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Spin-wave theory of the quantum antiferromagnet with unbroken sublattice symmetry
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We discuss the properties of spin-wave theory of quantum antiferromagnets with an additional
constraint that restores the sublattice symmetry. Our treatment is analogous to Takahashi's recent
theory of low-dimensional ferrornagnets, and closely related to the Schwinger boson theory of Aro-
vas and Auerbach. We obtain exact results for spin-spin correlations of 2, 4, and 8 spins in a singlet
state, and exceedingly close agreement with exact results for S =

~
in a variety of other cases. The

implication for the long-range order of the d =2, S =
2 Heisenberg antiferromagnet is discussed.

There has recently been some progress in the theory of
quantum magnetism. Takahashi' has formulated a gen-
eralized spin-wave theory for low-dimensional Heisen-
berg ferromagnets that yields excellent agreement with
Bethe ansatz results for spin S =

—,
' in one dimension.

Takahashi's idea was to supplement the usual spin-wave
theory of ferromagnets with the constraint that the total
magnetization be zero, which enforces the condition that
the total number of spin waves per site is S on the aver-
age. As the Heisenberg algebra only allows for 2S spin
waves per site, the constraint eliminates a lot of unphysi-
cal states in low dimensions where the number of spin
waves otherwise diverges in zero magnetic field.

In this paper we formulate, along the same lines, a
theory for the quantum antiferromagnet. Our original
motivation came from an attempt to compare results of
finite-lattice calculations for antiferromagnets with pre-
dictions of spin-wave theory in two dimensions. Because
the conventional spin-wave theory yields a broken-
symmetry state with finite staggered magnetization (in
more than one dimension) while the ground state of the
Heisenberg antiferromagnet on a finite lattice with an
even number of sites is a singlet, there is no natural way
to do such a comparison; in fact, attempting to use the
spin-wave expressions on a finite lattice leads to diver-
gences. In the approach discussed here, the ground state
on a finite lattice has no broken sublattice symmetry and
all quantities are well behaved; in fact, the agreement
with exact results is best on small lattices. As the lattice
size diverges the disconnected part of the spin-spin corre-
lation function yields the same long-range order as pre-
dicted by conventional spin-wave theory.

Arovas and Auerbach (AA) have recently formulated
in remakable detail a large-N theory of quantum Heisen-
berg models based on a Schwinger boson representation.
For the ferromagnet they recover Takahashi's results ex-
cept for an overall factor of —,', and these authors suggest
that their results should be multiplied by —', to take into
account fluctuation effects. Although AA focus their dis-
cussion on the disordered state at finite temperature, we
have recently shown that their theory in fact describes a
state with long-range order where it is expected, i.e., at
T =0 in d =2 and for T (T, in d =3. The theory dis-

S+= (2S)' (1—a ta; /2S)' a, ,

S.+=(2S)'i b. (1 bb b /2—S)'
J

(2a)

S; =(2S)'~ a; (1—a; a; /2S)'

SJ =(2S)' (1 bj bi/2S —)bj,
(2b)

S =S—a; a;, S'= —S+b-b (2c)

where i E 3, jEB. The boson creation operator a,.

lowers the spin on site i of sublattice A, while b raises
the spin on site j of sublattice B; they obey the usual bo-
son commutation relations.

We now rewrite the Hamiltonian Eq. (1) in terms of
spin-wave operators and keep only the leading terms in
1/S; defining Fourier-transformed operators

1 ik.R,.
Qk = g e 'a, ,

Q&g tc~
(3a)

(3b)

where k runs over —,
' of the original Brillouin zone, and

N~ is the number of sites in a sublattice, the Hamiltonian
becomes

H =2SzJ g [) k(akbk+at, bk)+akak+bkbk]+const,
k

cussed here is in fact equivalent to the AA theory except
again for an overall factor of —,'.

We consider the Hamiltonian for a Heisenberg antifer-
romagnet on a bipartite lattice, given by

H=J gS S
(i,j)

=J g [2(S; SJ +S; SJ+)+S S'],
&t', j&

and define boson operators on each sublattice ( A and B)
through the usual Holstein-Primakoff transformation:
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TABLE I. Comparison of the present "sublattice-symmetric spin-wave theory" (SSSW) with exact
results for the structure factor and spin-spin correlations for one-dimensional chains of N sites, S = z.
SSSW is exact for N =2 and 4.

S (m. )'"

2
2.667
3.109

3.442

S( )sssw

2
2.667
2.984

3.138

( )ex

1,—1

1, —0.667,0.333
1, —0.6228, 0.2774,

—0.3090
1, —0.6085,0.2610,
—0.2519,0. 1988

(~ o )SSSW

1,—1

1, —0.667,0.333
1, —0.6317,0.2459,

—0.2282
1, —0.6223, 0.2196,
—0. 1621,0. 1296

0.8660
0.9428
0.9632

0.9719

g S —g S'=0
iEA j CB

(Sa)

or

1
X (okok+bkbk ) (5b)

with yk =use'"' /z, where 5 are the lattice vectors to the
z nearest-neighbor sites of the origin.

Diagonalization of the Hamiltonian Eq. (4) yields the
conventional spin-wave results. In the ground state, the
up-down symmetry, as well as the sublattice symmetry, is
broken: spins on sublattice A point predominantly up,
and on sublattice B predominantly down. Here we wish
to preserve these symmetries, and thus we diagonalize the
Hamiltonian Eq. (4) subject to the constraint that the to
tal staggered magnetization be zero

tice and prevents divergences associated with the points
k =0 and k =m that would occur with conventional spin-
wave theory. In one dimension (d =1), the sum on the
left-hand side of Eq. (9) diverges in the thermodynamic
limit as g~1, and thus g & 1 as 1V~ ~. In d =2 and 3,
the sum is finite and less than 2 as X~~. Thus, to satis-
fy the constraint (9) 21~1 as N~ ~. For a finite N, rt
differs from 1 by O(1/N ). Thus, the parameter 71 intro-
duces a gap in the spin-wave spectrum for a finite lattice.
Condition (9) ensures that the ground state has no stag-
gered magnetization.

We compute spin-spin correlation functions, to order
1/S, ' by evaluating {S,S ) in the ground state of the
Hamiltonian Eq. (6). Our theory, as Takahashi's, is not
rotationally invariant; in fact (S; S~ ) = (5 Sf ) The re-.
sult is

To enforce the constraint Eq. (5), we introduce a
Lagrange multiplier and diagonalize

H'=H —k g (tzktzk+bkbk), (6)
k

with

(S, s, ) =
If (&)Iz—Ig(&)lz —

—,'4,0,

(g )
— elk'R1 . 1

(1 2 2 )i/2

(10a)

(10b)

2 2 )1/2'9 Tk

with 2)[=1/(I+2$zJA, )] determined by the condition

1 1
ZZi/2N „1—~), )

(9)

The constraint Eq. (9) ensures that g ( 1 on a finite lat-

with A, to be determined by Eq. (5b). H' is diagonalized
by a Bogoliubov transformation to yield

2 Ek(o lkolk+C2kozk )+CO (7)
k'

'k.R

(1—n )'k)
(10c)

Equation (10) is in fact identical to that obtained in the
Schwinger boson mean-field theory of Arovas and Auer-
bach except for a factor of —,'.

Since f (0)=S+—,
' [from Eq. (9)] and g(0)=0 we get

(S; S; ) =S(S+1) as expected. For two spins in a sing-
let state, the spin correlation is Si Sz= —S(S+1); «r
four spins with nearest-neighbor couplings, the correla-
tions are S, Sz = —S (S + —,

'
) and S, S3 =S, and for eight

spins in a square arrangement, S;, Sz = —S(S+—,
'

) and

4X4 lattice

&ooo„-)=
(o,o-„-,)=(,~;„)

(o,o - -)
& oooz-+2- )

S(~)

Exact

—0.467 85
0.285 02

—0.269 55
0.239 50
5.8996

SSSW
(g =0.992 88)

—0.467 69
0.284 60

—0.269 14
0.239 71
5.8946

TABLE II. Same as Table I for a two-dimensional 4X4 lat-
tice.

2X2X2

&o,~;)

& o,o-„,-, +-, )
s(~)

Exact

—0.5356
0.2956

—0.2800
3.7734

SSSW
(q=0.978 30)

—0.5348
0.2959

—0.2832
3.7754

TABLE III. Same as Table I for a three-dimensional 2 X 2 X 2
lattice.
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TABLE IV. Comparison with exact and Monte Carlo (Ref. 6) (MC) results for two-dimensional lat-
tices of Xsites. The statistical error in the Monte Carlo data is given in parentheses.

Size (X)
Energy

Exact/MC SSSW
S(m)

Exact/MC SSSW
+L/2, L/2

Exact/MC SSSW

4
8

10
16
18
20
26
36
64

144

—0.5000
—0.3750
—0.3650
—0.3509
—0.3470
—0.3456
—0.3421

—0.5000
—0.3750
—0.3650
—0.3508
—0.3474
—0.3458
—0.3426
—0.3398
—0.3372
—0.3358

2.667
4.000
4.507
5.899
6.447
6.873
8.104

10.1(4)
15.3(6)
28.7( 1.3)

2.667
4.000
4.500
5.895
6.395
6.813
8.026
9.956

14.937
27.767

0.333
0.333

—0.307
0.240

—0.267
0.239

—0.225
0.205(12)
0.186(11)
0.167(10)

0.333
0.333

—0.303
0.240

—0.260
0.234

—0.221
0.200
0.180
0.160

S).S3=S . The reader can verify for him/herself that
these relations are exactly satisfied by Eqs. (9) and (10).

The q=m. structure factor is given by

&+a xkS(n ) = g ( —1) (So S~ ) =—gN k 1 —yak
1

4

We have recently shown that Eqs. (9) and (10) predict a
long-range order in the thermodynamic limit (in d ) 1)
that is identical to the one obtained by conventional
spin-wave theory.

We next solve Eqs. (9) to (11) on finite lattices and com-
pare with exact results for the case S =

—,'. Table I shows
results in one dimension, compared with results of exact
diagonalization. [S(m) is defined as in Eq. (13).] The Z Z

CL /2, L /2 ~ +0+L /2 ~ (12)

theory is exact for X =2 and 4, and increasingly inaccu-
rate for larger N. It correctly yields no long-range order,
but the correlation function decays exponentially because
g ( 1 as X~~, in contradiction with the known algebra-
ic decay.

Table II shows comparison with exact results on a
two-dimensional 4X4 lattice, and Table III on a three-
dimensional 2 X 2 X 2 lattice. For both cases the agree-
ment is remarkable, the error being of order 0.1% in
most cases. Table IV shows comparison for the energy,
the q=~ structure factor and the spin-spin correlation
function

N=8

0.667

(0.667)

4.000

(4.ooo)
0.87I

(0.866)

4.50O

(4.507)

—I+7r
2

N=I6

0.67I

(0.670)

5.895

(5.899)

l. I 57

(I.I57)

27r—IP
3

0.667,
(O.667)

l. l57

(I.I 57)

0.366

(0.574)
0.869 ii

(0.865)

0.509

(0.51 I)

I

2

N=I8
(6.447)

27r
5

0.504

(0.507)
I

37r
5

0.51I

(O. 514)
0.870

(0.863)
0.333

(0.340)
I

27r
5

0.668
(0668)-"

N=20
(6.873)

( I.229)

67r
13

0.363
(0.564)

0.67l

(0.670)

N =26 60P6

072I
( 4

(8 l04)
l.452

~ (I.433)
(O.720)

0.966

(O.462)
(0.954)

0.624".'4 (0.6~23)

(O.281)

13

FICz. 1. Spin structure factor on six two-dimensional lattices of X sites. Upper numbers are results of the present sublattice-
symmetric spin-wave theory, lower numbers (in parentheses) are exact diagonalization results. We show the erst quadrant of the
Brillouin zone in each case. The values of the wave vector are given by Eq. (14). For X =4 (not shown, see Table I) and N =8 the
spin-wave results are exact.
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=2~q„= (rm +sn), (14a)

=2~
q = (sm —rn) . (14b)

For % =8 the spin-wave results are exact, as discussed.
For larger X they start to deviate; still, for the entire q
dependence the results agree to about 1% in almost all
cases.

In summary, we have discussed an extension of con-
ventional spin-wave theory for antiferromagnets that re-
stores the sublattice symmetry in the ground state. The
resulting theory is applicable to finite lattices, unlike con-
ventional spin-wave theory, and yields remarkable agree-
ment with exact calculations. For X =2, 4, and 8 spins,
results for spin-spin correlations are exact. For S=

—,', we
found the results to be remarkably accurate for a variety

on X-site lattices in two dimensions, from exact diagonal-
ization up to X =26 and from Monte Carlo simulations
by Reger and Young for sizes up to 12X12. CL z2 L ~~ is
the spin-spin correlation for the two spins farthest away
on the finite lattice. The lattices of size N =8, 10, 18, 20,
and 26 are tilted squares that can accommodate the Neel
state with periodic boundary conditions, as discussed by
Oitmaa and Betts. N =r +s, with r+s even. The
agreement is again remarkable, especially for the energy.
Note that the spin-wave results for S(n. ) slightly underes
timate the exact values.

Figure 1 shows comparison of the spin structure factor

S(q)= —ge'q'(o .o,),1

I

with exact results for up to X =26. The values of q for
the tilted lattices of size 4 =r +s are given by

of other cases in more than one dimension. As this is a
1/S expansion, we expect the results to become even
more accurate for larger S.

As N~ ~, the long-range order m is obtained in the
present theory from S(m. )=Km +0(&X ). Solution of
Eqs. (9) and (11) yields

=1 d "k 1
m =—2S+1—

2 (2~)d (1 ~2 )1/2
(15)

which is the same as conventional spin-wave theory, and
yields m =0.303 for the d =2, S =

—,
' Heisenberg antifer-

romagnet. The fact the exact values of S(m ) on finite lat-
tice are close but slightly above the spin-wave results in-
dicates that the spin-wave result slightly underestimates
the long-range order.

The theory discussed here is straightforwardly general-
ized to finite temperatures. It predicts no long-range or-
der at finite temperatures in d =2, and a critical tempera-
ture T, )0 in d =3. Comparison with exact and renor-
malization group results at finite temperatures, as well as
for dynamic spin-correlation functions, will be discussed
in a future publication.
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