurate krypton. The
commensurate krypton was formed on the KISH single crystal
used in the second part of the monolayer study.

crystal showed only one in-plane resolution-limited kryp-
ton commensurate peak as shown in Fig. 1.

IV. EXPERIMENTAL RESULTS

We investigated xenon layers at coverages of f=0.90,
0.96, 1.02, and 1.16 ML at low temperatures. The experi-
ment was carried out in a closed-cell configuration so that
the actual coverage varied slightly with temperature as
the three-dimensional xenon vapor pressure varied. Fig-
ure 2(a) shows the sequence of phases investigated in this
experiment.  The phase at the top of Fig. 2(a) occurs at
the highest temperature; proceeding downward, the
phases at lower temperatures are shown. Of the various
coverages studied, only the 0.90 monolayer (ML) system
evolves differently from the others. At 0.90 ML xenon
coverage the system has neither the commensurate phase
nor the realigned incommensurate phase. At all higher
coverages studied, the overall behavior is as depicted in
Fig. 2(a). An overall schematic phase diagram excluding
the rotational transitions is shown in Fig. 2(b). Represen-
tative longitudinal and transverse scans in the different
phases for the coverage of f=1.16 are shown in Fig. 3.

Let us explain the complicated sequence of phases in
detail with the help of Figs. 2 and 3. When the xenon
monolayer freezes, immediately below its melting temper-
ature (T =116~ 134 K depending on the coverage?”?®) it
forms an incommensurate solid [Fig. 3(a)] whose axes are
aligned at 30° relative to those of the graphite surface,
that is, along graphite (110). At the freezing tempera-
ture, the xenon solid has a wave vector
Q(1,0)=1.59 A ~!. On cooling, as more xenon atoms
are adsorbed onto the graphite surface, the density of the
solid monolayer increases; in turn, QS 1,0) increases.
When the wave vector reaches Q =~1.62 A ~!, the mono-
layer undergoes a first-order transition to a rotated in-
commensurate phase [Fig. 3(b)].

At the transition, the rotation angle with respect to the
Gr(110) direction jumps discontinuously to +0.6°. The
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FIG. 2. (a) Phases and phase transitions of xenon on graphite
in the monolayer coverage region. A higher location means
higher temperature while the arrows indicate the possible tran-
sition directions. (b) Schematic phase diagram in the monolayer
coverage region. The rotational phase boundaries are not
shown explicitly.

rotation angle decreases continuously as the temperature
is lowered further. At @ =1.67 A ~1 the rotation angle
goes to zero; then the realigned incommensurate phase
[Fig. 3(c)] appears. In this phase we were always able to
observe the satellite peaks due to the network of hexago-
nal domain walls. Around 60-70 K, the xenon layer un-
dergoes another first-order transition from the above
realigned incommensurate phase to the V'3XV3R30°
commensurate phase [Fig. 3(d)].

On heating, the wave vector Q(1,0) of the xenon layer
behaves in exactly the same fashion as in the cooling cy-
cle, including the C-IC transition. However, when we
start the heating cycle either from the commensurate or
from the realigned incommensurate phase, the xenon lay-
er does not rotate at all. Since the superlight hexagonal
domain wall phase is symmetry equivalent to the aligned
IC phase, there is only one phase transition, the C-IC
transition, in the heating cycle.

A. Xenon rotation

Plots of rotation angles versus incommensurability
(e=Q_,—Q) are shown in Fig. 4 for each coverage. For
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each coverage, when the incommensurability is approxi-
mately €=0.08 A ~, the rotation angle jumps from zero
to =~0.6°. This rotatlon of the monolayer is manifested in
the two split peaks in the transverse scan, as in Fig. 3(b).
There is, in addition, typically some scattering at the
center of the two peaks. These features mean that some
patches of the layer rotate clockwise, other patches rotate
counterclockwise, and some parts of the layer may
remain aligned. As the temperature is lowered, the rota-
tion angle decreases continuously to zero.

For the 0.90 ML xenon layer, € did not decrease below
0.025 A ~'; further, the rotation angle did not go to zero
upon coolmg At this coverage, the layer remained rotat-
ed even at the lowest temperature (7=26.80 K) that was
studied. At higher coverages, realignment occurred at
€=~0.033 A ~!. For the rotated phases, we can fit the ro-
tation angle to a power law. A function ©=a(e—¢,)'"?
as predicted by mean field theory, fits reasonably well for
all of the three high coverages although we certainly can-
not preclude other functional forms. These power laws
are shown as bold curves in Fig. 4. The critical incom-
mensurability €, is 0.033 A~ If we identify this point
as the critical mlsﬁt 0.7l, predicted by Shiba,?>%* we ob-
tain 36 for /,. This value will be compared later with /;
estimated in other ways.

The fact that the xenon layers start to rotate at a finite
misfit with a rotational angle increasing continuously
with the misfit is in qualitative agreement with Shiba’s
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FIG. 3. Representative angular and radial scans for f =1.16
layers of xenon on graphite. The intensity is normalized to that
obtained for a storage ring current of 100 mA.
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predictions.”>?* However, the rotation angle is much
smaller that predicted. At a high incommensurability
Shiba’s theory asymptotically approaches the first-order
approximation in the weak potential limit.?! In this limit,
the rotation angle is given by

0=m(1—2c2/c})'?, @)

where m is the relative misfit (Q, —Q)/Q. For a Cauchy
solid, the monolayer will be rotated by 6= m/V3. At
€=0.08 A ~! this approximation predicts a rotation of
the layer by 1.6°, which is substantially larger than the
observed rotation.

The reduced rotation angles and the additional transi-
tion from the rotated to the nonrotated phase at high
temperature and high misfit must be finite-temperature
effects. The orientational fluctuation of domain walls or
the excitation of transverse phonon modes which are re-
lated to the rotation can reduce the rotation angle or
quench the rotation completely. Simple symmetry argu-
ments would suggest that this transition is in the two-
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FIG. 4. Rotation angle vs incommensurability. The bold
curve is the % power law described in the text. In (c) the light
solid curve is Shiba’s prediction while the dashed line is the
lowest-order Novaco-McTague approximation. In (d) the path
of the temperature cycle is indicated by arrows.
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dimensional Ising universality class.!”> In the present

case, however, it is not clear why the transition is first or-
der.

Ar (Ref. 29) and Kr (Ref. 30) monolayers also exhibit
rotated phases. The rotation angle and the incommen-
surability at the onset of rotation for Ar and Kr layers
follow Shiba’s prediction for the Cauchy solid quite well.
Thus there is no evidence for these systems for the finite
temperature effects discussed above.

We observed a large hysteresis in the two rotational
transitions. The arrows in the plot in Fig. 4(d) show the
experimental paths taken. In the rotational transition at
high temperature, the hysteresis was as wide as 0.01
A 7!, When we raised the temperature starting from the
aligned incommensurate phase to the rotated phase re-
gion, the layer did not rotate at all, that is, in the heating
cycle, there was no rotational transition. We presume
that the absence of the rotated phase in the heating cycle
is due to the immobility of the domain walls.

B. Commensurate to incommensurate transition

Figure 5 shows the evolution of the incommensurabili-
ties with temperature. As noted previously, for a cover-

008 T T T T T T T ._'
(a) £=0.90 .
004 . -
ol 1 | 1 ! 1 I L
0.08 4
(b) £=0.96 .
{4, 0.04} /‘/-—
=z L -~ ]
g oLt L J IR SR B | 1
2 0.08
g (c) f=1.02 1
£ T =
e
E’ 0.04} f.“" .
. e ]
QL 1 L J] 1 1 | 1
0.08
(d) =146 )
0.04f -
L 1 1 1 1

0 domorih L
40 60 80 100
Temperature (K)

FIG. 5. Incommensurability vs temperature. The solid lines
are the results of best fits to single power laws with S=1 while

the dotted lines are the power law with 8= %
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age of 0.90 ML the xenon remains incommensurate with
respect to the graphite at all temperatures. As the cover-
age is increased a C-IC transition occurs with a tempera-
ture (T¢;c) which increases with increasing coverage.
The T ;o) were ~55, 70, and 73 K for the coverages of
0.96, 1.02, and 1.16 ML, respectively.

There has been a number of previous studies of the C-
IC transition of the xenon monolayer system. Using
transmission high-energy electron diffraction (THEED),
Venables and his co-workers!®*! studied monolayer and
bilayer xenon on graphite. As is usual in electron
diffraction, these experiments used a single crystal. In
the early experiments, neither the surface coverage near
the actual pressure was held constant; rather, the mea-
surements involved fixed impinging rates of xenon atoms,
which were represented by effective pressures at room
temperature. In the most recent experiments (Ref. 31,
Hamichi et al.) the pressure is indeed held fixed; the
pressure is typically in the 1078-107° Torr range while
the temperature is varied between 80 and 50 K. In such
temperature sweeps, the coverage varies drastically with
temperature. This contrasts with our technique where
over the same temperature range the coverage is essen-
tially constant. Further, in the THEED experiments the
measurement time is 10 sec and the cooling rate typically
<0.5 K/min. This constrasts with scan times of 2-30
min and equilibration times of up to 2 h in our synchrot-
ron x-ray measurements. Given these differences, the
general agreement between the two experiments is quite
good. We will comment on the apparent discrepancies
below.

Finally, Mowforth er al. 32 speculated from their
powder x-ray data that a sequence of locked phases exists
before the layer reaches the commensurate phase. These
locked phases have rotated domains. Even with our
much higher resolution data from excellent single crystal
substrates, we did not observe any indication of nonzero
jumps in lattice constant in the incommensurate phase.

The layer with xenon coverage f =1.16 was studied
most extensively. The C-IC transition in this coverage
showed a clear first-order transition at ~72.8 K. By
raising the temperature in 0.5-K steps, we observed a se-
quence of scans partly shown in Fig. 6. At 71.86 K, there
was only a commensurate peak. An incommensurate
peak emerged at 72.83 K, but the commensurate peak
still existed, albeit with an amplitude which varied with
time for periods in excess of 1 h. By 73.18 K the com-
mensurate peak disappeared completely. Though the
transition is first order, the continuous part of the €
versus T curve is well described by a power law.* 3% We
included only the data below 100 K, where a good fit to
the form A [(T/T,)—1]? was obtained with parameters
A =0.065+0.002, $=0.33+0.08, and T,=70.91+01.8
K. The solid line in Fig. 5(d) indicates this curve. The
data were also fit to a power law with (3 held fixed at 0.5;
this is shown as a dotted line in Fig. 5(d). The B=0.5
curve generally describes the f =1.16 ML data less well
especially close to the transition.

As the C-IC transition is approached from the incom-
mensurate phase, the longitudinal widths broaden. The
widths are shown in Fig. 8 where we plot the half-width «
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FIG. 6. Longitudinal scans for f =1.16 layers of xenon in
the vicinity of the C-IC transition.

of a Lorentzian 1/[(Q —Q3)*+«?, to which we fit the
longitudinal peak of the incommensurate phase. We only
show the width of the incommensurate phase in the heat-
ing cycle.

One might speculate that this broadening results from
a spread in the phase transition temperature across the
sample. With this assumption we can estimate the longi-
tudinal width '

AQ=—§§-AT=~‘34—#(T—TOW'1AT. (5)
0

The solid line shown in the « versus T plot [illustrated in
Fig. 8(b)] is the above function with =1, T, given from
the fit to € versus T, and a AT of 0.4 K. The general
agreement is good except very close to the transition. It
should be noted however that the « versus € curve in Fig.
8(a) implies a power law k < €* with a= —2.6, whereas
Eq. (5) implies that a= —2. It is interesting to speculate
that the broadening shown in Fig. 7 may have an intrin-
sic origin as in, for example, the transition from the C
phase to a reentrant fluid phase.!””!*?° However, given
the other potential sources for line broadening, the possi-
bility that the weakly incommensurate phase is actually a
highly correlated fluid could not be checked.

Villian'® pointed out that the C-IC transition will be
first order due to the effective attraction between walls
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FIG. 7. Hexagonal superlight domain wall. (a) The lattice of
xenon atoms with respect to the graphite. (b) The main and sa-
tellite Bragg scattering points in reciprocal space. The arrows
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caused by the entropic contribution of the breathing
mode. According to mean-field theories!® incorporating
this feature, the C-IC transition from a hexagonal domain
occurs for [, =ae 1/ [see Eq. (3)]. For the coverage
of f=1.16, the C-IC transition occurs at / =33a and
T ~73 K. Here a is the lattice constant of the commens-
urate phase and a /e <@ <2a. From this information we
can estimate that f; is around 60 K assuming @ ~a. This
positivity of the wall crossing energy is predicted by
Bak3® and Talapov.’’” We will come back to this issue
when we discuss the striped phase later.

In conclusion, the C-IC transition of the xenon mono-
layer, for coverages above one monolayer, is weakly first
order, with behavior dominated by the breathing modes
of hexagonal domains. The monolayer C-IC transition
line terminates at 72.8 K, somewhat higher than the
value of 62.5 K inferred by Hamichi et al.’! However,
there is no explicit contradiction between their data and
ours as emphasized by them.?!

Our data at 55 K are too sparse to allow a statement
about the order of the transition. From their THEED
experiments, Hamichi et al.>' conclude that the C-IC
transition at temperatures below ~63 K is continuous.
We do not have measurements which contradict this re-
sult. However, given that the transition is first order at
higher temperatures, a crossover to continuous behavior
at lower temperatures would be quite surprising. We be-
lieve that kinetic issues in the THEED experiments need
to be addressed carefully before this result can be con-
sidered to be established definitively.

C. Hexagonal domain walls

Because the average lattice constant of a xenon incom-
mensurate layer is larger than that of the commensurate
phase, the domain walls of the xenon layer should either
be light walls or superlight walls. Both the domain for-
mation energy and the chemical potential deficiency
prefer superlight walls. In Fig. 7(a) a network of super-
light domain walls is illustrated. This network should
lead to diffraction peaks at (Q qmm,€) and (Q onm +€, —€)
as illustrated in Fig. 7(b). We have taken the longitudinal
and angular scans along the paths indicated in Fig. 7(b).
The results shown in Figs. 9(a) and 9(b) are consistent
with scattering from superlight walls. The satellites were
only observed in the aligned incommensurate phase at
low temperature. This does not, however, rule out the
existence of hexagonal domain walls at higher tempera-
tures.

We tabulate all of the reliable satellite intensities in
Table I. Also tabulated are the data from the experiment
using the vermicular graphite in the same sample cell.
Since the intensities of the satellites for the data from the
vermicular experiment are the sums of two identical sa-
tellite peaks, we divided the observed intensity by two to
obtain the correct ratio for the vermicular data. In the
powder experiment we measure only the absolute value of
the wave vector. The peaks occurred at Q. ... —€ and
Q comm T €72 for the main peak and the satellite peak, re-
spectively. As shown in Table I, with increasing incom-
mensurability the relative intensity of satellites in general
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TABLE 1. Estimation of domain-wall widths

Coverage T (K) € Ratio Size Iy
Single-crystal data
0.96 61.34 0.0181 44 31 37.1
1.11 74.18 0.0265 13.9 22 48.2
1.02 71.27 0.0201 5.67 28 395
1.16 73.17 0.0205 7.2 27 43.7
1.16 76.97 0.0284 11.8 20 41.0
1.16 85.08 0.0385 15.2 14 319
Vermicular data
1.16 81.5 0.0304 20.06 16 40.4
81 0.0296 14.7 19 42.6
74.51 0.0298 13.28 19 40.8
72.25 0.0229 12.84 24 51.9

decreases. The smaller intensities result mostly from the
smaller size of the domain with an almost constant width
of domain wall. As stated earlier, at the C-IC transition
the domain size was ~ 33a, measured along a side of the
hexagon; this is calculated directly from the incommen-
surability. The width of the domain wall was estimated
to be ~4a (half-width), which will be explained in Sec.
IV D. The domain size decreases to ~ 15a at the onset of
the continuous rotation transition. When the domain
size becomes smaller, more atoms sit inside the wall re-
gion. This further reduces the intensity of the satellites.

15 T T T T
f=0.96 |
T=61.34K

! L

0 1 1
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0 ] | 1
155 16.0 16.5 17.0 17.5
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e}

Intensity (counts min-1)
o

FIG. 9. Scans of the satellite peaks. Top: A longitudinal
scan through the satellité as illustrated in Fig. 7(b). Bottom:
An angular scan through the two satellites as illustrated in Fig.
7(b).
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As a result, no satellites could be observed in the rotated
incommensurate phase.

D. Corrugation of the surface potential

The most reliable method for estimating the corruga-
tion of the potential due to the substrate is to measure the
domain-wall width. We assume that the meandering of
walls does not significantly affect the intensities. The wall
width then determines the ratio of intensities between the
main peak and the satellite peaks. One can express the
effective modulation of the adsorption potential for an
adatom over the graphite surface as

V(r)=—Vy[cos(a;'r)+cos(a, r)+cos(az-r)], (6)

where a, , ; are the reciprocal lattice vectors of the sur-
face. The energy difference for a xenon atom between the
center of a honeycomb and just above a carbon atom is
9/2V,. In Shiba’s notation?>?* the dimensionless wall
width is I,=1/54W /V,, where W is the depth of the po-
tential well between xenon atoms. The magnitude of Wis
well established. Shiba’s wall width [, is related roughly
to the half-width at half maximum of the wall, w, by
ly=10w.

To compare theory with experiment we carried out a
computer simulation for the domain-wall relaxation at
zero temperature following Specht et al.!®* We varied V,
until the resulting relaxation gave the right intensity of
the satellite peak for each domain size. In this way we
determined the [,’s; they are also shown in Table I.
Combining all of the data, the average [, is 41.7+5.5. If
we take only the single crystal data into consideration, [,
becomes 40.215.6. Considering the large variation in
temperature and incommensurability, the consistency of
the value of /, is quite satisfactory. This justifies the as-
sumption that the thermal fluctuations do not
significantly change the intensity ratio. By way of com-
parison, Shiba’s T =0 theory*>»?* for the onset point of
the xenon rotational transition yields /,=36.

It is useful to compare the experimental value of [,
with first-principle calculations of the xenon-graphite in-
teraction potential. Steele>® was the first to recognize the
fact that we can approximate the lateral variation of the
adsorption potential well using only the first Fourier
components as in Eq. (6). Using the Lennard-Jones form
of the potential between carbon and xenon, he calculated
that the corrugation potential 9/2V, should be 38.2 K.
The most recent value for the potential depth resulting
from the xenon-xenon interaction, W, is 282 K (Barker
et al.*®); this results in ly=42.4. Recently, Vidali and
Cole®® have reestimated the corrugation. Assuming no
anisotropy in the xenon-carbon interaction they estimate
9/2V,=77 K, giving l;=30. Our estimation from the
satellite intensities gives a value of ¥ closer to Steele’s
value. Halpin-Healy et al.'® found that 9/2V,=75 K
fits their proposed phase diagram best. They used
W =236 K chosen by Rauber et al.*! which together
with their value for 9/2V, gives [, ~27.7.

The ratio of intensities of the main peak and satellite is
independent of the thermal fluctuations to first order;
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however, we suspect that the intensity ratio yields an
upper bound for /. This is because temperature effects
should suppress the modulation.

Shiba’s /; does not give the width of the walls directly.
Instead of using the analytical function of the uniaxial
pseudo-harmonic calculation by Villian?? or the one by
Bak?® to estimate the width, we used directly the results
of our relaxation simulation. The simulation produced
the displacements from the commensurate site such that
the resultant structure factor gave the correct ratio of
scattering intensities. We found that a hyperbolic func-
tion fitted the calculated displacement profiles quite well.
The function fitted to the displacements along one of the
symmetry axes is
n—C

D=4 x

1—tanh , (7)

where A is 1.42 ;\, C is the size of the domain, and 7 is
the number for the row of atoms measured horizontally
in Fig. 9(a). When [, is 40.4 and the size is 33a, the 1/e
full width is 7.1 rows. The displacements also fit quite
well to the one dimensional Frank-van de Merwe theory,

D = A'arctan(e” ~¢/*) . (8)

With the same size, the fit for A gives 4.2. The pseu-
doharmonic results?>3® D =B sinh[(n —C)/A] do not fit
well to our numerical simulations. From the above two
functional forms, we can conclude that the half-width of
the domain walls is approximately four rows of atoms.

E. Vermicular data

As a comnsistency check we also performed an x-ray
scattering experiment from a xenon layer adsorbed on to
the vermicular graphite. There were two reasons for do-
ing this part of the experiment. First, we wanted to
check the equality of coverages on both types of graphite.
Second, we intended to repeat the original Hong et al.!!
experiment with much higher resolution and thereby ex-
amine the proposed existence of the striped phase around
a coverage of f =1 ML on vermicular graphite. The
coherence length of the surface of vermicular graphite
was ~700 A. This coherence length would always im-
pose a peak wider than that of the resolution function in
this experiment. On the other hand, Hong et al.’s previ-
ous experiment'! had resolution-limited peaks.

Figure 10 shows scans from the vermicular experiment
together with longitudinal and transverse scans from the
single-crystal experiment at comparable temperatures.
The vermicular scans were fitted to Warren’s powder line
shape averaged over a uniform mosaic distribution. Due
to the mosiac distribution, one cannot see any of the an-
gular features appearing in the single crystal experiment.
We find generally that the reciprocal lattice vector Q for
the xenon on the vermicular graphite is the same, within
errors, as the one obtained using the single-crystal sub-
strate. This verifies that the coverages on the two sub-
strates are identical, hence validating our experimental
technique for controlling coverage on the single crystal.

However, in contrast to the single-crystal experiment,
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FIG. 10. Comparison of vermicular and single-crystal graphite substrate data. Representative scans for f =1.16 layers of xenon
on vermicular graphite compared with radial and angular scans for the same coverage on the KISH single-crystal graphite at compa-

rable temperatures.

the commensurate phase does not readily appear in the
vermicular experiment. This was already observed in
Hong et al.’s previous experiment.!! We did not see the
two distinctive peaks indicating a striped phase as conjec-
ture by Hong et al.!! Instead, the peaks below 60 K are
wide and cannot be fitted to a single peak. We could not
deduce an ideal function for these peaks. However, an
asymmetric distribution of reciprocal lattice vectors fits
the data quite adequately. The fitting for the vermicular
data at 60 K in Fig. 10 represents a triangular distribu-
tion of reciprocal lattice vectors with a cutoff at Q.. This
suggests that the low-temperature phase of xenon on the
vermicular graphite is a pinned hexagonal domain-wall
phase rather than a striped phase. This pinned hexagonal
domain-wall phase may occur due to the defects on the
surface including the edges and steps.*>*?

V. CONCLUSIONS

These experiments have clarified the phases and the
phase transitions for a xenon solid layer on graphite in
the monolayer coverage regime. The incommensurate

solid undergoes the sequence of transitions:
aligned —rotated —reentrant aligned, before the solid
transforms into the commensurate solid. The current
theory of orientational epitaxy correctly predicts only the
point at which the rotation to the reentrant aligned
phases occurs. None of the current theories can explain
the whole picture of orientational epitaxy. Neither the
high temperature aligned solid nor the reduction of the
rotation angle from that of the static prediction are ex-
plained.

The reentrant aligned phase at low temperatures is an
incommensurate solid with a network of superlight
domain walls. The observed first-order phase transition
can be explained within the domain-wall theory. The in-
commensurability at constant coverage decreases approx-
imately as [(T—T,)/T,]"/* until the first order C-IC
transition point is hit. This 1 power law is close to the
behavior seen for Kr on graphite following a similar ther-
modynamic pathway.!®

We estimated the potential corrugation of the surface
adsorption from the intensity ratios between the main
and satellite peaks in the domain-wall incommensurate
phase. The corrugation of the potential estimated was



40 SYNCHROTRON X-RAY STUDY OF THE STRUCTURES AND . ..

close to the one predicted by Steele.3® Along with the es-
timation from the onset of the rotated phase, we set the
limits for the dimensionless wall width, 36 </, <42.

At low temperatures the xenon layer on vermicular
graphite did not transform into the commensurate phase
as on the single-crystal graphite substrate. Instead the
xenon layer seems to have a pinned domain-wall network
due to defects.

4807

ACKNOWLEDGMENTS

We would like to thank T. Halpin-Healy, M. Kardar,
and E. D. Specht for valuable discussions of these results.
We are also grateful to J. A. Venables for copies of his
work prior to publication and for stimulating comments.
The work at MIT was supported by the Joint Services
Electronics Program under Contract No. DAALO03-86-
K-0002.

IP. Bak, Rep. Prog. Phys. 45, 587 (1982).

2D. E. Moncton, J. D. Axe, and F. J. Disalvo, Phys. Rev. Lett.
34, 734 (1975).

3R. J. Birgeneau and P. M. Horn, Science 232, 329 (1986).

4P. Fischer, B. Lebech, G. Meier, B. D. Rainford, and O. Vogt,
J. Phys. C 11, 345 (1978).

5M. Kardar and A. N. Berker, Phys. Rev. Lett. 48, 1552 (1982).

6R. G. Caflish, A. N. Berker, and M. Kardar, Phys. Rev. B 31,
4527 (1985).

7B. Joos, B. Bergerson, and M. L. Klein, Phys. Rev. B 28, 7219
(1983).

8B. Joos and M. S. Duesbery, Phys. Rev. B 33, 8632 (1986).

9K. L. D’Amico and D. E. Moncton, J. Vac. Sci. Technol. A 4,
1455 (1986).

10p, S. Schabes-Retchman and J. A. Venables, Surf. Sci. 105,
536 (1981).

I1H, Hong, R. J. Birgeneau, and M. Sutton, Phys. Rev. B 33,
3344 (1986).

12H. Hong, C. J. Peters, A. Mak, R. J. Birgeneau, P. M. Horn,
and H. Suematsu, Phys. Rev. B 36, 7311 (1987).

13W. L. McMillan, Phys. Rev. B 14, 1496 (1976).

14F, C. Frank and J. H. van der Merwe, Proc. R. Soc. London,
Ser. A 198, 205 (1949).

158. N. Coppersmith, Daniel S. Fisher, B. I. Halperin, P. A. Lee,
and W. F. Brinkman, Phys. Rev. B 25, 349 (1982).

165, Villian, in Ordering in Strongly Fluctuating Condensed
Matter Systems, edited by T. Riste (Plenum, New York,
1980). '

173, N. Coppersmith, D. S. Fisher, B. I. Halperin, P. A. Lee, and
W. F. Brinkman, Phys. Rev. Lett. 46, 549 (1981).

18T, Halpin-Healy and M. Kardar, Phys. Rev. B 34, 6557 (1986).

19D, E. Moncton, P. W. Stephens, R. J. Birgeneau, P. M. Horn,
and G. S. Brown, Phys. Rev. Lett. 46, 1533 (1981); E. D.
Specht, A. Mak, C. J. Peters, M. Sutton, R. J. Birgeneau, K.
L. D’Amico, D. E. Moncton, S. E. Nagler and P. M. Horn, Z.
Phys. B 69, 347 (1987).

20y, Lui, S. C. Fain, Jr., H. Freimuth, H. Weichert, H. P. Schild-
berg, and H. J. Lauter, Phys. Rev. Lett. 60, 1848 (1988).

21A. D. Novaco and J. P. Mctague, Phys. Rev. Lett. 38, 1286
(1977).

223, Villian, Phys. Rev. Lett. 41, 36 (1978).

23Y. Shiba, J. Phys. Soc. Jpn. 46, 1852 (1979).

24Y, Shiba, J. Phys. Soc. Jpn. 48, 211 (1980).

25T. Halpin-Healy, Ph.D. thesis, Harvard University, 1987.

26A. Thomy, J. Reginier, J. Menaucourt, and X. Duval, J.
Cryst. Growth. 13/14, 159 (1972).

27p. A. Heiney, P. W. Stephens, R. J. Birgeneau, P. M. Horn,
and D. E. Moncton, Phys. Rev. B 28, 6416 (1983).

28p. Dimon, P. M. Horn, M. Sutton, R. J. Birgeneau, and D. E.
Moncton, Phys. Rev. B 31, 437 (1985).

29C. G. Shaw, S. C. Fain, Jr., and M. C. Chinn, Phys. Rev. Lett.
41, 955 (1978).

30K. L. D’Amico, D. E. Moncton, E. D. Specht, R. J. Bir-
geneau, S. E. Nagler, and P. M. Horn, Phys. Rev. Lett. 53,
2250 (1984).

31A. Q. D. Faisal, M. Hamichi, G. Raynerd, and J. A. Venables,
Phys. Rev. B 34, 7440 (1986). For recent THEED work see
M. Hamichi, A. Q. D. Faisal, J. A. Venables, and R.
Kariotis, Phys. Rev. B 39, 415 (1989).

32C. W. Mowforth, T. Rayment, and R. F. Thomas, J. Chem.
Soc. Faraday Trans 2 82, 1621 (1986).

33p. W. Stephens, P. A. Heiney, R. J. Birgeneau, P. M. Horn, D.
E. Moncton, and G. S. Brown, Phys. Rev. B 29, 3512 (1984).

343, C. Fain, Jr., M. D. Chinn, and R. D. Diehl, Phys. Rev. B
21, 4170 (1980).

35V. L. Pokrovsky and A. L. Talapov, Phys. Rev. Lett. 42, 65
(1979).

36p. Bak, in Solitons and Condensed Matter Physics, edited by A.
R. Bishop and T. Schneider (Springer-Verlag, Berlin, 1978).

37A. L. Talapov, Phys. Rev. B 24, 6703 (1981).

38W. A. Steele, Surf. Sci. 36, 317 (1973).

393. A. Barker, M. L. Klein, and M. V. Bobetic, IBM J. Res. De-
velop. 20, 222 (1976).

40G. Vadali and M. W. Cole, Phys. Rev. B 29, 6736 (1984).

41§, Rauber, J. R. Klein, and M. W. Cole, Phys. Rev. B 27, 1314
(1983).

423, Villian, J. Phys. Lett. (Paris) 41, L267 (1980).

433. Villian and M. B. Gordon, in Dynamical Processes and Or-
dering on Solid Surfaces, Vol. 59 of Springer Series in Solid-
State Sciences, edited by A. Yoshimori and M. Tsukada,
(Springer, Berlin, 1985), p. 144.



