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Model for binary alloys: An Ising model with isotropic competing interactions
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An Ising model with competing interactions isotropic with respect to the cubic axes is presented
as a model for binary alloys exhibiting modulated structural order. In the mean-field approximation
the model supports incommensurate and commensurate structures with modulation in one, two,
and three lattice directions. The behavior of the model near a "superdegenerate" point, where the
zero-temperature entropy per spin is nonvanishing, is discussed, and low-temperature series are em-
ployed to distinguish between modulated phases which have the same mean-field free energy.

I. INTRODUCTION

Models with competing interactions that result in
modulated cornrnensurate and incommensurate phases
have received considerable attention recently. ' Not
only are they of theoretical interest, but they seem
relevant to a surprisingly large number of experimental
systems such as binary alloys, polytypes, and ferrimag-
nets.

One of the most interesting cases of structural modula-
tion that has been observed is in binary alloys of the 283
type such as TiA13 (Ref. 4) and Cu3Pd. These order in
the L12 structure shown in Fig. 1(a). Modulation then
manifests itself through regular arrays of antiphase boun-
daries as shown in Fig. 1(b). One can represent the long-
period superstructures of these alloys using a spin repre-
sentation. Each structural unit is depicted by an up (+)
or down ( —) spin depending on its position as shown by
the example in Fig. 1(b). Long-period superstructures
then correspond to repeating sequences of bands of spins.

Kulik and de Fontaine ' have proposed that the spins,
representing the two positions occupied by the structural
units, interact through the Hamiltonian of the axial
next-nearest-neighbor Ising, (ANNNI) model. This
model has competing first- and second-neighbor interac-
tions in one axial direction leading to an infinite number
of modulated phases which bear a strong resemblance to
those observed in many binary alloys.

Although this appears to provide a possible explana-
tion of the existence of long-period superstructures, one is
still left with some unanswered questions. One problem
is that the interactions of the ANNNI model are aniso-
tropic. In the absence of strain, one would expect the
couplings between the structural units of the binary al-
loys to be isotropic with respect to the cubic-lattice direc-
tions; there is no reason to expect a preferred axis as in
the ANNNI model. Moreover, the ANNNI model can-
not explain the existence of phases modulated in more
than one lattice direction. Such structures have been ob-
served in binary alloys. ' '

As a first attempt to remedy these defects, in this paper
we introduce an Ising model with isotropic competing in-
teractions. It is found that the model supports not only
the commensurate and incommensurate states found in
the ANNNI model, but also phases modulated in more
than one lattice direction. Moreover, the model proves
to be of considerable theoretical interest in its own right.
Related models have been applied to the study of mi-
croemulsions" ' and similar two-dimensional models
have been considered. '

We start by defining the model and describing its rath-
er complicated ground states in Sec. II. One interesting
degeneracy in the ground state occurs between states or-
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FIG. 1. Atomic arrangement of the binary alloy 883 show-
ing (a) the Ll, structure and (b) the ( ~, ~,2) phase. Interven-
ing planes composed entirely of 8 atoms have been omitted for
clarity.
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dered like a chessboard and those ordered like a staircase.
In Sec. III we show, using low-temperature series expan-
sions, how this degeneracy is broken at finite tempera-
ture. This problem has also been studied in the two-
dimensional model. '

The mean-field theory for the model is described in
Sec. IV which uses methods originally developed for the
ANNNI model. ' Indeed, we show that much of the
mean-field phase diagram at low temperatures can be un-
derstood through a mapping to the coupling constants of
the ANNNI model. " The phase diagram near the
order-disorder transition surface is obtained and com-
pared to that at low temperatures. Some predictions on
the ordering near this transition can be obtained through
a Landau theory of the type used to study Lifshitz points.
Explanation of this is left to the Appendix.

An interesting feature of the model is that it contains a
"superdegenerate" point where the degeneracy of the
ground state is so high that there is a nonzero entropy
per spin at zero temperature. These ground states con-
tain fully frustrated spins which can fIip without any
change in energy. EA'ects due to this situation are dis-
cussed in Sec. V.

The paper is concluded with a discussion of outstand-
ing theoretical questions, both with regard to the analysis
of the model and its relevance to ordering in binary al-
loys. A brief account of some of the ideas presented here
has been published elsewhere. '

II. THE MODEL AND ITS GROUND STATES

X

(a)

(b)

FIG. 2. (a) The octahedral cluster used for determining the
ground state of the Hamiltonian (2.1). (b) Its planar representa-
tion.

Ising spins, S„are placed on the sites, r, of a cubic lat-
tice and interact through the Hamiltonian

(2.1)

the transformation J~—J the ground-state energy is un-
changed provided S,~—S, for the central spin of every
nonoverlapping cluster. In other words, the phase dia-
gram is symmetric about J=0, and if the phases for J)0

where the coupling constant is given by

between nearest-neighbor sites
—v&~J, between next-nearest-neighbor

d(r —r')= . sites along cubic axes (2.2)
—

a2~ J ~, between next-nearest-neighbor

sites across face diagonals

and the interactions between all other spins are taken to
be zero.

The ground states of this model can be determined us-
ing the cluster method of Lyons and Kaplan. ' One
starts by dividing the lattice into octahedral clusters of
seven spins as shown in Fig. 2(a). For convenience we use
the planar representation illustrated in Fig. 2(b). The
couplings between spins on a cluster are shown in Fig. 3.
They are weighted according to how many times the
bonds are counted when adding up all the clusters on the
lattice. In this way, the sum of the energies of all the in-
dividual clusters that make up the entire lattice state will
give the total ground-state energy.

It is readily seen from Fig. 3 that the Hamiltonian (2. 1)
has a simple symmetry property. This states that under

FIG. 3. Assignment of couplings between coplanar sites of a
cluster. Couplings to the other two sites are omitted for clarity.
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TABLE I. The ten distinct configurations a cluster state can take. In calculating the cluster ener-
gies, it was assumed that J)0.

Cluster state

+

+
+

Degeneracy

12

Cluster energy/J

3+3KI +6K2

2+ K) +2K'

Lattice state

( oo, co, oo )

( a), co, 2)

1 + 3KI 2K2 ( co, co, 1 )

+

+
KI 2K'

+
16 3KI (2,2, 2&

24

1 + 3K) 2K2

12 2+ KI +2K'

3+3K')+ 6~2 ( 1, 1, 1 )

are known then those for J (0 can be determined by Aip-
ping every alternate spin throughout the lattice. There-
fore, we shall take J)0 for the rest of this paper.

The ten distinct states a cluster can take are listed in

Table I. Note that their degeneracies add up to 128=2,
showing that all configurations have been included. Each
cluster state can "propagate" through the lattice to give
its corresponding lattice state as indicated. Hence, the

TABLE II. Stable ground states at the eight multiphase lines under discussion. p denotes all se-
quences made up of bands of length two or more and p, denotes those containing only one- and two-
bands. The last two degenerate sets are explained further in Fig. 6.

Neighboring phases
Degenerate set

at boundary

( oo, oo, oo )
( a), a), 1)
( co, oo, 2)
( oo, 2,2)

( oo, oo, 1 )
( co, co, oo )
( oo, oo, 1)

& ~,2, 1&

( oo, a), 2)
( a&, oo, 2)
( co,2, 2)
(2,2, 2)

& ~,2, 1&

&2, 2, 2)
& m, 2, 2&

(2,2, 2&

( co, oo, p, )
( co, oo,P)
( ~,p, , 2)
&p, , 2, 2)
(~,p, l)

( oo, n, 1" ~2) and "onions"
(2, n, l" 2) and "onions"
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ground-state phase diagram, Fig. 4, can be determined by
finding the cluster state of minimum energy for a given ~&

and x2. To describe the lattice states, we have introduced
a notation following Fisher and Selke. The term "l-
band" is used to describe I axially consecutive spins of the
same sign. The notation

(l&l2 . . Ip, m, m2 . m, n, n2 n„)
denotes the state where there is a repeating sequence of
p(q;r ) bands of length

I 7'pip(m t)7 fffqyn]j)np)
along the x(y;z ) directions, respectively. For example,
( ~, ao, 2) represents the phase which has ferromagnetic
ordering in the xy planes but antiphase ordering,

++ ++ ++ - along the z axis. The
last four states listed in Table I are never minimal as one
can easily see by inspection of their cluster energies (al-
though, of course, they do appear for J (0).

Note that ( co, 2, 2) describes two distinct states, with
chess-board and staircase ordering, as shown in Fig. 5.
This type of ground-state degeneracy, which is present in
other states with a modulation in at least two axial direc-
tions, is broken by entropy, as will be explained in the
next section.

There are an infinite number of degenerate ground
states along the bold phase boundaries (called multiphase
lines ) in Fig. 4. The degenerate set of states at each mul-
tiphase line, which are constructed from the two types of

+ — — +

(a) (b)

FICi. 5. The two degenerate states represented by ( co, 2, 2)
showing (a) chessboard ordering and (b) staircase ordering, in
the yz plane.

+ + + + — —— — + + + +

cluster states which make up the neighboring phases, are
listed in Table II. Note that the first five of these have
structural sequences which vary in just one of the axial
directions, whereas the sixth has the same varying se-
quence, organized in a staircaselike structure, in all three
axial directions. Thus, one can consider this structure as
having a sequence of bands which propagate in a (111)
direction. This can best be seen from considering the two
distinct cluster states which make up this structure.

The last two degenerate sets of states listed in Table II

+ + + + — — — — + +

+ + + +
+ ' — —+ — + +

(m,co,co )

1

2

FIG. 4. Ground-state phase diagram of the Hamiltonian
(2.1). The bold lines denote multiphase lines.

FIG. 6. Degenerate ground states appearing in the last two
entries in Table II. (a) shows the ordering in the yz planes for
states represented by ( oo, n, 1" 2) and (2, n, 1" '2) (in this
case with n =4) and (b) illustrates the "onionlike" ordering for
"single-skinned" onions.
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are somewhat more complicated. They include states
represented by ( 0c,n, 1" 2) ((2,n, 1" 2) ) with
n =3,4, . . . , for the seventh (eighth) degenerate set. In
the yz planes the spins are arranged as shown in Fig. 6(a)
such that only one skew staircase structure is found for
each n. The other states found along these multiphase
lines are those with "onionlike" ordering. Again, the-or-
dering along the x direction is ferromagnetic [(2,2}-
antiphase] for the seventh (eighth} degenerate set. In the
yz planes, the configurations are composed from onion-
like antirepeat units. Each antirepeat unit consists of
four spins arranged in a square which is then surrounded
by one or more onion skins, each with a thickness of one
lattice spacing and succeeded by an onion skin of oppo-
site spin. An example illustrating one-skin onions is
shown in Fig. 6(b).

Of special interest to us are the ground states at the su-
perdegenerate point (a„lr2)=( —,', 0). At this point, the
ground state may contain fully frustrated spins (spins that
can fiip without any cost in energy). Indeed, as argued in
Sec. V, the presence of these spins results in one third of
the {111I planes becoming disordered at all nonzero tem-
peratures provided one is close enough to the superdegen-
erate point. In addition, the zero-temperature entropy
per spin at this point becomes nonvanishing, whereas
throughout the rest of the phase diagram, including even
the multiphase lines, it remains zero.

III. CHESSBOARD VERSUS STAIRCASE ORDERING

It was pointed out in the last section that in the region
where ( ac, 2, 2 ) provides the ground state, the chess-
board structure [Fig. 5(a)] and the staircase structure
[Fig. 5(b)] are degenerate. In addition, there are transla-
tional degeneracies within the structural ones but these
will not be given further consideration since they play lit-
tle role in the subsequent thermodynamics. Consider also
the ground states represented by (2,2, 2). Here there is a
fivefold structural degeneracy which includes a state with
chessboard ordering in all of its {100I planes, a state with
staircase ordering in all the {100I planes and three states
containing both chessboard and staircase ordered planes
in differing proportions. In this section we provide argu-
ments, based on low-temperature series expansions,
which show how the ground-state degeneracies of
( ao, 2, 2) and (2,2, 2) are broken at any finite tempera-
ture.

13F b,Z~(m )f= — = PEo+— (3.2)

where the prime in the sum indicates that only contribu-
tions from b.Z&(m ) that are linear in N are included; this
being a consequence of the "linked cluster" theorem.
The thermodynamically stable phase is that which max-
imizes f.

The ( ao, 2, 2) states will be considered first. The con-
tribution to f coming from Eo and from fiipping three
spins or less is the same for both chessboard and staircase
phases. A little thought shows that the first excitations
that differentiate the free energies come from Aipping
four coupled spins that lie in the same {100I plane.
There are hundreds of such excitations but most of them
given equal contributions to the free energy of both
phases and only the three displayed in Table III will con-
tribute to the free-energy difference to leading order.
Throughout the region of the ground-state phase diagram
occupied by ( ao, 2, 2) we have that 0&lr2 & 1 for which,
as seen from Table III, spin-Aip configurations coming
from excitations about the chessboard structure dominate
(that is, makes a larger contribution to its reduced free
energy). Hence, chessboard ordering is favored over
staircase ordering for ( ac, 2, 2) at low temperatures.

We now consider the five (2, 2, 2) states. Since these
states are composed of chessboard and staircase planes in
differing proportions, the same configurations as before
contribute to their relative reduced free energies to lead-
ing order. The corresponding Boltzmann weights are
also listed in Table III. In this case we can see that exci-
tations from chessboard planes dominate for ~2 & 1 but
those from staircase planes dominate when ~z) 1. Recall

We start by briefly explaining the method employed.
The standard low-temperature series expansion starts
from the decomposition of the partition function

Z~=e ' 1+ g EZ~(m) (3.1)
m=1

where Zz is the canonical partition function for a system
of N spins, Eo is the ground-state energy per spin,
P= I/kz T and bZ&(m ) is the contribution to the parti-
tion function which comes from Gipping m spins from
their ground-state values. If I' is the free energy of the
system, then the reduced free energy per spin, f, is

TABLE III. Configurations of flipped spins that make the leading contributions to the reduced free energy difFerences of the chess-
board and staircase phases. In the "counts" column, "c"means that the configuration occurs in chessboard planes only while "s"
means it occurs only in staircase planes. x is the elementary Bolzmann weight defined by x =exp( —2PJ ).

Spin-flip
configuration

Count per
planar site ( ~,2, 2)

Boltzmann weights
(2, 2, 2)

Dominant
when

1—C4

8@1+4ir2
X

8+ 24lc1 +4K2
X a'2 &—2

3

1c 1 24+ 8K —2a 1 2
—4+ 24K —2K —&F2&12

3

1s 1 2
6+ 8K —4K

1 2
—2+ 24~ —4a.

1&F2
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that the region where (2,2, 2) is the ground state extends
across all values of ~2. Hence, from knowing which
configurations dominate, all planes take chess-board or-
dering when ~2 & 1 while for ~2& l all planes favor stair-
case ordering. This will be true for sufficiently low tem-
peratures and mixed states will not be found at these tem-
peratures. So there is an interesting first-order phase
transition which occurs along (~, )—,', ~2=1).

Before proceeding to describe the mean-field theory for
the model, it should be pointed out that a mean-field ap-
proximation of the Bragg-Williams type, as described in
the next section and used throughout the rest of this pa-
per, is not capable of determining differences in the free
energies between the chessboard and staircase phases. In
order to do this within mean-field theory, one would need
to use a higher cluster-variation approach such as the Ki-
kuchi method. '

IV. THE MEAN-FIELD THEORY

A. The mean-field equations

We now describe the results of a mean-field approxima-
tion applied to the Hamiltonian (2.1). As usual with
these types of models, it is convenient to start from the
Bogoliubov inequality for the free energy F,

(4.1)

where %0 is some trial Hamiltonian, Fo the correspond-
ing free energy and ( . )o represents the ensemble aver-

age with respect to &o. The mean-field equations are ob-
tained by using

temperatures close to the order-disorder transition tem-
perature, T, (~&,xz), and for low temperatures. We treat
each of these cases in turn.

B. Phase diagram at T,

Close to T„m, is small so that, following Elliott,
(4.4b) can be linearized to obtain

m, =PH, .

One then introduces the Fourier transform

(4 5)

m, = g exp(ir. q)m, q=(q„,q, q, ),
q

using which (4.5) becomes

m =PJ(q)rnid,

where

(4.6)

(4.7)

J(q)
cosg~ +cosgy +cosgz

—a&(cos2q +cos2q +cos2q, )

—2~z( cosq cosqY +cosq» cosq, +cosq, cosq„) .

(4.8)

When ks T)max(
)
J(q) only a trivial (m& =0) solution

to (4.7) exists. Therefore the Curie temperature satisfies

&OISI = —g H, S, (4.2)

as a trial Hamiltonian with H, being treated as a varia-
tional parameter. The mean-field free energy per spin is
then defined as

F &=X 'minN,
H

(4.3)

from which one obtains the following mean-field equa-
tions:

F
& I m, I

=N ' g [—ks T ln(2 coshPH, ) + ,' H, m, ], —

(4.4a)

m, =tanhPH, ,

H, = g 8(r —r')m,

(4.4b)

(4.4c) 1

4

where m, = (S, )o is the magnetization at site r.
In order to evaluate F &, one needs to find solutions to

Eqs. (4.4b) and (4.4c) which consist of N coupled tran-
scendental equations. In the thermodynamic limit, these
support an infinite number of solutions. It is, therefore,
extremely difficult to obtain the complete mean-field
phase diagram for all temperatures. However, the equa-
tions are useful in determining the phase diagram for

FIG. 7. Mean-Seld phase diagram at the order-disorder tran-
sition temperature. The critical wave vector is given for each
phase with 0 & q,

' ~ m, 0 & q,
"~ n./2, and 0 ~ q,

"'~ m/2.
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TABLE IV. The critical wavevectors, q„and the corresponding Curie temperatures, T„ for the
phases displayed. in Fig. 7.

q,

Ferro. , (0,0,0)

(0,0, m)

1 —4xq
(0,0,q,

'
), cosq,

' =
4xl

(q,",q,",q,
"

), cosq,
"=

4{K) +K2)

1{0,q,"',m ), cosq,
"'=

4vl

kg T, /J

6( 1 —vl —2]c2)

2(1—3~)+2~~)

( 1 —4@2)
4—2K1 4+2+

4v)
3 +6~(4(~)+~2)

1 —2vr+ 4&x
4v)

kii T, (a„F2)=maxJ(q) =J(q, ), (4.9)

from which one obtains q, (Ki, K2), the wave vector
describing the ordering at T, . This is displayed in Fig. 7,
which shows the phase diagram at the Curie temperature,
Tc

Notice that there are three regions with incommensu-
rate order; two with modulation in just one axial direc-
tion and one with modulation in all three. The critical
wave vectors and Curie temperatures for the various re-
gions in Fig. 7 are displayed in Table IV. Note that, in
contrast to the situation at zero temperature, incommens-
urate equivalents to phases such as ( ~,2, 2), ( ~,2,p),
and (2, 2,p) are absent at T, except along i~2=2i~, where
one can find critical wave vectors obeying

1
q =(9

eely 9 ) 0 + Ccy o9cz=
4v)

A more detailed description of the phase diagram
confined to this line only has been given by Dawson' and
Dawson et al. ' Observe that all the phase boundaries on
the right-hand plane (ii, &0) of Fig. 6, except the one
along ~2=2K] are Lifshitz-type;; that is to say that q,
and the gradients of the order-disorder transition surface
[in ( T,Ki Ic2)-space] change continuously across the phase
boundaries, whereas across ~2= 2~] there are discontinui-
ties in these quantities.

Further insight into the order-disorder transition sur-
face can be obtained by applying the Fourier transform
(4.6) to the Taylor expansion of (4.4a). This leads to the
following Ginzburg-Landau expression for the free ener-
gy:

rI m I
= —k&T ln2+ —g [kii& —J(qi)]m~ m„,&(qi+q2)

1

q&, q&

2 „2 n(2n —1)
m m b.(q, +q2+ +q2„), (4.11a)

&(qi+ q2+ ~ ~ ~ +q2„)=Qii'(qi+ q2+ +q2„+2m'1), l E Z (4.11b)

The condition for a second-order phase transition be-
tween mz =0, Vq to mz %0 is that

C

min(z} [kii T—J(q)]=0,
which is equivalent to (4.9). Hence, the order of the
phase transition is established. By including umklapp
(l%0) terms in (4.11), it should prove possible to show
that commensurate phases lock-in for temperatures just
below T, .

%'e end the discussion in this section by pointing out
that some of the important qualitative properties of the
phase diagram near T„ in particular the transition from
incommensurate order in one to all three axial directions
(or equivalently from a (001 ) to a ( 111) direction), are

also found in a more general phenomenological model de-
scribed within Landau theory. This is expounded in the
Appendix.

C. Phase diagram at low temperatures

For temperatures close to zero, there are standard nu-
merical techniques for treating Eqs. (4.4). ' These in-
volve direct iteration of Eqs. (4.4b) and (4.4c) for various
initial trial configurations of Im, ]. The mean-field free
energies of the self-consistent solutions are then com-
pared using (4.4a). Periodic trial configurations were
used with periods equal to those of the low wavelength
ground states, since by analogy with the ANNNI model,
such phases are believed to dofninate the low-
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temperature phase diagram. These are, of course, only a
subset of the infinite number of possible solutions given
by (4.4b) and (4.4c). In general, the wavelength is
preseved by the iterations.

The low-temperature mean-field phase diagrams, all at
constant ~2, in the vicinity of the first six multiphase lines
listed in Table II, are shown in Fig. 8. These were ob-

tained using the method described above with a numeri-
cal accuracy of, typically, seven decimal figures.
Through an increase in precision one observes more corn-
mensurate phases with higher periodicities. For the last
two multiphase lines listed in Table II, we were unable to
detect for any low temperature, at least for the numerical
precision employed, any stable intervening phases

keT/J

1.4
kBT/J

2.4

1.2 1.2

1.0

0.8

0.4
(co,co,m ) (m.m, 2) (m.m, 1

0.2
xz = 0.125

0.2
xz - 0.300

0.0 I

0.248

I

0.252

I

0.256 0,260 0.264 )(,
0.0 I

0.0992

I

0.1008

I

0.1024

I

0.2040 0.1056 x,

keT/J

1.4 — (C j kBT/J

1.4

1.0

1.0

0.8

0.6

0.2
x~ = 0.250 x& = 0.500

00 l I

0.246

I

0.252

I

0.258

I

0.264

I

0.270
0.0

0.480
I

0.492

I

0.504

I

0.516 0.528 0 540 x)

FIG. 8. I.ow-temperature mean-field phase diagram in the vicinity of the first six multiphase lines listed in Table II. Other com-
mensurate phases are found if the numerical precisian is increased. (a) the ( oo, oo,p, ) phases (b) the ( oo, oo,P) phases (c) the
( ~,p, 2) phases (d) the (p, 2, 2) phases (e) the ( oo,p, I ) phases (I) the (IJ„p,p, ) phases.
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ke T/J

i~ -(e
keT/J

1.0

1.2

1.0

O.S

0.8 0.6

0.6

0.4
0.4

0.2
xz = 1.250 0.2

(ca.m, a) )

0.0
0.4960

I

0.4992

I

0.5024 0.5056 0.50SS 0.5120 x,

0.0 I

0.7488 0.7504
I

0.7520

x2 = - 0.250

1

0.7536

I

0.7552 g,

FIG. 8. {Continued).

separating the two neighboring phases of the multiphases
lines. Therefore, it seems plausible that single first-order
phase boundaries separating ( ao, ~, 1) from ( ~,2, 2)
and ( ~, 1,2) from (2,2, 2) persist at (low) finite temper-
atures without any intervening phases.

The similarity between the shape of the phase boun-
daries and the form of the phase sequences, displayed in
Fig. 8, and those of the ANNNI model is striking but not
surprising. This is because each of the top six degenerate
sets in Table II has a modulation which varies in one
direction only which is either axial (for the first five cases)
or along ( 111) (for the (p, p, p ) phases). It is therefore
possible, within the mean-field approximation at low tem-
peratures, to map each of these phase sequences onto
those of the ANNNI model via a reidentification of the
ANNNI model coupling constants. " Before explaining
this further, it will be helpful to give a brief review of the
ANNNI model. '

The Hamiltonian of the ANNNI model is

&IS]= —Jo g S,S, —J, g'S,S, —J~ g 'S,S,
NN NN NNN

(4.12)

where the spins S,=+1 occupy sites of a cubic lattice.
The first sum is over nearest neighbor (NN) pairs within
xy-planes and the remaining sums are over nearest neigh-
bor and next-nearest neighbor (NNN) pairs along the z
direction. The mean-field phase diagram for this model
(after Duxbury and Selke' ) is shown in Fig. 9, for the
case where J& )0. Note how a "Devil's Bower" of phases
springs from the multiphase point —J2/~ J& ~

=1/2. The
Fisher-Selke notation is used to label the phases and is
explained as follows. Ordering in the xy planes is always
ferromagnetic (Jo )0) and ( n, n z, . . . , n ) denotes a re-
peating sequence of p bands (which in this case are con-
secutive xy layers with the same spin) of length

n &, n2, . . . , n . The Hamiltonian is invariant under
J

&
~ J

&
provided S,—+ —S, for every alternate xy

plane. Hence, the phase boundaries for J, &0 will be
identical to those of Fig. 9 but the phases will now be
made up of only one- and two-bands.

Returning to the model, (2.1), it is easy to see that for
trial configurations corresponding to the first six degen-
erate sets listed in Table II, the mean-field equations,
(4.4), remain identical to those of the ANNNI model
with coupling constants Jp, J„and J2 taking appropriate
values as indicated in Table V. This then explains the
similarities between the phase diagrams of Fig. 8 and that
of Fig. 9.

A mapping similar to the first one listed in Table V was
used by Widom et aI." although it was first attributed to
M. E. Fisher. Of course, in our case, unlike the ANNNI
model, the ordering within the planes perpendicular to
the direction of modulation will not always be ferromag-
netic but inay be either ferromagnetic, (2,2)-antiphase, or
a mixture depending on the phase sequence under con-
sideration. This can easily be accounted for by making
the appropriate changes to Jp and J&.

Note that for the mappings listed in Table V, the six
multiphase lines correspond to having —Jz/~ J& ~

= 1/2 in
each case, as expected. Also observe that for the first
mapping, J, & 0 when az ( 1/4 but J, &0 when 1~2& 1/4.
This is consistent with the fact that Fig. 8(a) (az(1/4)
contains only phases with bands of length two or more
while Fig. 8(b) (~2) 1/4) contains only phases made up
of one- and two-bands.

One should stress that Figs. 8(a), 8(b), 8(d), and 8(e)
differ from the mean-field phase diagram of the ANNNI
model in that in these cases Jp is not independent of
—Jz/~ J, ~. The phase boundaries are therefore distorted,
as opposed to just rescaled, versions of those in Fig. 9. It
is also important to select the correct temperature range
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FIG. 9. Mean-field phase diagram of the ANNNI model showing the main commensurate phases (after Selke and Duxbury' ).
The dotted line estimates the boundary above which incommensurate phases are found.

for the mean-field mappings to the ANNNI model to be
applicable since in some regions of the phase diagram, as
the temperature is increased, the modulated phases
springing from diA'erent multiphase lines will interfere
with one another.

At this stage, it is useful to make comparisons with the
phase diagra~ at T, . Firstly, the Devil's Aowers spring-
ing from the two multiphase lines containing the phase
sequences ( ac, ac, 213) and (OD, ac, 2~1) both appear to
join with the triangle in Fig. 7 containing the phase with
critical wave vector (0,0,q,'). The first of these phase se-
quences is found in that part of the triangle with az & 1/4
while the second is found for az)1/4. (ac, ac, 2) is
found at T, along a@=1/4. Clearly, the phases with crit-
ical wave vectors (q,",q,",q,

"
) and ( 0, m. , q,

"'
) are linked to

the phase sequences (p, ,p, p ) and ( ac, l,p ), respectively.
As for the phase sequences ( ~,2,p) and (2,2,p), these
seem to disappear with increasing temperature except
along ~2=2)c).

Another interesting observation concerns the map-
pings in Table V and the phase diagram at T, . For the
ANNNI model, the critical wave vector q, is given, in
the modulated region, as cosq, = I /(4a. ) where
~= —Jz/~ J, ~. In our model the critical wave vectors for
the modulated phases corresponding to ( Oc, ac,p ),
( ~, l,p), and (p,p, p) are related to —J2/~ J& ~, as given
by their mean-Beld mappings of Table V, in exactly the
same way as can easily be seen from Table IV.

Let us now consider more closely the multiphase line
(~, +a2= 1/2) containing only the phases labeled
(p, p, p). As mentioned before, these can be regarded as
structures having ferromagnetic ordering within a set of
parallel I 111I planes with the commensurate order mani-
festing itself as a repeating sequence of bands which
propagate in a (111) direction. An example of such a

structure, (3,3,3), is shown in Fig. 10. The mean-field
phase diagram near this multiphase line, Fig. 8(f), has the
property that as one gets closer to the superdegenerate
point (a't = I /2, F2=0) the region occupied by the

Type of
phase

Mapping to the
coupling constants

of the ANNNI model

& co, ao,p)

Jp=v)J
Jl =J
J2 = —VlJ

& ~, l,p, )
JO=(X2 V&)J
J) =J
J2= —VIJ

&u~s &

Jo ———v2J

J) =3J
J2 = —3(]C)+X2)J

TABLE V. Values taken by the coupling constants of the
ANNNI model which leave the mean-field equations, (4.4),
identical to those of the ANNNI model whose states are
represented by &p). For the first entry, p can be either any
state with bands of length two or more (a2 & 1/4) or those with
one- and two-bands only (~2&1/4). For the other four, p
denotes only those states with bands of length two or more.
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FIG. 10. One of the ground states, (3,3, 3 ), degenerate along
the multiphase line with ~2 & 0. Planes are shown for successive
values of z. When F2=0, the encircled spins become fully frus-
trated.

crate point with ~2=0, Fig. 11, was determined numeri-
cally as before. The mean-field approximation predicts
the appearence of the (3,3, 3) phase shown in Fig. 10,
with zero magnetization at each fully frustrated (encir-
cled) site. The I 1 1 1 } planes of zero magnetization can be
understood as resulting from thermal Auctuations which
cause these spins to Aip independently without any cost
in energy.

Since the entropy of the fully frustrated spins plays
such a dominant role at low temperatures, one can ex-
press the free energy per spin, F, of this ( 3,3, 3 ) phase to
a very good approximation for low temperatures as

F=Eo ,'kItT—l—n2, Eo= —(1+Inst)J, (5.1)
"Devil's Gower" rapidly broadens. That this happens can
readily be seen from the mappings in Table V, where ap-
proaching the superdegenerate point corresponds to hav-
ing Jo~0 in the equivalent ANNNI model. This
phenomenon is also consistent with the rapid increase, as
K2~0, in the contributions to the entropy coming from
spins which lie on the edge of bands of length three or
more. These include the encircled spins of Fig. 10.
When ~2=0 these spins become fully frustrated which
has a dramatic effect on the phase diagram as will be ex-
plained in the next section.

One should recall the failure of this (Bragg-Williams)
type of mean-field theory to detect differences in the free
energy between the chessboard and staircase ordering for
( oo, 2, 2) and (2,2, 2). The preference of the chessboard
ordered (2,2, 2) phase when Irz(1, found in Sec. III,
would affect the phase diagram near the multiphase line
~&+~&=1/2, as follows. Mean-field theory predicts that
the phase sequence (2J3,2~3, 2~3 ), with arbitrarily large j,
would spring from this line. However, these phases can
be considered as a sequence of equally spaced three bands
(occupying I ill} planes) amid a matrix of (2, 2, 2) or-
dering which is forced to be staircaselike. This we know
to be unfavorable and hence we would expect a maximum

j above which (2~3, 213,2J3 ) would become unstable com-
pared to chessboard ordered (2,2, 2).

where Eo is the ground-state energy per spin when F2=0.
This formula is in excellent agreement with numerical
mean-field values for F. By comparing (5.1) with the
ground-state energies, with F2=0, for ( oo, oo, oo ) and
(2,2, 2), one can obtain expressions for the phase boun-
daries separating ( oo, oo, oo ) from (3,3, 3) and (3,3,3)
from (2, 2, 2), which are, respectively,

6(1—21', )

ln2
(5.2a)

k~ T 3(21', —1)
J 3~2 ln2

(5.2b)

These are in very good agreement with Fig. 11 and ex-
plain the apparent linear form of the phase boundaries.

The simple entropy arguments given above imply that
when approaching the superdegenerate point, with ~2 =0,
the (3,3, 3) phase will be the only stable phase separat-
ing ( oo, oo, oo ) from (2, 2, 2), as opposed to the usual se-
quence of commensurate phases of increasing wave-
length. This is because as soon as the periodicity of the
phase is increased from that of ( 3, 3, 3 ) (or a domain wall
is put in), the density of the fully frustrated spins will de-
crease, thus significantly reducing the entropy.

It should be stressed that the exact zero-point entropy

V. THE SUPERDEGENERATE POINT

When (a &, az) = ( 1/2, 0) it is possible to construct
ground states containing fully frustrated spins which are
spins that can Hip without changing the energy. These
states have a nonzero entropy per spin at zero tempera-
ture, with each fully frustrated spin making a contribu-
tion of at least kzln2 to the zero-point entropy. Hence,
we have termed (tr„lr2, T)=(1/2, 0,0) the superdegen-
erate point. Clearly, the ground state with the highest
density of fully frustrated spins will give rise to the stable
low-temperature phase in the vicinity of the superdegen-
erate point, since such a state will maximize the entropy.
The ground state which does this is the state ( 3, 3, 3 )
shown in Fig. 10. The encircled spins are the fully frus-
trated ones, with each one free to fIip independently of
any of the others. The situation described so far has simi-
lar features to the triangular antiferromagnetic Ising net
studied by Wannier.

The mean-field phase diagram near the superdegen-

0.2 (a.m

0.0
0.45 0.50 0.55

FIG. 11. Mean-field phase diagram in the vicinity of the su-
perdegenerate point for ~2 =0. The phase denoted by ( 3, 3, 3 ) is
shown in Fig. 10 but, for ~2=0, the magnetization is zero at the
encircled sites.
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for (3,3, 3) will not be (I/3)k~ln2, as given by mean-
field theory, but greater, due to "contingent freedoms"
which are also present in Wannier's problem. These are
contributions to the entropy due to spins which are not
encircled in Fig. 10 but can still become fully frustrated
when the encircled spin s take certain configurations.
However, the Bragg-Williams type of mean-field theory
used here is incapable of taking such eifects into account
since it ignores correlations of large enough clusters. In
fact, one cannot rule out the possibility that contingent
freedoms could lead to the total destruction of the
remaining order, as happens in Wannier's case, leaving
a disordered phase in the vicinity of the superdegenerate
point.

VI. DISCUSSION

In this paper we have presented and analyzed an Ising
model with competing interactions isotropic with respect
to the cubic axes. The model was introduced with a view
to applying it to binary alloys exhibiting long-period
structural modulation. It was also found to have several
interesting features in its own right.

We have studied the mean-field theory of the model
both at low temperatures and near the order-disorder
transition. Within this approximation the model sup-
ports all phases found in the ANNNI model (phases
modulated in just one lattice direction) together with
phases, modulated in two or more lattice directions, not
found in the ANNNI phase diagram yet still occurring as
structural phases in some binary alloys. '

Some features of the Incan-field phase diagram remain
puzzling. Although the phases ( oo, 2, 2), ( ~,p, 2), and
(p, 2, 2) occupy large regions of the low-temperature
phase diagram, they seem to vanish as the temperature is
raised and do not appear at all at T, (~&,~2) except along
~2=2~&. It would be interesting to know what happens
to these phases at higher subcritical temperatures.

This could be partly resolved by including Umklapp
terms in the Landau theory for the model [Eq. (4.11)].
This would show which commensurate phases lock-in at
temperatures just below T, . This calculation would be
particularly interesting in the vicinity of the line &&2=2K&

because at T, there is a degeneracy of many modulated
phases (with modulation in one, two, and three lattice
directions). It would also provide a link between our
work and that of Dawson' and Dawson et al. '

One also needs to resolve the question of ordering in
the vicinity of the superdegenerate point. Mean-field
theory suggests that one in every three [111I planes be-
comes disordered for temperatures right down to zero.
However, it is possible that the whole lattice may be
disordered and mean-field theory would be incapable of
dealing with this. One needs to go beyond mean-field
theory to determine whether long-range order is present

I

near the superdegenerate point.
One would expect the region of parameter space which

is most likely to model binary alloys to be that for which
~, (~2(1/2. In this region, layered modulated phases
dominate and, where other phases are found, chess-board
ordering is preferred over staircase ordering. This ap-
pears to be in accordance with experimental observa-
tions.

As regards to the chessboard and staircase phases, we
have shown that both types of ordering can exist as stable
phases at finite temperature with chessboard ordering be-
ing more favorable when ~2 & 1 while staircase is pre-
ferred when ~z) 1. A novel phase transition, worth fur-
ther investigation, separates these two types of order.

Coming back to the motivation behind the model, we
reiterate that we expect the interactions between the
structural units in binary alloys to be isotropic (in the ab-
sence of strain) and hence that the model we propose pro-
vides a more suitable representation of binary alloys than
the ANNNI model. However, it must be stressed that we
can only qualitatively predict the features of a given
phase diagram. For example, note that the distance
across cubic diagonals is shorter than the distance be-
tween next-nearest-neighbor sites along the cubic axes.
Therefore, in a real binary alloy, the interactions extend-
ing across body diagonals could have a significant e8ect
on the phase diagram. It would be interesting, if compli-
cated, to see how the phase diagram is modified if these
interactions were incorporated into the Hamiltonian
(2.1).

Finally, it is to be hoped that band-theory calculations
might lead to predictions for interaction parameters in a
Hamiltonian of the form (2.1) which could lead to quali-
tative predictions for the behavior of specific binary al-
loys.
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APPENDIX

Some of the qualitative aspects of the phase diagram
near T, are also found in continuum theories described
by the following Ginzburg-Landau free energy functional
of a single component order parameter M(r):

9'[M]=So+ Jd r —ROM + —BM +—a g (8;M) +— g (3;M)PJ(8~M)
i =x,y, z l,J =x,y, z

where 0 =8/Bx, etc. , B)0 and
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TABLE VI. Position of the order-disorder phase transition and critical wave vector at the transition
for the Landau theory defined by the free energy (A1).

a~O

Pi ~pz

Phase transition at
AD=0

a2

2pi

Critical wave vector q,
(0,0,0)

(0,0,{—o'/P )' )

a&0 Pi =P2 a
2pi

all q, with ~q, ~

= —a/P,

Pi ~P2 3a
2{pi+2pz) p&+2P~

1/2

p&+2P2

1/2

Pi+ 2P2

1/2

P&)0, for i=j
P2) 0, for iAj . (A2)

This is merely a slight generalization of the Landau theories employed by previous authors to study Lifshitz points. If
a is positive then the usual second-order phase transition from a paramagnetic to a ferromagnetic state occurs when A o
changes its sign from positive to negative. However, when a becomes negative one expects the ferromagnetic state to
become unstable in favor of some modulated, inhomogeneous phase. Keeping both P& and P2 positive prevents such a
phase from having an infinitely rapid variation in its order parameter. The resulting phase diagram can be studied by
following the methods of Michelson.

(Al) is Fourier transformed, using the transform displayed in (4.6), to obtain

VIM, I V,= y—~, ~M—,~'+ a-
q q+q'+q" +q"'=0

where

Aq= Ho+a g q + — g q P q . (A4)2 1

l =X,P, Z l, J =X,P)Z

Lattice e6'ects in the form of Umklapp terms have been
ignored. The second-order phase transition from the
disordered (M =O, Vq) to the ordered (M WO) state

C

occurs when minIqI A = A changes sign. The critical
C

wave vector q, which describes the ordering at the
order-disorder surface depends on a, P&, and Pz as
Table VI.

The usual Lifshitz point is found at a=0, that is for
e&0 ferromagnetic ordering is found while for a&0
modulated order is stable. However in the a &0 region
one finds modulation in just one axial direction (in other
words modulation along a (100) direction) when P& ~P2
(that is where the off-diagonal elements of P;~ dominate)
and modulation in all three axial directions (modulation
along a ( 111) direction) when P, ~ Pz (diagonal elements

(A3)

I

of P;~ dominate). So an interesting phase transition from
modulated order in a ( 100) direction to modulated order
in a (ill) direction can be obtained within the context
of a Landau theory of the form expressed in (Al).

Finally, if one expands J(q, ), in (4.1la), for small q&,
while ignoring the Umklapp terms, one can obtain (A3)
and (A4) from the following identifications:

Ao=ks T—2J(3—3', —6n2),

a=J(1—4a( —4a.2),

P, =—,
' J(16')+4t~2 —1),

p~ =a2J,
B=

—,'k~T,

(A5)

showing the equivalence of the original microscopic mod-
el, (2.1), to the Landau theory (Al) provided that q is
small, so that one is close to the Lifshitz "line."
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