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Classical magnetic resonance equation for ordered-state systems
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The so-called rectangular approach to ferromagnetic resonance equations of Baselgia et al. has
been generalized to include magnetic systems of several sublattices. The result is a form of a reso-
nance equation which can be expressed in terms of a Hessian matrix of a general free-energy expres-
sion. Explicit expansions of this resonance equation for the cases of one-, two-, and three-sublattice
systems in terms of Hessian and interaction matrices are presented. Examples of the reduction of
this formalism to some well-known cases are presented.

I. INTRODUCTION

Since the development of the original equations for fer-
romagnetic resonance (FMR) and antiferromagnetic reso-
nance (AFMR) by Kittel and others, ' ' useful theoreti-
cal developments of FMR and AFMR led to the very im-
portant free-energy approach of Smith and Beljers. "
This latter formalism has been the standard approach to
FMR for over 30 years. ' ' More recently, however,
Baselgia et al. explored several of the shortcomings of
the Smit and Beljers formulation, ' which showed a possi-
ble divergence at an important laboratory angle. Also,
for some symmetries, a direct substitution of field orienta-
tion angles for magnetization orientation angles failed to
produce correct results. Baselgia et al. also presented a
new formulation, the "rectangular" method, ' ' which
overcame the problems observed with the Smit and
Beljers method. Until now, the rectangular approach has
only been applied to the ferromagnetic (one-sublattice)
case.

Because of recent interest in magnetic resonance in sys-
tems which can be described with more than one or two
sublattices, ' it would be useful to have a general
method which can deal with these higher sublattice sys-
tems. Therefore, in this work, we generalize the Baselgia
approach to include any number of sublattices and any
free-energy model. In the following section, we begin
with a short review of the Baselgia work and follow that
by a generalization to multiple sublattices. %'e will show
that the result can be reduced to a simple resonance equa-
tion expressed in terms of Hessian matrices which con-
tain the essentials of the free-energy model. It is this ap-
proach to the multisublattice resonance problem that we
call ordered-state resonance (OSR). In Sec. III, we
show how these results reduce to the Baselgia result for
ferromagnets and also derive explicit results for several
higher sublattice systems.

II. ORDERED-STATE RESONANCE

A. The rectangular formulation (Baselgia et al.)

In the Baselgia or rectangular formulation, ' the
torque equation is expressed in local coordinates as

dM/dt =yM XH'

where 8' is the effective field acting upon the sublattice
designated by the magnetization M. By expanding Eq.
(I) in a Taylor expansion to first order, the ferromagnetic
resonance equation was shown to become

+M l™Mst +M

(2)

where F is the free energy and the subscripts denote
differentiation of a free-energy expansion with respect to
components of the local Cartesian coordinates of magne-
tization (M„M2, M3). M3 is parallel to the static orien-
tation of M. Equation (2) differs from the previous reso-
nance equations by the appearance of the first derivative
terms. One important feature of this new approach is
that effective fields are obtained from a free-energy ex-
pression by

He@ —V' F .

The orientation of the magnetization M is then given by
solutions to the condition that the 1 and 2 components of
this effective field vanish. This condition is nearly
equivalent to the equilibrium conditions from the Smit
and Beljers approach, which were F&=0 and
(1/sin8)F+ =0. In the rectangular formulation, the con-
nection between local and laboratory coordinates is ob-
tained through the definition of an orthogonal transfor-
mation matrix, so that each component of magnetization
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3

M = g b/kMk,
k=1

(4)

appearing in the free-energy expansion can be replaced by It is necessary to look at each component of torque ap-
pearing in Eq. (7). Thus, the 1 and 2 components of
torque can be represented to first order as

I, =M IM, A ', +M [A ' +(H /M )]]
where the elements b I, are obtained from the orthogonal
transformation matrix 8 defined by Eq. (88) of Ref. 17.

B. The generalized equation and

+M+(MA'+MA')
1 21 2 22

0,'W o

(9)

dM /dt =yM XH (5)

where M represents the magnetization vector associated
with sublattice o., and H represents the effective field
acting upon sublattice o.. The relevant coordinates are
local Cartesian coordinates of magnetization, defined by
(M, ,Mz, M3 ) with M3 parallel to M, the sublattice
magnetization. As with the ferromagnetic case, the com-
ponents M1 and M2 are considered to be small perturba-
tions of the sublattice magnetization away from the
steady-state direction M3. Since no significant motion
away from the M3 direction is assumed, each additional
sublattice increases the dimensionality of the problem by
two. As in the ferromagnetic case, these torque equations
describe the motions of magnetization vectors when
placed in the presence of an external magnetic field. The
torque acting upon sublattice o. is given by

The derivation of a general resonance equation is
analogous to that of the ferromagnetic resonance equa-
tion described above. We begin with the torque equa-
tions, but instead of describing the motion of the magne-
tization vector for the entire system, they refer here to
the motion or perturbation of the magnetization vector of
each of the sublattices. Thus, the generalized torque
equations are expressible as

r;= M IM;[A—;;+(H;/M )]+M;A;; I

—M g (M, A, '/+M~A, ~ ) .
o.W o.

(10)

and

+g(M A '+M A )
aWo

Equations (9) and (10) may be expressed in matrix nota-
tion which we will utilize below.

It is now necessary to find the normal mode solutions
in which the 1 and 2 components of magnetization have
harmonic time dependence. We assume

Mo' OMIT Eclat
I E

where, as was also the case in the Baselgia formulation,
the 3 component of magnetization is constant in time
and along the effective field. Now, however, this field is
not the effective field for the entire system but rather that
which is acting only upon sublattice o. . If one then
proceeds as before for sublattice o., two coupled equa-
tions of motion result. These equations of motion are
given by

O=M, (A, , +H3 /M )+M2 (A, '~ +ice!yM )

I =yM XH (6) O=M, ( A z'P ice/yM— )+M2 ( A z'2 +H3 /M )

where Eq. (6) is simply the right-hand side of Eq. (5). In
order to obtain resonance equations for the motion of
sublattice o., the torque acting upon sublattice o. is ex-
panded to first order in a Taylor series about the direc-
tion of the effective field acting upon that sublattice. By
contrast to the one sublattice case, however, it is now
essential that this Taylor expansion take into account the
effects of all sublattices in the system since, in the general
case, all other sublattices contribute to the effective field
experienced at sublattice o. . For the ith component of the
torque appearing in Eq. (6), the Taylor expansion appears
as

I o. OI o.
E E

1- 3

+ g ga M(a I; a/M)~. . . , . . ., +"
(7)

and o; refers to a sum over sublattices. The unusual nota-
tion of combining Greek and Latin indices is useful in or-
der to clearly separate sublattices from coordinates. In
equilibrium, the constant components of torque not in
the 3 direction vanish. The notation used to represent
the derivatives of the effective fields will be

A,", —= —(aH, '/aM, ') .

aA o, a +Ma A o, a

aWo
(13)

O=M, (F, 'p F3 /M )+M~ (F, '2 +—ice/yM )

+g(MF' +MF' )
aWo.

(14)

alld

O=M, (F~', iso!yM )+M~ (F2—
~ F3 /M )—

+g(MF' +MF' )1 21 2 22
aWo

(15)

The final step is to express these ~ equations in the form
of a matrix. Thus, for a system comprised of ~ sublat-
tices, one would have a matrix which is block diagonal,
termed the frequency matrix, and a second matrix which
is the Hessian matrix. The first matrix is given by

In the Appendix, effective fields in the general resonance
problem are obtained. If the effective fields, which are
obtained through application of the sublattice-specific
operator [Eq. (Al)] to a general free-energy model, are
substituted into the equations of motion we obtain
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F3/M' —ice/yM'

ice/yM F3/M

0

0 0

0

0

0

0

0

F3/M i—co/yM

ice/yM F3/M

0

0

0

0

0

0

0

0

0 0

0

F3/M' i—co/yM'

ice/yM' F3/M'

This first matrix is designated by Q(1,2, . . . , r) and it is a 2~X 2r block-diagonal matrix. The second matrix is the Hes-
sian matrix with respect to the local coordinates M, and M2 and is designated by H(1, 2, . . . , r). Thus, the Hessian
matrix of the system is given by

F1,1

1, 1

1, 1F2,'1

F2, 1

1, 1

F2, 1

2, 1

1, 1F, 2

1, 1
F2,'2

F2, 1
1,2

F2, 1
22

F1,2
1, 1

F1,2
2, 1

P2, 2
1, 1

F2~ 2
2, 1

F1,2
1,2

F1,222
F2~ 2

1,2

F2)2
2, 2

F1,7
1, 1

F1,7
2, 1

F2» 7
1, 1

F1,7
1,2

F1,722
F2~ 7

1,2

F2~722

F7, 1

1, 1

F7, 1

2, 1

F7, 1
1,2

F' F7,2
2, 1

F7)2
1,2

F7)2
22

F7 7 F77
1, 1 1,2

F7,7 F7)7
2, 1 2, 2

If we now define the column vector whose elements are
the 1 and 2 components of the magnetization vectors
for each sublattice as

det

'F1, 1
1, 1

F1,1
2, 1

1, 1
'

F,'2

1, 1
F2,'2

F3/M' ice/y—M'

ice/yM' F3/M'

(21)
1

M1
2M2

M 1

M 2

then it is easy to see that the general resonance equation
can be written in the form

H(1, 2, . . . , r).M —Q(1,2, . . . , ~).M=O .

The solutions for frequency are given by

det[H(1, 2, . . . , r) —Q(1,2, . . . , r)]=0,
which is the general resonance equation.

(20)

III. EXAMPLES

A. Reduction to ferromagnetic resonance

The are many simple examples for the application of
Eq. (20), the simplest of which would be the one-
sublattice system, i.e., ferromagnetic resonance. In this
case, Eq. (20) can be written as

resulting in the single-sublattice ferromagnetic resonance
equation,

(~/y )'=(MFM,'M, FM, )(MFM—,'M,—FM, )
—(MFM,'M, )'.

This reproduces the result of the Baselgia approach. As
mentioned above, this equation dieters from the Smit and
Belgers resonance equation only in the existence of the
first derivative terms which arise because the coordinate
system is now oriented along the direction of the magne-
tization vector.

B. Two-sublattice systems

Application of Eq. (20) to systems of several sublattices
is faciliated by some general expansions for the case of
two-sublattice magnets, i.e., ferromagnets, antiferromag-
nets, or ferrimagnets. Such expansions are not necessary
for the computerized applications of Eq. (20) since algo-
rithms exist which can numerically evaluate Eq. (20).
For the two-sublattice system, however, much informa-
tion is obtainable without computerization. The expan-
sion for two-sublattice systems requires definition of
several matrices. First the reduced Hessian matrix H„ is

dined by

H„(1,2, . . . , r) =H(1, 2, . . . , r—) —Qd(1, 2, . . . , r),
where Qd is the matrix with only the diagonal elements
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of A(1, 2, . . . , r) .The other matrix, which is useful to
define, is termed the two-sublattice interaction matrix,
and it is given by

If one also defines the quantity g by

gs —=(I/yM ), (24)

M)M1 M(M~
a6 a5

x(a, 5)=
M2M[ M~M2

(23) then the expansion of the resonance equation for a two-
sublattice system can be expressed as

2

~'kikz —~'g [41H,(&+1)I+ksgs+ilX(&, &+1) ]+ IH, (1,2)l =0,

where the index 5 is cyclic in that 6=3 means 5=1. Under the assumption that all sublattice magnetizations are the
same, this expansion reduces to

(~g)' —(~g)2& [IH, (&+1)I+ IX(~,&+1) ]+ IH, (1,2)
I

=0 .
6 1

The solution to Eq. (26) is given by
'2 1/2

(26)

1(~g)'=-,' y [IH„(a+ I) + IX(&,&+1)l]+-
&=1 2 y [ H„(&+1)I+ X(&,&+1)l] —4IH, (1 2) (27)

For the case of an antiferromagnet in the antiferromag-
netic state, evaluation of Eq. (27) is required.

An example of recent interest is the possible two-
sublattice ferromagnet. Such a system can possibly
occur in layered magnetic compounds in which each lay-
er orders ferromagnetically but with weaker exchange
coupling the layers. For such two-sublattice ferromag-
nets, the generalized equation predicts two modes, that is,
predicts that two resonances will occur. More interesting
is that the difference between them is twice the weak
interplanar exchange, providing a possible experimental
determination of exchange by magnetic resonance. The
details of this particular case are to be published else-
where, however, we outline them here as an example of
the two-sublattice case.

The free-energy model for a uniaxial ferromagnet with
the external magnetic field applied parallel to the x axis is
given by

tioned derivatives are duplicated or they vanish. The
nonzero elements of the Hessian matrix are thus

F 1 1 —It (sjn2g ) =F22 (29)

and

F12 F21 =F12 F21
11 ll 22 22

so that the Hessian matrix appears as

(30)

F11
11

H(1,2)=
E

0

0 e 0

0 0 e

0 F11 0

e 0 0

(31)

The next step is to obtain the elements of the frequency
matrix [Eq. (16)]. The derivatives which give e6'ective
fields are

[(M 1)2+(M2)2]+.~Ml. M2 H (Ml+M2)
F3 =F3 =E,M'(cos81) +eM' —H singlcos&1 . (32)

where, in the mean-field approximation, the simple fer-
romagnetic interaction between the two sublattices is
represented by the second term. Here the z axis
represents the easy axis, and K, = —IK, I

so that in zero
applied field, the magnetization vectors M' and M will
lie parallel to the z direction. Also, e represents a fer-
romagnetic interaction, then e= —

I el so that if all other
fields vanished, M' would be parallel to M in the
lowest-free-energy state. The next step to obtain resonant
frequencies is to determine the elements of the Hessian
matrix given by Eq. (17). The explicit derivatives are
easily obtained. Since the interaction e is assumed to be
ferromagnetic, the two sublattices are parallel in their
static orientations. Therefore, many of the aforemen-

F11=K and F3 =EM' —H (33)

The resonance frequency is then obtained by evaluating
the determinant of the difference between the Hessian
matrix and the frequency matrix. Thus,

The equilibrium conditions are also required for this
problem if we wish to look at solutions outside of the
high-field limiting cases. To obtain a first approximation
to the solutions, we assume that the external field is large
enough so that the effective field does indeed lie in the
direction of the external field. Then, the angles 01 and @1
in the above expressions can be simply replaced by the
external field angles 0 and 4. Since the magnetic field is
applied along the x axis, O=vr/2 and +=0. With this
simplification, the derivatives reduce to
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(co/y) =[H+KM, —(E+E)M, ][H (&—+&)M ], (34) (co/y) =H(H+KM, ), (35)

where M, is the magnetization associated with a sublat-
tice. It is clear that two resonance modes are obtained,
and it is straightforward to show that these two modes
are separated by twice the intersublattice exchange field.
This result can be seen by looking at the two solutions to
Eq. (34). For the lower-sign solution, the resonance fre-
quency is given by (co/y) =(H+KM, )H. Inversion of
Eq. (34) then yields

HI —— (KM—, /2)+ [(KM, /2) —(co/y ) ]'i

From Eq. (34), if the upper sign solution is now chosen,
the field in Eq. (34) can be replaced by H =HI —2aM, .
Inversion of Eq. (34) then shows that H,&=2aM, +HI.
Since the exchange is ferromagnetic here, H, &

will be at a
lower magnetic field than H&. The separation of twice
the exchange field is also obtained for an antiferromag-
netic system in the "collapsed" state: i.e., the paramag-
netic state at higher fields than the spin-Hop state.

The two modes correspond to an in-phase resonance
mode, where M' and M precess in phase about their
effective field and to an out-of-phase mode, where the two
magnetization vectors precess 180' out of phase about
their effective field. In order to determine resonance
modes, it is necessary to substitute the frequencies ob-
tained in Eq. (34) into the system of equations given by
Eq. (19) and then to solve for the components of M' and
M . For the frequency designated by the lower sign, the
resonance frequency is given by

(co/y ) = (H —2aM, )(H —2aM, +KM, ), (36)

which is unlike a ferromagnetic resonance frequency in
several respects. The sublattices precess about the
effective field, but they have a phase difference of 180.
Also the resonance frequency explicitly contains a refer-
ence to an exchange field, which provides the possibility
of measuring this intersublattice exchange with resonance
techniques.

C. An expansion for three-sublattice systems

The expansion for three-sublattice systems shows simi-
larities to both the one- and two-sublattice systems in
that the polynomial to be solved for resonance frequency
is expressible in terms of Hessian and interaction ma-
trices. For these systems, the result is given by

similar to the value obtained in the simple ferromagnetic
case. To obtain the resonance mode corresponding to
Eq. (35), it is necessary to substitute this frequency into
Eq. (19) and solve for M, and Mz. The result yields solu-
tions in terms of the quantities M& +M& and M2+M2,
which corresponds to an in-phase precession about the
direction of the effective field, and M,'—M, and
M2 —M2, which corresponds to the sublattices precessing
out of phase. If the frequency designated by the upper
sign is desired, the result is given by

3

~ klk2%3 ~ g 45[45+1 ~H (5+2)~ +245+105+2~X(5+ 1 5+2)
~ ]

3+~' g [g2sIH„(5+1,5+2) I+2)&ps+, X3(5,5+1;5+2)I]—IH, (1,2, 3)
I
=0, (37)

where we have defined the three-sublattice interaction ma-
trix as

X(a,P) X(a,5)
X(5,P) H„(5) (38)

IV. DISCUSSION

It is clear that the general form of the resonance equa-
tion given by Eq. (20) can be applied to many systems.
For example, this equation should find application to su-
perlattice compounds of many magnetic entities. In more
conventional systems, this equation can be applied to sys-
tems in which a complete description requires the use of
more than the usual number of sublattices.

The earlier and important approach of Smit and
Beljers can also be generalized in a similar manner to the
generalization of the Baselgia formulation shown in this

work. In this generalization of the Smit and Beljers form,
the frequency matrix is still block diagonal but with zero
elements along the diagonal. The resulting equations
differ only in that it is convenient to use polar coordi-
nates. As expected, no first derivative terms occur in this
form. However, the problems observed with the Smit
and Beljers form are also present in its generalization.
The generalization of the Baselgia form thus seems the
natural choice.

So far, very little mention has been made of the actual
modes one observes. No generalization has yet been able
to yield modes which fit for any free-energy model and
the development of a method for obtaining resonances
modes in general is open for investigation.
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APPENDIX: EFFECTIVE FIELDS
IN ORDERED-STATE RESONANCE PROBLEMS

In the one-sublattice problem, the sublattices were as-
sumed to be interacting with an efFective field which
could be expressed in terms of the gradient of a free ener-
gy.

' For multisublattice systems, however, a single
effective field is not adequate since each sublattice in gen-
eral experiences different efFective fields, although, it is
likely that the crystal and magnetic symmetries would
predict the effective fields to be the same for each sublat-
tice. It is possible to define effective fields for each sublat-
tice by definition of a sublattice-specific gradient opera-
tor:

v = —[(a/aM;)1. +(a/aM;)z. +(a/aM;)3 ],
(A 1)

A,", = (a'F /aM, 'aM,'), (A2)

where, for a conservative free energy,

(a F/aM, aM, ) =(a2F/aMsaMp) . (A3)

One notational simplification is appropriate at this point.
With derivatives denoted. by subscripts as before, we let

F ' =—0 F/BM BMIJ J (A4)

F, I—=a'F/aM;aM, 'I& . .
1 ' 2 ' 3 ™ (A5)

where again Cxreek indices refer to sublattices.
The sublattice-specific gradient operator defined by Eq.

(Al), which by analogy to the case of ferromagnetic reso-
nance, yields effective fields, is defined with regard to lo-
cal coordinates, while free-energy models must be defined
with regard to laboratory coordinates. Under the as-
sumption that the magnetization vector associated with
sublattice o. orients in the direction of this effective field,
one is able to obtain explicit equilibrium conditions for
the angles N and O by solving the equilibrium condi-
tions. In ordered-state resonance problems, however,
these equilibrium conditions are typically much more
complicated. Also, the number of equations which must

where now, in a magnetic system comprised of r sublat-
tices, one would also in general expect ~ such distinct
operators. The usual method for obtaining the effective
fields which appear in the torque equations then is to al-
low this operator to act upon the free energy. It is ap-
parent that the quantity A; ' can be expressed as the
second derivatives of this free-energy expression, so, a re-
vised definition for the A, . ' is given by

be simultaneously solved increases by two for each addi-
tional sublattice. Nevertheless, in principle, the equilibri-
um conditions can be solved. The solutions to the equi-
librium conditions should apply to magnetic resonance
experiments and also to magnetization measurements in
mean-field approximations. Thus, we show explicitly
how these conditions are obtained. If one applies Eq.
(Al) to a free energy, it is seen that the effective field is
given by

H = (aF—/aM, )1 —(aF/aM )2 —(aF/aM )3

(A6)

The sublattice magnetization is parallel to the 3 direc-
tion, and we see that the 1 and 2 components of mag-
netization must vanish. Hence, for sublattice cr, the equi-
librium conditions are given by

(aF/aM, ) ( )=0
1 ' 2 ' 3 ™ (A7)

and

(aF/aM;)~&. . . , , ,
——0,

1 1 2 a™3 (A8)

where 6 ranges over all sublattices in the system. These
two equations, though simple, become much more com-
plicated for a system of w sublattices since there are 2~
such equations which usually must be solved. In high-
field limits this formulation permits direct substitution of
magnetic field directions for magnetization directions and
thus the solution to these equations is not needed in this
limit. Before we proceed, however, a connection between
laboratory and local coordinate systems must be ob-
tained. In ordered-state resonance problems, the general-
ization of the transformation matrix is obvious and for
sublattice o., it is given by

cosO cosN

cosO sin@
—sinO

—sinN sinO cosN ]

cosN sinO sinN

cosO 30

3

M. = g bjkMk,
jc =1

(A10)

with the elements b -k given by the transformation matrix
above.

(A9)

Thus, as before, each component of the sublattice magne-
tization M in the free-energy expansion is replaceable by
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