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We show in this paper the characteristic behavior of the noise generated by the fluctuation of
diffusion fronts. We predict a 1/f2 noise at high frequency and a 1/f noise at low frequency. A
crossover frequency f, separates the two regimes. This crossover frequency f, has a power-law be-
havior as a function of the diffusion length. To relate the static properties of the fronts represented
by a problem of percolation in a gradient to the dynamical behavior, we assume that the probability
of disconnecting a finite cluster is proportional to the number of red bonds present in a disk with a
radius equal to the cluster radius. A scaling of the different fluctuation regimes as well as a scaling
of the density of events of a given size is proposed. The various critical exponents are compared
with those extracted from numerical simulations performed in the two-dimensional case. We also
point out the close relation of these results to noise in invasion experiments in the presence of a

gravity field.

I. INTRODUCTION

Diffusion naturally creates objects with a fractal
geometry.! ™% In the case where the diffusing particles do
not interact, this geometry is closely related to the
geometry of percolation clusters and the most general
concept which allows a unique approach of these struc-
tures is percolation in a concentration gradient called
“gradient percolation.”?>”7 The purpose of this work is
to study more deeply than in our preliminary ap-
proaches®® the “geometrical noise”” generated by the fluc-
tuations of the diffusion front during the diffusion pro-
cess.

A. Recall of the main results on noninteracting
hard-core diffusing lattice gas

A detailed presentation of the model has been given
elsewhere.?® As we will compare our theoretical model
to two-dimensional numerical calculations, we will refer
here to d =2 values for the critical exponents. However,
the scaling laws are general. The d =3 case will be dis-
cussed at the end of the paper.

The present study will be limited to the case of nonin-
teracting hard-core diffusing particles: Particles are al-
lowed to jump at random to first-neighbor sites in a d-
dimensional lattice, provided these sites are empty. Un-
der these conditions, the concentration is known'® to fol-
low an ordinary diffusion equation. Basically, we consid-
er in this paper the most simple case of a stationary sys-
tem with fixed concentrations on both sides of the finite
sample of size L? 'XL’: The concentration profile
presents a constant gradient Vp along coordinate x,
0=<x =<L’. Nevertheless, it is important to remark that
the result should be applied to nonstationary cases pro-
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vided that the evolution of Vp with time is on a much
larger time scale than the characteristic fluctuation time.

A number of physical properties are associated with a
“connection” rule between the particles. For example,
nonzero hopping conductivity supposes that an electron
on an atom can find another atom close enough to
present overlapping external orbitals. In our model, we
will simply choose a first-neighbor connection.

We can define, with respect to this connection,
different subsets of particles.>”’ The set of particles con-
nected to the high-concentration region corresponds, in
the limit of an infinite sample and an evanescent gradient,
to the “infinite cluster” in the percolation problem. Its
external surface is located around p,: it is precisely what
we call the diffusion front. There also exist finite clusters
with an average linear size (radius of gyration) given by
the correlation length £ which decreases with the dis-
tance from the average position x. of the front, according
to

E<|px)—p|™", (1)

with p(x)=p,+Vp(x —x,). v is the correlation length
critical exponent. At short distances, this front has a

fractal behavior with a dimension D,. It has been
shown? 12 that for d =2,
D,=1+1/v=17. (2)

The width of the front o, has a power-law dependence
on the concentration gradient,?

o, |Vpl % with a,=v/(1+v) . (3)

In the concentration variable, this width is proportional
to a “‘concentration width” 8§p < |p(o = p.| defined as
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5 —lV |aa/v 4) T T T T
p=|Vp : N,
As far as physical properties of the interface are con-
. o 3200 | i
cerned, another important quantity is the overall length
of the front. The average number of particles on the J_L‘—L'
front N, is also a power-law function of the gradient®’
N,p={(N(t))«|Vp| ¥ (52)
with 3000 | i
and (only in d=2) @, =a,/v=1/(1+v)=3. Let p,(x) TRt
be the probability to find a particle of the front at dis- n=65 n=71
tance x. The variation of front concentration has the fol- 2800 s . . .

lowing scaling behavior:’

pr(x)=pp(x)/p(x)

d—Df)v/(v+1

~|vp|' M, p—p)/spl, (62

where I, is a scaling function which depends on the re-
duced variable (p —p.)/8p. This scaling law is based on
the assumption that there exists a unique scaling length
in the problem which is o, (8p in concentration variable).
The gradient-dependent prefactor is obtained by integrat-
ing (6a) and comparing the result with the total number
of sites on the front given by Egs. (5a) and (5b). Expres-
sion (6a) has been numerically checked in the d =3 case.
We assume here that this scaling is valid also in two di-
mensions. We will discuss below the limit when |Vp|
goes to zero: then 8p also goes to zero and Eq. (6a) could,
in some cases, be conveniently approximated by a 8§ func-
tion,

pf(x)znOIVpi_aNHS(p—pc) . (6b)

Another crude approximation is

(d=D /vt 1)
pr(x)=ng|Vp| 4

for |x —x.| <o, and zero otherwise .

It has the great advantage of leading to the correct re-
sults using very simple arguments, and has been used in
the preliminary approach.” A general presentation of
this approach is in print.'?

B. Fluctuation noise

The dynamical behavior of the diffusion front was re-
vealed by simulation calculations in two-dimensional sys-
tems.® “Catastrophic” events appear through connection
or disconnection of very large clusters after the jump of a
single particle.

We observe that during the diffusion process, there are
some microscopic events (motion of a single particle) that
may induce semimacroscopic changes of the front. A
typical time evolution of the number N, of particles on
the front is shown in Fig. 1. where we see a succession of
rare large events and frequent small events. One of the
most important characteristics of the diffusion fronts is
their instability.

Another remarkable point is that the time scale for a

sampling index n

FIG. 1. Time evolution of the number N, of particles on the
diffusion front (from Ref. 8).

fluctuation is enormously reduced as compared to the
hopping time. The reason is that for a fluctuation to ap-
pear it is sufficient, for example, one of the particles of a
large cluster near the front moves to a position such that
this cluster becomes a part of the front itself. This
motion corresponds to a frequency much higher than the
inverse of the average jump time for individual particles.
Suppose that the diffusion is an activated process with an
average jump time 6. If the system contains N particles,
then 7,=06/N is the elementary fluctuation time of the
system. With N  particles on the front, then 'rf=0/N r
is the elementary fluctuation time of this front. For mac-
roscopic systems we have 7,<<7,<<f. We will also
show below that there exists a crossover time ¢, (called ¢*
in Ref. 14) between a region with a 1/f? noise and a re-
gion with a 1/f noise. This time ¢, will be shown to de-
crease with a power law of the gradient of concentration
|Vpl|. As an example, in the calculations presented here,
for a gradient |Vp|=gl; and a sample with N =56000
particles, we found N,=8500 on the front so that
7o=2107°0, 7,=10"%0, and the simulation gives
t,=10"10.

Hence, even if 6 is extremely large (apparently
quenched systems), fluctuations will be observable if the
number of particles in the system (and in the front) is
large enough. This is a very important property with
practical physical implications.®

We would like to point out here that the fluctuations
appearing in slow invasion by nonwetting fluids!® can be
treated in a rather similar way. This is, in particular, the
case for the fluctuations of flux during the invasion pro-
cess in the presence of a gravity field in which the pres-
sure is very slowly increased.!®!’

During a diffusion process different quantities can be
measured: the fluctuation of the frontier length (or fron-
tier surface in d =3); the fluctuation of the total number
of particles connected to the source; and any other more
subtle physical quantities related to the cluster parame-
ters. These will all be treated following the same way.
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We have chosen here to investigate the fluctuations with
time of the frontier length N (¢). They are intended to
have a power-law dependence in t:

(ANA()?) =([N(t)=N(0)]?) = ?H, @)

where H is an exponent (to be determined) called the
Hurst exponent. As indicated above, the fluctuations are
produced either by successive connections and disconnec-
tions of finite clusters of particles, or by successive open-
ing or closure of finite clusters of empty sites. The corre-
sponding variation of length of N,(¢) for an event at time
tis +h, where A is the perimeter size of the island (or the
lake).

C. Preliminary approach of the problem

A zeroth-order approach’® consists in considering that
the frontier is everywhere at p=p, [Eq. (6c)] and that
major contributions in the fluctuations come from the
clusters of typical radii close to o (from now on we will
suppose that the width o is much smaller than the size
L of the sample). The average perimeter size hy, of a

large event is then of order (o f)Df . Moreover, clusters
separated by a distance larger than o, can be considered
independent (uncorrelated). As a first approximation, the
fluctuations are then essentially a connection of indepen-
dent clusters of size (o f)Df . We expect their number to
vary as n=(L /of)d‘l. At short times when only a
small part of the n clusters have been probed, the mean-
square fluctuation (AN (2 )2) is a random Brownian pro-
cess and the Hurst exponent is H = 1.

(AN (2)*)y=At .

When all the clusters have been explored, (AN f(t)z)
saturates to a time-independent value. This appears for
times larger than a crossover time ?,. The power-law
dependence of (AN/(¢)*) is approximately n times the
square of a typical cluster fluctuation,

d—1 -
(Uf) 4

(ANf(1>>1,)?) «
s

2D _d+1
OC(U/‘) 4

—(v/1+v)(2D,—d+1)
«|Vp]| s

or explicitly,
(ANf(t)?') o |Vpl—10/7 X

The prefactor A in the short-time regime is slightly more
difficult to determine, as it requires the knowledge of the
probability per unit time to connect or disconnect a typi-
cal cluster. The result has been outlined in a preliminary
presentation’ using the same approximation. As we need
to go further in the details to understand the meaning of
this crude approximation, we will study the fluctuations
of a system in which the concentration is slowly varying,
so slowly that the system can be represented by the juxta-
position of uniform concentration subsystems.
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II. AMODEL FOR THE FLUCTUATIONS

To describe the mechanism of appearance of the fluc-
tuations we need to know the scaling structure of various
necessary ingredients. We need, in particular, to know
the distribution of the clusters which are close enough to
the front to contribute to the fluctuations; we also need to
know the probability for a fluctuation of size 4 to appear.

A. Distribution and cutoff of the finite clusters
with external perimeter A

In a region of concentration p, the number of islands
with A sites on their external surface, or hull, follows a
scaling law similar to that of the number of clusters of s
sites.!® For the clusters of particles, this may be writ-

ten!®2% as
ny=h " fl(p—pIh’"] (8a)
with
T,=1+d /Dy
and (8b)
o,=1/vD; .

A similar expression may be written for the clusters of
empty sites (lakes). However, in the three-dimensional
case, attention shall be paid to the location of the critical
concentration (see the end of the paper). In two dimen-
sions, 7, =1+2v/(1+v)and o, =1/(1+w).

To study the system in the presence of a concentration
gradient, we will suppose that the scaling behavior of the
finite-cluster distribution is essentially preserved. But
due to this gradient, there exists an overlap between re-
gions of different concentrations. This fact has already
been used to determine the width of the front,? writing
that the correlation length § at a distance o, of the per-
colation threshold is equal to o ;.

Here we will say very generally that the radius of gyra-
tion R, of a cluster with A sites on its hull cannot be
much larger than the distance x —x, of the center of
mass of this cluster from the region of concentration p,.
The radius of gyration has also a scaling behavior which
can be written

Op

R,=h""glp—p "] . )

This expresses, in particular, that the perimeter is fractal
at p. with dimension D, and that the scaling function g
depends only on the dimensionless quantity (p —p.)h o,
Hence, on the average, we cannot find finite clusters with
perimeter A such that

R,>x—x.,=(p—p.)/Vp . (10

The same arguments can be used for the lakes in the re-
gion p >p.. Thus there exists a cutoff length 4, (p) in
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the perimeter distribution defined by
R, ax(p):(p*pc)/Vp R (11)

jut

or from Eq. (9),
J

(hmax\Vp|a”Df)l/D

which is solved to give the largest possible cluster perime-
ters in a region where the center of mass of the clusters is
at concentration p,

hmax(p ):hM¢[(p —Pc )/Sp]
with (13)
—a_D —1/c
hy=IVp| " =(8p) "
¢ is an unknown scaling function.

To resume, the perimeters /4 of the potentially connect-
ed clusters have an upper bound 4, (p). This upper
bound depends on the average concentration p at the
cluster location and is proportional to h,;,. h,, is also
proportional to the typical perimeter of clusters with ra-
dius o ;. If we consider that the entire front is at p., we
have, from Eq. (3),

—a,D D
Bomax(P =P ) =hp $(0) = |Vp | “S o

as mentioned in the Introduction. This relation was used

in the crude approach.” Here d=2, the exponent

a,D,=1, and

hmax= |VPIV1¢[(p —Pc )/Bp] .

Result (13) will be important relative to the saturation of
the fluctuations of N,(¢).

B. The model for the dynamics

During the diffusion process, a certain number of is-
lands (lakes) are close enough to the frontier to allow con-
nection (opening) after the jump of one particle (Fig. 2).
The reverse jump will disconnect (close) this island (lake).
To simplify the presentation, taking account of the simi-
larity of the scaling laws, we will consider only connec-
tion and disconnection of islands. We assume that this
connection-disconnection process is such that there is no
correlation between two successive fluctuations of the
length of the front. We consider then the number /M, (p)
per surface unit (i.e., per site) of clusters with 4 sites on
their hulls. These clusters are centered in a region of
concentration p and are able to be connected or discon-
nected by only one particle jump. M,(p) does not vary
with time in a stationary situation. At a given time ¢, and
in a region of concentration p, s, (p,t) of M,(p) are
connected, and

OSmh(p,t)S./l/lh(p) .

Over the total concentration range the number of con-
nected clusters m,, is
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1/D o
Poax 8P =P Pmax "1=(p—p.)/Vp . (12)

Equation (12) can be rewritt%n with the two reduced vari-
ables Ay /gy =h, VP 1“7/ and (p —p, ) /8p,

g {[(p—pe)/8p 1 h e | VD 1“7V "y =(p —p.) /5P

my()=L47" [ dx 12, [p(x),1] (14)
among M, defined by

M, =L [ dx M, [p(x)] - (15)
and

0=m,(t) =M,

FIG. 2. The diffusion fronts fluctuates by connecting or
disconnecting islands (finite clusters in light grey) or by opening
or closing lakes (in white). This appears when one “red bond”
represented by black or white points is open or closed. A clus-
ter with a concentration p at its center-of-mass location is
characterized by its perimeter 4 and its gyration radius R, (p).
The dark grey region represents the set of particles which
remains connected to the source when all the red bonds are
open. Its frontier (heavy solid line) is the bare diffusion front
(with length N, fm‘m)' The active clusters can possibly be in

series, connected in the figure by the red bonds O, 1, and 2. In
d =2, the red bonds can even be not well defined as black or
white points. If g, b, and c are closed, a lake is created and a, b,
and ¢ would be white points, but if only one of them is open the
two others would be black points as they now connect islands.
Hence, there are many possibilities of connections or disconnec-
tions; however, being in an equilibrium situation, in average the
distribution of clusters of size 4 must satisfy Egs. (16)-(19).
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The total length N,(2) is given by and
NAt)=N, + S hm,(1), (16) _ My,
A=t 2 s
N . corresponding to all m;, =0, and can be considered o o M,
to be generated by a subset of the front such that at least § =), )

two jumps are necessary to disconnect a part of it. Here
we will make the following assumption: The mass of the
front which comes from the contribution of the ‘“one-
link” clusters is dominant in such a way that one can
neglect the contribution from N foin (this assumption is
based on the fact that when all the “one-link” clusters
have been disconnected the N Foin remaining particles can
be compared to the accessible perimeter of Aharony-
Grossman;?! this subset has in d =2 a fractal dimension
D,=3%).

From Eq. (16) we obtain the equilibrium length of the
front,

(Np))=N; + 3 hlm,) ., . (17)
h

The probability P(s7,,t) to have ¢, clusters connected
at time ¢ is given by a master equation,

OP(r22y,1) /0t =w(sre), + 1— 122} )P(srre) +1,1)
Fwlme, — 11—y )P, —1,t)
—[wlrey—rre) +1)
Fwlmey—sme, —1)1P(srey,t) . (18)

The events of the set of MM, clusters are assumed to be
equally likely, so that the probability

w(mh -——)mh—l):mhﬂh N
(19)
Wy, —rrey +1)=(My —rrey)m),

where 7, is the elementary probability of connection-
disconnection of one particular cluster among the Ji,
(for simplification, the connection and the disconnection
probabilities are taken to be equal; they are actually ex-
pected to be only proportional but this detail is irrelevant
for the scaling behavior). Equation (18) can be written in
the continuous limit,

My, 32p
7Th amh + 2

%?=27th+(2/71,,—./1/1;,) op

2
Ey

(20)

This classical statistical problem is easily solved knowing
the propagator,

_ 72
exp— ( ) y 2n

Py to+7|ml,tg)=
72p5to |’”h 0 2#(,”2

1
w(r )V 27
with
2=

My,
ulr T[l—exp(—27rhr)]

E=C(r)=E%xp—2m, 7=E%xp— z.
Tr
The quantities 7,=1/2m7,(p) are the characteristic re-
laxation times of the system in a region of concentration
p- The equilibrium distribution is given simply by

Peog(ore ) =[1/pegV (2m) Jexpl — &2 /(2u2)] (22)
with

feq=V M, /2
and

E=ry—M, /2 .

The equilibrium value of »72, is M, /2 so that from Egs.
(14) and (15), the average equilibrium value of m, will be
M, /2. From this, we obtain the equilibrium length of
the front,

<Nf(t)>:<mem>+ Eh(’nh>[:w
h

=(mein>+ > hM,/2 . (23a)
h

The dominant contribution is given by the last sum,

>ihM, /2, which will have the same gradient depen-

dence as

(Np(1)) = |Vp| ™V . (23b)

We suppose that M, (p) is proportional to the front
density p, because we can consider that the larger the
front density, the larger the number of single jump con-
nected clusters. M, must also be proportional to the
density 7, of clusters (7, is a subset of the clusters hav-
ing a perimeter &) which are close enough to the front to
be connected in a single jump. 7, will have a power-law
dependence in 4 with an exponent —y, times a reduced
function depending on (p —p, )k °* as for n,, [Eq. (8a)].

M, (p) must finally contain a cutoff function C which
takes into account limitation on the size 4 (this cutoff
could have equally been included in 7). We will check
the correctness of this assumption by calculating
(N f(t)), recovering its power-law behavior, and finding
the correct average value for the number of large fluc-
tuating clusters. We have

M, %h_Xi7[(p—pc)hg"]pf(x)C(h/hmax) . (24)

Exponent y will be determined using the result of Egs.
(23a) and (23b). Replacing 3,AM, /2 in expression (23)
by integrating over 4 and x leads to
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(Nf(t))%Ld_’fowdh W' [ dx F(p—ph°"]

xXC

Pr(x)

h max

« |Vp| Ny P X=|Vp| N, 25)

which implies y =2.

(i) The above approach supposes that the concentration
varies slowly on a size R, of the clusters contributing to
Nf.

(ii) The average value for the number of large fluctuat-
ing clusters is correctly recovered as expected in the pre-
liminary approach (see Sec. 1C),

(M () =L [ = dh h = [ dx F[(p—p,)h""]
M

xXC

pf(X)

max

< LN, | N (hy) e (L /o)
J
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C. Determination of the connection frequency

We conjecture that the probability =, is proportional
to the density of red bonds in the region occupied by a
cluster of size R,. In doing so, we consider that the num-
ber of red bonds connecting a cluster of perimeter 4 to
the front follows the same power law as the red bonds
present in this region:?>12

my, < (R (26a)
or from (9) (and as o, vD,=1),
mn=h""gl(p—p R "1V . (26b)

The probability i, is per unit time 6.
III. CALCULATION OF THE
AUTOCORRELATION FUNCTION (AN, (t)?)

It is now easy to calculate the autocorrelation function
(AN (1)) =([N/(t)=N(0)]*)

using relations (14) and (15),

(AN =3 3 3 h*P({re},}t| {2} }0)m,mP ({5 })

h m;‘)mh

=Ld"fdx S 3 3 kPP t]m20) 0202 Py (23) @7

h m}?mh

From Egs. (21) and (22) this becomes
([AN ()])=2L"! [ dx §h2”gq 1—exp(—2m,1)] .

(28)

Expression (28) is the basic relation for the noise behav-
ior.
For short times t <<7,=1/2,, we write

hmax
(AN (O)= |2L97 [dx 3 hiM,m, [t=At . (29)
h=1

This expression shows that the short-time behavior corre-
sponds in Eq. (7) to H=1 (as in the Brownian motion).
The linear dependence in ¢ is verified by numerical calcu-
lations. We find 2H=1.00%£0.02 [Fig. 3(a)]. This
confirms the independence hypothesis of the connection-
disconnection process. In numerical simulation, the time
t is the number of jump trials per occupied site in the
diffusion process. The coefficient A of ¢ in Eq. (29) has
been determined numerically in two dimensions [Fig.

3(0)],

A =183.4|Vp| 7183, (30)

If we put the scaling structure of 7, given by [26(b)] into
Eq. (29) we obtain

A=Ld! [ “dh b [dx 9((p—poh™")

XC pf(x) s

h

max

where the function & is simply Fg~!/*. Setting

u=(p—p.)/8p and v="h /h,,, we obtain from (13), ad-
mitting that the integral on the right-hand sides con-
verges,

A ochvllvpI—(2Df~d)v/(1+v)vl
« |vp| 1377
= vpl 31

The exponent 12 =1.857. ..
value 1.83. .. of Eq. (30).
For large times Eq. (28) gives

is very close to the numerical

hmax
(AN (OPy=2L9"" [dx 3 h¥l,, (32)
h=1

which corresponds to a plateau in the variation of
(AN/(¢)*) as a function of time and H =0 [see Fig. 3(a)].
The gradient dependence of the height of this plateau is
determined using (22) and (24),
_ -2
([AN()]*) =L4~|Vp|

L —10/7 .
s |Vp| (33)

Df‘d+l)v/(1+v)
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FIG. 3. (a) The graph shows the fluctuation (AN,(¢)?) for
different values of the inverse of the gradient |Vp|~!=20, 50,
100, 200, 400 and 800. Times ¢ are measured in Monte Carlo

steps (MCS) per particle (taking §=1). The curves are obtained
using three time interval scales, namely 1, 128, 2'¢ steps
(MCS/sample). The saturation value of {AN(z)*) as a func-
tion of the inverse of the concentration gradient has an ex-
ponent 1.48 close to the theoretical value 17—0 obtained in d =2.
The exponent for the coefficient A of the linear time variation is
found 1.83 also reasonably close to the theoretical value 173— (b)
Saturation value of (AN,(7)*) as a function of the inverse of
the concentration gradient. The slope 1.48 obtained is close to
the theoretical value %. (c) Coefficient A of the linear time
variation as a function of the inverse of the gradient. The slope
1.83 is reasonable close to the theoretical value %

J. F. GOUYET AND Y. BOUGHALEB 40

This behavior is relatively well verified by the numerical
calculations where (L =524) [Fig. 3(b)],

([AN (1)]?)=115.3|Vp| 148 . (34)

The theoretical value is L =1.43.

IV. THE CROSSOVER TIME ¢,

The crossover time 7, is the time at which the fluctua-
tions saturate, i.e., the time at which we observe a cross-
over from 1/f?to 1/f noise. t, is defined by the relation

At =(AN(1=)") .

Comparing the power-law relations (31) and (33), we find
the remarkable power-law behavior

tCO<|Vp|1/(H'V>. (35)

We observe that the crossover time is also the average
(over A and p) of the relaxation times 7, of the system,

ICE(T,)=<(27T,1)*1)oc(hM)"hoc|Vp|1/<1+v) ]

The crossover time varies as the inverse of the number
of red bonds in a volume of linear size o ;. The larger the
diffusion time, the smaller the crossover time. The cross-
over time is expected to be independent on L because two
large identical samples and their union must have the
same 7.

V. THE DENSITY OF EVENTS OF SIZE A

The density of events N (h) is defined as follows:
N, (h)dh is the average number of occurrences per unit
time when the frontier varies by a length between % and
h +dh. In the numerical calculation the frontier length is
determined after each particle jump. N, (A) represents
the number of events of size /4 after each particle has
made (in average) one jump.

The density of events in a region of concentration p is

Ld‘l
Neth)== [ dx m,(p)rm,(p) . (36)
From Eqgs. (24) and (26b),
d—1 _ v
Neh)=L2- 0" [ dx 9(p—p. h ™)
X e [P
or from Egs. (6a) and (13),
d—1 _ Y
Neliy=Eo—h""|wp|
h ho |7
deuC () g[u hM] Me(u),
which takes the general form
-1 _ e
Notm)=LEp o 2 yp v [ | (37)
2 M
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where a,=0.428 and 2—o0,=4=1.57. K is a cutoff
function resulting from the integration of the above ex-
pression. We notice that for d =2, the exponent 2—o,
of h is precisely the exponent Y, of polymers at the 6
point:'> Y,=2—d /D, where d,.=1/v, in agreement
with expression (8b). This approach here shows that this
expression also holds in d =3 when 4 is a perimeter sur-
face.

Numerical calculations show that N, (4) is the prod-
uct of power-law behaviors in |Vp| and h, and a cutoff
function K (h|Vp|) (Fig. 4),

N (h)=173.5|Vp| 04 p 19K (h|Vp]|) .

This is in reasonable agreement with Eq. (37).

1 10 100 1000
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VI. SUMMARY AND CONCLUSION

The noise generated during a diffusion process presents
two main behaviors separated by a crossover time ¢, such
that

tc < va|1/(1+v) .

For short times, ¢ <t,, the noise varies linearly with time,

([ANf(D)P)y=At , (38)
where
A OCLd_l‘Vp|—1~(2Df—d)v/(1+v)
dO_CZLIVp|—13/7 . (39)
104

(b)

10 100 1000

1/Vp

(d)

Ngy (Vp=0)

0.59 h~| .4010.02
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= .
_— 3t E
>
4t (&) q
-5 r |
%5 4 3 -2 B 0 1
in(hVp)

FIG. 4. (a) Density of events N, of size 4 for different values of the gradient. N,, contains three factors. A gradient-dependent
factor with a power-law dependence is shown in (b). The slope 0.41 is closed to the theoretical value ay = % A scaling structure (c)
also with a power-law dependence is shown in (d). The corresponding exponent is around 1.40 while the theoretical value is found to

.be L =1.57. A cutoff function K (h|Vp|) is represented in (e).
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For large times, ¢ >t,, the noise saturates at a value
which has again a power-law dependence in |Vp |,

_ —@2D,—d+1v/(1+v)

([AN()P?) <L vp| 7/ Ve

< L|Vp|~10/7, (33)
d=2
The noise is generated by events whose density is 4
dependent and |Vp| dependent,

Ld*l
2

hy

oh—2|

N (h)= h vpl K . 37

In these expressions o, =1/(vD;), ay=(Dy,—d+1)v/
(14v), and hy = |Vp|M(VDf/l+V). The cutoff function K
cuts the sizes & > h,,.

We expect that the above expressions are not restricted
to two-dimensional (2D) systems. The scaling hypothesis
represented here appears to also be valid in three dimen-
sions. Differences exist®’ between the 2D and 3D sys-
tems. In three dimensions, the front is extended between
two different concentration limits [0.312=<p <0.9, for
the simple-cubic lattice (SC)] so that the fluctuating re-
gions are located around the front tail corresponding to
the percolation threshold p, (=0.312 for the SC lattice)
and around the back of the front corresponding to a con-
centration 1—p; (=20.9 for the SC lattice, p. being the
percolation threshold of the complementary 1,2,3-SC lat-
tice). Only clusters of occupied particles with scaling be-
havior [Eq. (8a)] particles are located in the back of the
front (in d =2 this happens in the same concentration re-
gion). For d =3, the fluctuating regions have a width o ft
given by the same expression (3) as in d =2. Also for
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d =3, the number of particles situated in these fluctuating
regions is given by Egs. (5a) and (5b), with the critical ex-
ponents

v~0.88 and Dfé2.52.

The present approach could be applied to the study of
the fluctuations of the geometry of a diffused contact®
which should play a role in the noise generated by such a
contact. It is also interesting to remark that a similar
physical situation occurs in the slow invasion of a porous
medium by a nonwetting fluid in the presence of gravi-
ty.!'®17 When the fluid pressure is very slowly increased,
we observe a devil staircase evolution of the flow, in
which case the fluctuations involve the size of the con-
nected clusters. Such an evolution has also been studied
in the absence of gravity."> A detailed study is in pro-
gress.
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