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Anomalous incommensurability and local ordered states at first-order phase transitions

K. Fuchizaki
Faculty ofEngineering Science, Osaka University, Toyonaka shi,-Osaka 560, Japan

Y. Yamada
Institute for Soh'd State Physics, The Uniuersity of Tokyo, 7-22-1, Roppongi, Minato ku, -Tokyo 106, Japan

(Received 16 March 1989)

Anomalous incommensurability in the diffraction pattern observed as a precursor of various
first-order phase transitions is discussed on a phenomenological basis. The anomaly is character-
ized by the incommensurability which is dependent on the reference Brillouin zone. Starting from a
general free-energy functional describing a first-order phase transition, we obtain spatially modulat-
ed solutions of the order parameter as well as of the strain field, which we call "embryonic Auctua-
tion. " Diffraction profiles are calculated for the system with random distribution of embryonic Auc-
tuations, which turned out to reproduce the observed anomalous incommensurability.

I. INTRODUCTION

In recent years, pretransitional phenomena associated
with first-order structural phase transitions have attract-
ed considerable attention, particularly in connection with
martensitic transformations in metals. The principal
features of interest seem to be related to the incomplete
softening of particular phonon modes.

When the transition is caused by complete phonon
softening, the transition will be of second order, and it
will be preceded by the critical fluctuations of the order
parameter whose nature is well understood based on the
theories of critical phenomena at second-order phase
transitions. The incompleteness of the lattice instability
leads to the first-order nature of the phase transition.
Nevertheless, various kinds of pretransitional phenome-
na' around martensitic transformation such as "tweed
pattern" formation observed with electron microscopy,
anomalies in transport properties, anomalous increase of
internal friction, the appearance of the central peak
detected by neutron scattering, anomalous x-ray scatter-
ing, etc. have been reported. In particular, the x-ray
scattering at pretransitional states in the alloy TiNi was
reported to show remarkable peculiarity as summarized
in the following paragraph.

The alloy TiNi, a well-known shape-memory alloy, un-
dergoes a phase transition with decreasing temperature
from a /3, structure to a martensite phase through soften-
ing of TA phonon mode with q= —,'[110j. Salamon first
reported that there appears an intermediate state where
the q values of the superlattice reAections are incom-
mensurate before they "lock" into the exact commensu-
rate value of —,

' in the low-temperature phase. In a high-
resolution x-ray study Shapiro et al. found anomalous
behavior associated with the incommensurability of the
satellite peaks: Note only are they incommensurate in
position, but also the incommensurability Aq changes
from Brillouin zone to Brillouin zone. Moreover, the
pair of peaks within a Brillouin zone does not satisfy the

center of symmetry around the Brillouin-zone center, as
it usually does, but only maintains symmetry around the
origin of the reciprocal lattice. These unusual symmetry
properties of Aq definitely rule out the ordinary incom-
mensurate structure with charge-density waves (CDW's)
or lattice-distortion waves (LDW s), in which case satel-
lites should satisfy the center of symmetry around each
Brillouin-zone center as well as the translational symme-
try with respect to translation of Brillouin zones.

Salamon et a/. first pointed out a very interesting
feature on this anomalous incommensurability of the sa-
tellites in TiNi: As is illustrated in Fig. 1, the observed
diffraction pattern can be systematically reproduced if we
assume that only satellite peaks have shifted to the posi-
tions expected in the rhombohedral martensite phase,
while the Bragg peaks still maintain the original cubic
positions. They referred to this peculiar reciprocal lattice
as the "ghost lattice. "

Yamada et ah. constructed a possible microscopic
model to explain the physical origin of the ghost lattice.
The basic idea of their model is that (i) the bcc matrix has
a particular elastic property represented by a dip in TA
phonon mode or the presence of the soft mode (ii) in the
pretransitional state many embryos or locally
transformed microregion of low-temperature structures
are distributed in the matrix. They set up model systems
of 10 and 2D lattices of atoms whose phonon dispersion
has soft phonon modes. The displacement field is then
calculated when the lattice is strained by a specific type of
Kanzaki force' which stands for the existence of em-
bryos. They showed that the diffraction pattern of this
spontaneously strained lattice reproduces the characteris-
tics of the ghost lattice.

Although their treatment elucidated a possible origin
of anomalous incommensurability of the ghost lattice, the
discussion based on such a specific model left the point of
generality and overall applicability of the idea unclear.
In the present paper, we discuss the same problem from a
different standpoint.

%'e start from a general expression of phenomenologi-
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FIG. 1. Relation between satellite reAections observed by
Shapiro et al. (Ref. 4) and the rhombohedral ghost lattice. The
arrows represent the directions of displacements from the exact
commensurate cubic positions, whose relative magnitudes are
expressed by the length of the arrows. Note that the satellites,
with few exceptions, shift generally toward rhombohedral satel-
lite positions (shown by the open circles) while the fundamental
Bragg reAections are centered on cubic reciprocal lattice points.

T&TC

cal free energy which describes a first-order phase transi-
tion. The characteristic feature of the free energy
relevant to first-order phase transition is depicted in Fig.
2. We assume that in the temperature range of T+ T„
there are chances that the order parameter g is locally
(and temporally) locked in the metastable state with (=g.
Since g gives the order parameter in the low-temperature
phase, the locally locked-in state with g=g may be called
an "embryonic Auctuation. " The overall spatial variation

of the order parameter g(r) is obtained by the standard
procedure to minimize the free-energy functional under
such a boundary condition that embryonic Auctuations
are excited randomly within the system. As the displace-
ment field is given in terms of g(r), we can calculate the
diffraction pattern in the precursor state T~ T, . This
procedure gives an alternative way to discuss the ob-
served ghost lattice behavior.

Since these arguments are based on a purely phenome-
nological standpoint, the results are quite general and
give a comprehensive perspective view of the origin of the
ghost lattice and its relation to first-order phase-
transition phenomena.

In the next section, a free-energy functional which de-
scribes first-order phase transition including the coupling
between the order parameter and a macroscopic strain is
established. Spatial variations of the order parameter
g(r) as well are of the strain e (r) are obtained under the
boundary condition suitable for a state of embryonic Auc-
tuation. The results are utilized to calculate the
diffraction pattern in Sec. III, which eventually repro-
duces the characteristics of the ghost lattice. In Sec. IV
we will discuss the obtained results in connection with
the recent experimental results.

II. FREE ENERGY AND EMBRYONIC FLUCTUATION

The order parameter associated with a displacive phase
transition is the amplitude of the phonon mode which
freezes in the ordered phase. That is, the displacement in
the low-temperature (ordered) phase at the jth site is
given by

u(r )=pe(qo)exp(iq r )+c.c. ,

where qo and e(qo) denote the wave vector and the polar-
ization vector of the freezing (soft) mode, respectively.
For simplicity, let us assume that qp is at the zone bound-
ary along the direction of one of the principal axes a of
the crystal;

qo= —,
'a* ( Ia*~ =2rrla)

and e(qo) is perpendicular to a* (transverse mode). That
is, the ordered structure is of the antiferro type.

Since we are considering that the phase transition is of
first order, the free-energy density expanded with respect
to g(r) should be given by

a
2 Bx

'2

+f((j), (3)

fr(() =—g' + —g + —g', a = ao( T —To )

FICy. 2. Schematic illustration of a potential function f»
describing the first-order phase transition. The abscissa
represents the order parameter g. Note that the states corre-
sponding to g=+g (at which the potential have local minima)
are energetically degenerate, which is essential to the low-
temperature (T (T, ) structure with two variants of ordered
phase.

K&)0, ap)0 6 (0 c )0. (4)

The first term in Eq. (3) takes care of the energy due to
spatial modulation of the order parameter. Equation (4)
is the well-known functional form to describe the first-
order phase transition which satisfies the symmetry prop-
erty f&( g)=f&(g)." This twofold —symmetry is essen-
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K2 Be )]f, (e»)=
Bx

+f,(e„), (5)

f,(e„)=—e„, a~) 0, y) 0

in which the energy increase due to the spatial variation
of e i i is given by the first term in Eq. (5).

We assume that there exists strong coupling between
the order parameter g and the longitudinal strain com-
ponent e

& &. Taking into account the translational invari-
ance of each energy term, the lowest-order coupling ener-
gy is given by

f, (k, eii ) =Xe (7)

where A. is a coupling coeKcient.
Thus, combining all energy terms, the total energy

functional is expressed by

F[g,e„]=f dr(f(+f, +f, ),
2 2

Ki ag Icy ae
dr +

2 Bx 2 Bx

+f(k, e„

f(k, e ii )=f((k)+f, (e» )+f,(k, e (9)

where the potential function f(g, e i i ) represents a homo-
geneous part of the free energy.

The feature of the transition of the system is most easi-
ly understood by drawing the potential surface within
two-dimensional (g —eii ) space at various temperatures.
We have chosen the coefficients- in Eq. (9) appropriately
such that b = —140, c =4900, g=1, and A. = —1 and
have plotted the potential surface in Fig. 3(a).

For later convenience, let us divide the temperature re-
gion into the following subregions depending on the
characteristic of the potential function.

(I) T, ( T; potential has single minimum at
g=(g, e„)=0, T, =To+(P l4aoc); (II) T, ( T (T„ tri-
ple minima at /=0, and at g'=+(g, e» )=+('; the latter
two are energetically degenerate [f(0) (f(+g) ];
T, = To+ (3P I16aoc); (III) TD & T & T, ; triple minima at
the same positions as those in (II), [f(0))f(+g)]; (IV)
T & To, double. minima at g =+('.

As is seen in Fig. 3(a), at dimensionless temperature
r=(T —T, )l(T, —To) =0.3217 ( ri =0.3333), a rela-
tively well-defined minimum is at (g, eii)=(0, 0). As r is
decreased there appears a minimum at (g, e» ) = (g, e i i ) in
addition to the minimum at the origin. The former is
metastable when z&&, =0, but becomes the absolute

tial to the low-temperature structure with two variants of
ordered phase.

The structural transformation in solids is usually ac-
companied by a volume and/or shape change. In order
to include this effect, strain energy contribution to the
free energy should be taken into account. The strain
free-energy density f, associated with the longitudinal
strain component e&] is given by

2

minimum for ~(~, . The uniform ordered phase which is
characterized by spatially uniform g and e i i with

P+(P —4ac)'
~„i

2A,
(10)

and

is stabilized below the transition temperature.
We are particularly interested in the temperature re-

gion of v, &r(wi [region (II)], because this region just
corresponds to the precursor state. In this temperature
regime, the stable state is, of course, given by
(g, e» ) = (0,0). However, there may be a finite possibility
that the system locaOy surmounts the potential barrier
and is locked into the state (g, eii) simply by thermal
Auctuation. This locally ordered state should fluctuate
back to the stable state (0,0) within finite lifetime. We
may expect the lifetime would be substantially longer
than the period of lattice vibration. That is, the local or-
dered state (embryonic fiuctuation) is quasistatic in the
scale of phonon frequency.

Let us consider that an embryo is static and is sitting at
a particular position x =xo, and we investigate on the
spatial variation of the order parameter g(x) and the
strain eii (x) under the particular boundary condition ap-
propriate for the existence of the embryo:

at x =xo, $~0 as xi+ca,
e&& =e]& at x =xo, e&] ~0 as x —++ oo .

(12)

We solve the following coupled Euler equations:

a( af
+ay

af+ =0
x

(13)

where Uo is an integral constant.
When ~&=0, Eq. (14) can be analytically solved for all

temperature regions with appropriate boundary condi-
tions. To get a feeling for the discussion below, it is
worthwhile looking at a situation with ~2=0. In region
(II), the second boundary condition in Eq. (12) requires
UO=0. Equation (14) then becomes

1/2
—,'d (g')

g' 1 —P g'+ ' g'
26K 3'

' 1/2 (15)

This can be easily solved to give

under the above boundary condition. From Eq. (13), the
first integral is readily obtained as

+ f ( g, e „)= Uo, (14—)
2 dx 2 dx
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0
0

~ibex
10

kink (soliton) boundary solution [Eq. (A2)] which
separates a low-temperature embryo from the matrix
phase.

It should be noted that the solution obtained in Eq.
(16) has a somewhat unsatisfactory aspect in that
Bg/Ox&0 at x =xo. Since we are assuming that
g(x) =g( —x), the above situation implies that the spatial
derivative at x =xo, dg/dx~„„ is discontinuous, which

0

is not physically plausible. This point will be discussed in
Sec. IV.

For the completeness of the discussion on the transfor-
mation, solutions to Eq. (14) with le&=0 for other temper-
ature regions that are not concerned directly with the fol-
lowing discussion are shown in the Appendix A.

In case when Kz is included, it is impossible to solve Eq.
(14) analytically. We have obtained numerically the solu-

tions g(x) and eit(x) following the iteration method
developed by Ishibashi et al. ' with a little improvement
for effective convergence. Equations (16) and (18) were
taken as initial configurations, and Eq. (14) was used to
check whether or not the solutions were convergent. The
calculated values of g(x) and e&&(x) for ic&=100 and
Kp

—500 are plotted in Fig. 3(b).
The most interesting point of the numerical solutions is

that as r is decreased, the functional forms of g(x) and
eii(x) bear difterent characteristics; g(x) becomes more
kink (soliton) like, having interface region between the
embryo and the mother matrix. (Previously, Yamada
et al. call the entity including the interface region a
dressed embryo. ) On the other hand, e i i (x) simply shows
gradual decay around x =xo.

It is instructive to draw the trajectory within 2D
g' —e») space by eliminating the spatial coordinate x
from the solutions g(x) and eii(x). This gives the lowest
energy path from (g, eit) to (0,0) to be followed by the
representative point of the system as x is varied. The tra-
jectories at various temperatures are included in Fig. 3(c).
Notice that the representative points in the figure are
plotted at an equal interval hx of the coordinate x.
Therefore, the density of the points along the trajectory
directly rejects the length of persistence of the state in
the real space. The high-density region around (g, e

& i )

corresponds to the embryonic fluctuation or the dressed
embryo. In region (II), the total system should be ex-
pressed by random distribution of these embryonic Auc-
tuations throughout the host lattice.

0-5

III. DIFFRACTION PATTERN
I

It is straightforward to obtain the diAraction pattern
using the calculated values of g(x) and e»(x) in the
preceding section. Using Eq. (1), displacement of the nth
atom associated with g(x ) is given by

u, (n)=e(qo)g(na)e ' +c.c.

In addition, we have the longitudinal component due to
the strain field e»(x),

0
-5 5

x-Q

u((n)=e, e„(na), e, ~~a .

The diffraction spectrum S(K) is obtained by

(c) S (K)=F(K)F*(K), (21)

F(K)=g e (22)

FIG-. 4. Exact solutions to Eq. (14) for various temperatures
when ~2=0. xo is taken to be at origin. (a) An embryonic fluc-
tuation [Eq. (16)] just above r, (&=0.0003). (b) Antikink solu-
tion [Eq. (A2)] at the transition temperature. (c) Antikink solu-
tion [Eq. (A8)] below r, (r= —0.3521) representing the anti-
phase boundary separating two martensite variants.

u„=u, (n)+u&(n) .

In the calculation of the spectrum we neglect, for simpli-
city, the atomic scattering factor as well as the Debye-
Waller factor. The calculated profiles of S(hk0) (k =1)
are given in Fig. 5.

There are several important characteristics in the cal-
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4000
x=o.3217

culated spectra.
(1) Throughout temperature range 0 ~ r (0.3217, the

satellite peaks shift toward the origin of the reciprocal
lattice, increasing the amount of shift as ~K~ is increased,
while the fundamental Bragg peaks stay at the original
regular positions. (See Fig. 6.)

(2) As the temperature is lowered below ~50.01, the
profile of the higher-order satellite peaks starts to show
complicated structure. Particularly it tends to split into
two peaks where the second peak seems to restore the
commensurate positions.

(3) The Bragg peaks show appreciable tailing which is
conventionally called Huang scattering' due to defects of
various kinds.

The characteristic (1), of course, gives that of the ghost

lattice or anomalous incommensurability. It is notice-
able, however, that the satellite peak positions are ap-
proximately half way between the commensurate posi-
tions of the high-temperature and the low-temperature
lattices which are on the two straight lines given in Fig.
6.

The physical origin of the ghost lattice is now clear;
the strain field e»(x) around x =xo is essentially the
same as those of a defect such as impurity, vacancy, etc.
The resultant diffraction effect is Huang scattering
around the Bragg peak which gives tailing but not shift of
the peak positions. The embryonic fiuctuation g(x), on
the other hand, gives rise to superlattice reAections. If
there were no strain, the peak positions should be at the
commensurate positions associated with the Bragg peaks.
However, in the spatial region where g(x)%0, the strain
field has also appreciable finite values, which means that
the embryonic Auctuations are preferentially embedded
on the lattice with larger lattice constant; a(1+—,'e» ) on
average. Thus the satellite peak positions are at
—,
' h ( 1 —

—,
' e» )a ' rather that at —,

' ha *.
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FIG. 5. Calculated diA'raction patterns for h ~ 4, k =1 at the
same temperatures as those in Fig. 3. Notice the appreciable
tailing (Huang scattering) of the fundamental Bragg peaks. The
profiles of the satellites are shown in the insets with enlarged
scales. The lines indicate the commensurate positions. It is ap-
parent that superlattice rejections are shifted, with their
amount of shift increasing as ~K~ is increased, toward the origin
of the reciprocal lattice while the Bragg peaks center on the
original reciprocal lattice points. Note that below ~+0.01 sa-
tellites split into two peaks where the second peak seems to re-
store ihe commensurate positions.

FIG. 6. Calculated ghost behavior of the superlattice
rejections at ~) r, . Large solid circles represent the fundamen-
tal Bragg rejections and small solid circles represent the super-
lattice rejections. The fundamental reAections always stay at
the original regular positions (on the horizontal line), while su-
perlattice rejections tend to shift to the commensurate positions
of the low-temperature lattice (shown by the open circles) as the
temperature is lowered. Their actual positions are approximate-
ly half way between the commensurate positions of the high-
and the low-temperature lattices.
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IV. SUMMARY AND DISCUSSION

We have materialized, so to speak, the ghost by identi-
fying that the origin of the anomalous incommensurabili-
ty is due to embryonic fluctuation which is coupled
strongly to the strain. The discussion is based on the gen-
eral expression of free energy functional characterizing
first-order phase transition. Therefore the results are not
restricted by a microscopic lattice dynamical model as
previously assumed in the case of P-based alloys. In prin-
ciple, any crystal system undergoing first-order phase
transition and satisfying the above condition (existence of
strong coupling of order parameter to strain) would show
ghost lattice behavior. More precise experimental inves-
tigations on various substances are certainly necessary.

As is described in Sec. III, one of the important
characteristics of the calculated pattern is that the profile
of higher-order satellites starts to split into two peaks as
the temperature is lowered below ~~0.01. The secon-
dary peaks are approximately on the commensurate posi-
tions. In the previous investigations on bcc metals
NiTi(Fe) and AuCd, the satellites did show anomalous
broadening but not splitting. Recently, however, Kiat
et al. ' observed definite splitting of satellites while fun-
damental Bragg peaks remain single peaks above the fer-
roelastic transition of Pb2(PO4)3 crystal. This might be
understood in terms of the characteristic feature de-
scribed above.

Let us now discuss some problems still remaining in
our treatment; the present treatment is based on the as-
sumption that the system will be locally locked in at
g=(g, e)) ) by thermal activation. This point should be
subjected to careful reinvestigation.

As is discussed in Appendix B, the solution of Eq. (14)
(with F2=0) under the boundary condition of Eq. (12)
seems to require the existence of a spatial singularity cor-
responding to the impulse at x =x o in the particle
motion analogy. Physically, such spatial singularity may
imply the presence of an impurity, defect, etc. at x =xo.
These considerations seem to be against our basic as-
sumption that embryonic fluctuation is thermally excited
in a homogeneous system without extrinsic heterogeneity
such as impurity.

There is, however, another important possibility. The
eft'ect of impulse on g(x) is manifested by the discontinui-
ty of dg/dx at x =xo. The probable modification of the
theoretical scheme to get rid of this singularity would be
obtained by including higher-order derivatives such as
(8 g/Bx ) in the free-energy density. That is, it would
be necessary for describing correctly the immediate
neighborhood of the embryo center to take shorter wave-
length fluctuations into account. We conjecture that
when this singularity is removed by including higher-
order derivative terms, the embryonic fluctuations would
be excited without any extrinsic heterogenity in the sys-
tem.

Next we discuss the relation between our results for the
1D system and experimentally observed shift pattern of
satellite reAections in 2D reciprocal space. Notice the re-
sults presented in Sec. III were calculated for the case in
which k&0. If we take k) 0 from the analogy to ~&=0
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APPENDIX A: EXACT SOI.UTIONS
OF EQ. (14) FOR OTHER TEMPERATURE REGIONS

WHEN pc~=0

We give here exact solutions to Eq. (14) when F2=0 for
other temperature regions.

At T„16 a=c3P holds. f(g, e)) ) then becomes

f(g, e„)=(&a/2g —&c/6g ) (Al)

which is now inserted to Eq. (14). Using the boundary
condition Uo =0, Eq. (14) is readily integrated to give

+2+a/x) {x—xo )

e
1 +2+a/x)(x —xo)1+ e

If we take plus sign in front of the brackets, then g(x)
represents a phase boundary which separates from the
matrix an embryo with the amplitude g at the embryo
center, and if we take minus sign, g(x) is a boundary
separating an embryo of the other variant whose ampli-
tude at the embryo center is equal to —g. In the former
if we take plus(minus) sign in the brackets, then the
boundary is a (anti)kink [shown in Fig. 4(b) is the latter]
while in the latter the results would be interchanged.

Below T, [regions (III) and (IV)] the situation will

change; we have to replace physically plausible boundary
conditions as

or

as x~ —~, g~g as x~~
(A3)

asx~ —~, g~ —g asx —+~ .

case [Eq. (11)], then the longitudinal strain will be a con-
traction toward the embryo center, which results in a
similar dift'raction profile to those shown in Fig. 5 except
that the direction of the shift is reversed. That is, all of
the superlattice reAections shift away from the origin of
the reciprocal lattice. If we extend the model to two-
dimensional system in which k is allowed to be orienta-
tion dependent in such a way that k is negative in one
direction and is positive in the other which is perpendicu-
lar to the former. This spatial dependence of the sign of
k may be expected to exist due to the intrinsic anisotropy
of the parent structure. We can thus reproduce overall
swirl shift pattern of superlattice reAections observed in
NiTi(Fe) and AuCd.
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The corresponding Uo to (A3) is

U = —U= —f(g', e (g))

Since 0
(a)

0
(b)

c —
z

— 3Pf(g, e„)—U= —(:-—:-):-+2:-—
2c

(A4)

where ==(, :-=(,Eq. (14) becomes

1

2
&c /6 =-+2=- —'

2c

1/2

O - Et g

\
1

(c)

rr 0 g
impulse

\
\
1

=+1/2/Ktdx (A5)

1/2

Using the elliptic integral of the first kind, Eq. (A5) is in-

tegrated to give

FIG. 7. (a) g(x} in the temperature region (II) as obtained by
Falk (Ref. 15). (b) Schematic picture of the embryonic Auctua-
tion at x =0. Notice dg/dx~, =o has a singularity. (c) The par-
ticle motion analogy to the case of (a). A particle with mass K&

starts off at g=g with total energy e within the potential f. —
(d) The particle motion analogy to the case of (b). A particle
starts off at /=0 with total energy e=0. An impulse is applied
to bounce the particle back to /=0.

F(g, k =1)=+
2C K1

(x —xo),
1/2

/=sin

33~
2c

:"+2:-—3

2c

1/2

(A6) )=am + c
W

2C K1
(x —xo), k =1

1/2
c1—

2-C Ki
(x —x„) . .

(A7)

=tan 'sinh +:-

Taking the inverse function,
Upon solving for = and then taking a root, g(x) can be
obtained as

g(x)=+
3—

3P
2 c

'P+ 2 — 'P
2 c 2 c

sinh:-
1/2

p c
K1

p c
K1

(x —xo)

1/2

(x xo)
1/2 (AS)

where g(x) is a (anti)kink if the plus (minus) sign is
chosen. In Eq. (AS) only the solution representing an an-
tikink is shown in Fig. 4(c).

This is due to the different choice of the boundary con-
ditions. In Falk's treatment, he imposed the following
boundary conditions:

APPENDIX B: BOUNDARY CONDITIONS
OF THE EULER EQUATION [EQ. (13)]

t)g/Bx =0 at x ~+oo,

[f(g)=e] at x~+oo
(B1)

The problem to obtain the order parameter g(x )

around first-order phase transition was already discussed
by Falk" in a simpler case (no coupling between the or-
der parameter and some other quantities). He gave the
solution in region (II) characterized by g-g as x ~+ oo

and g-0 at x =0. That is, a major part of the system
takes the structure of the low-temperature phase, while
only a small region around x =0 takes the structure close
to the high-temperature phase [see Fig. 7(a)]. This result
is qualitatively different from our solution given in Figs.
3(b) and 7(b).

with e taking a finite positive value. This is different from
the present boundary conditions given by Eq. (12). The
physical meaning of this difference becomes clearer by
noticing that when the coordinate x is replaced by time t,
the Euler equation (13) (with ir2=0) is equivalent to the
equation of motion of a particle with mass K1 which is
moving in t.he potential ( f ). —

It is then easy to see that the solution given by Falk is
equivalent to the motion of a particle which starts to
move from g=g with total energy e [see Fig. 7(c)]. The
present solution corresponds to the following case: A
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particle starts from /=0 with total energy e=O. As the
particle reaches at g'=g, an impulse is applied to bounce
back the particle to the opposite direction with exactly
the same energy [Fig. 7(d)]. The former solution is physi-

cally improper to describe the precursor state because the
total energy is linearly increasing with the system size,
while the latter seems to imply that the system should
have spatial singularities corresponding to the impulse.
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