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A Landau model based on the competition between quadratic and quartic exchange among mo-
ments in the four-sublattice structure of FeGe2 has been used to derive an expression for the free en-
ergy, and hence to determine the boundaries of the homogeneous antiferromagrietic (AF) phases in
the phase diagram. Two types of AF spiral structure of dÃerent symmetry are found. The trans-
verse AF spiral phase exists in comparatively small magnetic fields, H &H~ =K,(a,q, ) (H, is the
exchange field, q, the spiral wave vector, and a, the lattice constant), while the longitudinal AF
spiral phase exists in stronger magnetic fields up to H, =H, a, q, . The phase transition between
these two AF spiral structures in the field-temperature phase diagram is first order. The tempera-
ture dependence of the wave vector of the spiral structure in the absence of magnetic field is also
determined, and the results of magnetostriction experiments are explained.

I. INTRODUCTION

The magnetic properties of FeGez have long beeri the
subject of experimental study and theoretical speculation.
Experimental studies of the temperature dependence of
the resistivity, thermal expansivity, specific-. heat and
magnetic susceptibility, ' ultrasonic attenuation, "'

magnetostriction, and neutron scattering show clearly
two anomalies at temperatures Tk =265 K and T, =287
K. This behavior shows that there must be at least three
phases with different magnetic order, the high-
temperature phase (HTP) for T )T, being paramagnetic.
The main problem for a theory of the magnetic properties
of FeGez is to understand the nature of the intermediate-
temperature phase (ITP), for T, ) T ) Tk, and the low-
temperature phase (LTP), for T (Tk.

The magnetic structure of the LTP was previously
studied ' by means of neutron diffraction in single
crystals and powder samples. It was found to have a sub-
lattiee antiferromagnetie structure of moments on the Fe
atoms, the crystal structure being C16. The moments can
be projected into the basal plane, corresponding to
"easy-plane" symmetry. The angle between the Fe mo-
ments in neighboring crystallographic planes was found
by Forsyth et al. to be 72', whereas the powder
diffraction work' *"' found the moments to be collinear.

Solyom and Kren' used Landau theory for second-
order phase transitions to determine the possible types of
magnetic ordering in Feoez. They postulated that the
point group of the ITP should be a subgroup of the HTP
and thus obtained collinear magnetic order. As tempera-

ture decreases, the magnetic ordering becomes noncol-
linear in the LTP if the phase transition at T& is second
order. This idea was proposed also by Kren and Szabo as
in Ref. 8 and Forsyth et aI. to explain their experimen-
tal results. According to Solyom and Kren, ' the LTP
may also have a collinear magnetic structure, but with a
different symmetry from the ITP. In this case the phase
transition at T& would be first order.

Thus, over the past 20 years a picture has developed of
a sequence of phases with increasing temperatures from
noncollinear, through collinear, to paramagnetic, which
explains the experimental results satisfactorily. However,
the experiments showing disappearance of the magnetic
anisotropy in the basal plane are in convict with this idea.
We proposed, ' therefore, that in the ITP the moments
have a spiral structure, whose symmetry is a subgroup of
the space group (but not the point group) of the HTP.
Probably the formation of the incommensurate ITP is
due to the Dzyaloshinski exchange mechanism, ' the
wave vector q of the spiral being determined by minimiz-
ing the exchange energy J&(q)(S) . The dependence of
the magnitude q of the wave vector on temperature is as-
sociated with the biquadratic exchange term, J2(q) {S) .
In this case, q is found from the minimum of the effective
exchange integral, as illustrated in Fig. 1, with
Js (q) =J, (q) +J2 (q) ( S), {S ) being the average magni-
tude of the spin of the magnetic atom. For T ( Tk (case
4 in Fig. l), J,s.-q at small q, while for T = Tk (case 3),
J.a-q-4

This model for the phase transition at T, explains the
disappearance of the anisotropy in the basal plane in the
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FIG. 1. Dependence of the effective exchange integral on the
magnitude of the wave vector for various temperature ranges:
1 T Tc~2 Tk &T &TC~3 T=T~, 4 T &Tk.

FIG. 2. Ordering of magnetic moments on the Fe atoms in
the low temperature phase. The Ge atoms are not shown.

ITP. It contradicts, however, the earlier conclusions '

that the LTP has noncollinear structure, since in that
case there would be three phase transitions instead of
two.

Corliss et al. found by neutron diffraction a spiral
structure in the ITP, with wave vector q along [100] or
[010] and the inverse directions. The maximum value of
q, q, a0=0.05, occurs at the Neel temperature T, (re-
ferred to in Ref. 7 as T~). As the temperature ap-
proaches the transition to the LTP at Tk (referred to in
Ref. 7 as T, ), q approaches zero. Careful study of the
LTP indicates collinear ordering and the interpretation of
the data ' is thus incorrect. The magnetic order of the
Fe moments in the LTP according to Corliss et al. is
shown in Fig. 2. In the present paper we shall study the
uniform state as a function of temperature and magnetic

I

field, and deal with some questions concerning the mag-
netostriction in the LTP, within the framework of the
Landau theory of phase transitions.

II. FREE ENERGY AND FLUCTUATION SPECTRUM

Before writing the free energy of FeGez, we take note
of two important conditions. First, Tk is assumed to be
close to T„ i.e., T, —Tk &&T, . This allows us to write
the free-energy density in an expansion in ascending
powers of the moments of the magnetic sublattices, M.
(j= 1,2,3,4), since the M are sufficiently small. Secondly,
the characteristic length of the magnitude order must be
much larger than the lattice parameter ao, so that we can
use the continuous medium approximation. In this case
we can write

E= JdrF(r),
F=—,'a;kM; Mk+ ,'bki (M; Mk—)(Mi M )+—,'/I;k V M; VpMk+ ,'Bk V VpM; —V~VsMk

+ —,'C(~ki~(V~M( VpMk )(Mi M~ )+ ,'Dki~(V~M; Mi—,)(Vpfi M~ )

+ —,
' K

~( g M;, +—,
' K~ g ( M,„+M~~ ) —H g M; .

(la)

Here the elements of the tensor a,k are of the order of magnitude of the ratio of the exchange field H, to the moment
Mo per unit volume of the sublattice at zero temperature,

H,
a ——:6-10

Mo

while

(lb)

b -6/Mo A -5q ao, B-5a, C-D -6a /M

The anisotropy constants are within the limits

(lc)

(ld)

and H is the external magnetic field.
Equation (la) may be simp1ified by using the fact that the exchange interaction energy between sublattice moments is

much greater than the energy associated with nonuniformity of the exchange,
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For fields much smaller than the exchange field, we may use an efFective two-sublattice model instead of a four-
sublattice model. Finally, in our analysis of the ranges of stability of the homogeneous phases we shall neglect anisotro-
py in the basal plane.

The equilibrium magnitudes of the magnetic moments of the four sublattices are established by the system of equa-
tions

dF/dM; =0 .

For homogeneous states within this approximation, we have

MT(a+bMT+bMJ )=0,
H =M~(2yo '+bMT+bM~),

M lx ™2x ™H&
M ly ™2y ™T

Here we suppose that the magnetic field lies in the basal plane along x, and we write a =a» —a12.

2yo a»+a12 »1, b =b11»+b, 122+2b1212 —4b1112 & 0,—1

b =b»»+b1122 —2b1212 &0, b =b1111+b»22+2b1212+4b»12 &0 .

(2a)

(2b)

Assuming as usual that a(T) is a linear function of
temperature, a ( T)=a( T —To ), we obtain the solution to
the system of Eqs. (2),

(3a)

The nature of the vibrations described by Eqs. (4) and (5)
is illustrated in Figs. 3(a) and 3(b). According to conven-
tion we name the vibration of the usual first type "longi-
tudinal" (M, ~~H) and the second "transverse" (M, LH).

It may be shown that U» » U12, U22, and that
V» » V, 2, V». Therefore, the lifetime ~, of the longitu-
dinal fluctuations and ~,„of the transverse may be deter-
mined in this approximation by the relations

MH ——,yTH, y T
—yo +—,bMT,

(3b)
where0, x(0

)0 U= U~~(k)=a +bM~+3bMT

+k[ —3 +CM~+(C+D)MT]k

+21k k B.k k

V=a +(2bo+ b )M~+bMT

+k[ —A +(C+D )M~+ CMT]kA,M; = dF/dM;—
and make the substitution, +—,'kk8 kk,

M; =Mo; + [M„cos(k.r —r /r) ] .

We obtain the following system of equations for the
characteristic lifetime ~ of the Auctuations

%'e calculate the ranges of stability of the homogene-
ous phases by determining the spectrum of low frequency
fluctuations. For this we use the Landau-Khalatnikov
equations

(7b)

(
—r 'A, + Uii )M, + U, ~L, =0,

U, ~M,„+(—r 'A, + U~~ )L, =0,
(4a)

(4b)

(a)

la 20

( —r 'A, + Vii )M, + V,qL, =0,
V, ~M, +( r'A+Vq~)L, —=0 . ,

Here

(5a)

(5b)

lb
20

M, =M, 1+M,2, L, =M, 1
—M, 2 .

FIG. 3. Illustration showing the vibrations for longitudinal
(a) and transverse (b) Auctuations.
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and

~1111+1122 + 1212 1112 21211

1111 1122 1112 1212 1211

U(k) =2bMz + [—A1+ CiMH

+(C1+Di)Mz]k + 21B1k &0 (13a)

V(k) =2boMH+ [—A~+(C~+D1 )MH

~ 1111+ 1122 +D 1212 +D 1221 ~ 1112 2~ 1121

D =D„„+D,2,2+2D„,2
—~„22—D,22,

—2D„2, , where

+C1Mz]k -+ ,' B,k—&0, (13b)

A = A12 A]1 + =811 812& bO=b1111 b1122 )0
a+bMH

M T

a + 1 by~22
&0

and

III. RANGES OF STABILITY
OF THE HOMOGENEOUS PHASES

We shall evaluate first the phase boundary of the
paramagnetic state. For this purpose we put MT=0 in
both expressions (7a) and (7b). The magnitude of k is
small, with Ck «b, and bo & 0, so that for the paramag-
netic phase, U & V. Consequently stable equilibrium of
the paramagnetic phase is determined by the inequality

H=MH[2y ' ab/—b+(b+b /b)MH2]=2y 'M

Analysis of Eqs. (13) shows that, for relatively weak
magnetic fields (H & H ) near the boundary of the anti-
ferromagnetic region, the transverse fiuctuations grow
with the field. For stronger fields, instability of the
boundary is manifested by the growth of longitudinal
fluctuations. The coordinates of the critical point
(H, T ) are solutions of the system of equations

U =a+bMH+( —A~+C1MH)k1+( —A(~+ClMH)k,

+ ,'B, (k, +k—)+—,'B3k,

+3B2k, k +3B4(k„+k )k, &0 .

U(k, ) =0, V(k2) =0, U'(k, ) =0, V'(k2) =0

under the condition U"(k1), V"(k2)&0. From this we
have,

In accordance with the experimental data, we write
Ag ) A Az )0 83 )81 &0, and 382 )8, ~ By deter-
mining the minimum of U(k), we obtain the stability cri-
terion for the paramagnetic phase

a—:a(T„—To)= —
—,'bgH -5(aoq, )

H~ =go 'q, )1/B, /bo-H, (aoq, )

(14a)

(14b)

aa( T —To ) & ,' b gH +——(A 1 ,' C1gH )——
1

The final expressions, which determine the stability of the
phase boundaries, then have the appearance, if H & H,

X 8( A 1 ,' C1gH )——(10)
bxoHa—:a(T —To) &— [A1 —

—,'(C1 +Di)gH
C~

with MH = —,'NOH from (3) since Mr =0.
The relation between the transition temperature T,

and the characteristic temperature To may be obtained
from Eq. (10) with H=O

a, :—a( T, —To ) = A~ /2B, =——,'B,q, -5(aoq, )

The phase boundary near T, is of the form

T, —T =a2H —a4H, with a2, a4 & 0 .

(1 la)

(1 lb)

The other characteristic temperature, the tricritical
point (H„T, ), may be calculated by the condition that
the second-order derivative d T/dH develops a discon-
tinuity, giving

yoH(boB—, )'~ ] (15)

and, if H &H,

bg2~2a—:a(T —To) &— ( A1 ,' C1NOH )——
4b81

Xo(Ai —
—,'C1gH ) . (16)

From Eq.' (16) it may be seen that the antiferromagnetic
phase boundaries coincide with the stability boundaries
of the paramagnetic phase into the tricritical point t, as
shown in Fig. 4. The relation between Tk and To may be
obtained from Eq. (15) by setting H=O,

a, —=a(T, —To) = ,'bgH, ——5(aoq—, )—

H, =2yo '(A~/C~)' -H, aoq, .

(12a)

(12b)

b b
ak =a( Tk —To ) = — A z

= — B1q, ——5(aoq, )
C~ C~

(17)

The region of existence of the low-temperature homo-
geneous antiferromagnetic phase is determined by the
system of inequalities

The boundaries of the homogeneous magnetic phases and
the critical points are shown schematically in the field-
temperature phase diagram of Fig. 4.
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Tp Tc T

FIG. 4. Schematic phase diagram showing the homogeneous
states and phase boundaries in FeGe2. The line rt corresponds
to a second-order phase transition from the homogeneous anti-
ferromagnetic phase to the paramagnetic phase. The point t is a
tricritical point. The line tc corresponds to the transition
boundary from the paramagnetic phase to the longitudinal
spiral structure, while the line tp is the boundary for transition
from the homogeneous antiferromagnetic phase. I.ine kp is the
boundary between the homogeneous antiferromagnetic phase
and the transverse spiral structure. Line pc (not calculated)
must correspond to a first-order transition from one type of
spiral structure to another.

(20b)=2qM (
—A +8 q +C M )=0

(22)

I 3T, T„2T,—'—

1 j.

that there exist three phases: (a) paramagnetic phase for
M=O; (b) antiferromagnetic phase for q=O, M
= —a/b )0; and (c) incommensurate phase for qAO and
MAO.

The stable boundary of the paramagnetic phase is
determined by the inequality

BF
2

=2(a —A3q + ,'B,q —))0,
which is equivalent to the expression

a—:a( T —To ) )a, = A 3 /28 )
= ,'8, q,—(21)

corresponding to T~ T, and H=O in accordance with
Eq. (10). The inequality

"d F/dq =2M ( —A +C M ))0
determines the stable boundary of the antiferrornagnetic
phase. This is equivalent to the inequality

ba~a k C
corresponding to T( Tk and H=O.

%e shall now examine in more detail the properties of
the incommensurate phase. The solution of Eq. (20) gives
us the magnitude of both the spiral wave vector q and the

magnetization M of the sublattice as functions of temper-
ature

XV. MAGNETIC STRUCTURE QF THE
INTERMEDIATE PHASE IN ZERO FIELD

T Tk+12
c 0

1/2
3T0 Tk 2T~

T~ T0

(23)

In the previous section we found that for a small rnag-
netic field the antiferrornagnetic phase is unstable to for-
mation of a transverse spiral structure. Consequently, for
H=O and Tk & T & T„we shall look for solutions of
equations of the form

M| 2=+M [e cos(q.r+e )sin(q. r)] . (18)

+ 283q, M +382q„q M +384M q, (q„+q )

(19)

which is obtained by substituting Eq. (18) into Eq. (1).
The vector q is directed either along x or y according

to experiment. This means that the following inequali-
ties obtain: A~) Ai~, 8, &83, 382. Suppose q is along
x, then it follows from the equations

BI' =2M(a+bM Ajq + ,'B,q —+2Cjq M )=—0,

(20a)

The spiral wave vector q and magnetization amplitude M
are chosen to minimize the free energy,

F =aM + 'bM +( —A +—C„M )M (q +q )

+( —A, +C M )M q + B,(q„+q —)M—2 1 4

A~
M (T)= (1—

q /q, ) (24)
C c

with q, —A~/83 from Eq. (lc). It may be seen that q ( T)
increases monotonically with temperature from q =0
(T=Tk) up to q =q, (T=T, ). The rate of increase
Bq ( T) /d T slowly decreases with temperature increasing,

in agreement with the experimental data of Corliss et aI.
shown in Fig. 5 of Ref. 7 (note that in this paper the

q ~qc
2 2

FIG. 5. Temperature dependence of the wave vector in the
transverse spiral phase (schematic).
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where J is the exchange constant, p„ is the uniaxial an-
isotropy constant, p is the anisotropy constant in the
basal plane (p„)0, p) 0), p(r) is the random anisotropy
within the region r, and F = JF(r)dr

Let the field H in the basal plane make an angle P with
x and denote the angle between the magnetic moments by
m —cu, and the angle between the resultant moment and x
by P. Equation (25) then becomes

F~ =M —J +—P cos2$ cos2ct] ——cos4$ cos4co2 1-
2 8

Tc T —2h since cos(P —f) (26)

FIG. 6. Temperature dependence of the sublattice moment
(schematic).

lower transition is denoted T, and the upper Tz). In
Figs. 5 and 6 we show schematically (q/q, ) and M as
functions of temperature.

Analysis of the solutions (23) and (24) for stability show
that the free energy I' is a minimum in the range
Tk & T & T, . Thermodynamic analysis shows that the
entropy is continuous at Tz and at T„but the heat capa-
city is discontinuous at each temperature. This is normal
for a second-order phase transition. If we take into ac-
count planar magnetic anisotropy, we obtain an equation
of state for an incommensurate phase analogous to that
produced by an external magnetic field. Therefore, mag-
netic anisotropy in the basal plane can change the char-
acter of the transition at Tk to weak first order. At the
same time, this anisotropy does not greatly inhuence T„
since the anisotropy energy near T, approaches zero as
M . Pluzhnikov et aI. have indeed found the lower-
temperature transition to be hysteretic under thermal and
stress cycling.

V. MAGNETIZATION AND MAGNETOSTRICTION:
EFFECT OF CRYSTAL INHOMOGENEITY

4M
—

—,'p(r)(M]„+M2 ) —(M, +M2) H, (25)

The present section will deal specifically with interpre-
tation of the experimental data for the magnetostriction
as a function of temperature and magnetic field. First we
shall discuss the process of magnetization of the low-
temperature antiferromagnetic phase, where the magne-
tostriction experiments were performed. Let us suppose
that the crystal is slightly imperfect and that it consists of
microscopically small domains, whose size is much larger
than the width of the domain boundary. In each domain
the tetragonal symmetry is slightly distorted, and one of
the two formerly equivalent directions in the basal plane
will be preferred. We shall describe this situation in
terms of small random uniaxial anisotropy in the basal
plane, so that the magnetic part of the free-energy density
in the two-sublattice model may be written

JM]'Mp+ /PE(M]z+M2z)

We can see that in the absence of magnetic field the ran-
dom anisotropy selects a preferred direction for the anti-
ferromagnetic wave vector, L=M] —Mz. Hence, if p) 0,
then p =n. /2 and L~~x. Otherwise, if p & 0, then / =0 and

Supposing that g & m/4, and keeping in mind that in a
magnetic field the disappearance of domains of unfavor-
able orientation takes place through motion of the
domain boundary, we see that the domain develops a
magnetic moment if

p — cos2$ & 02J (28)

and remains unmagnetized otherwise. We now evaluate
the concentration of phase c (H) of the phase for which
the orientation of the antiferromagnetic vector is L~~y, by
assuming a Gaussian distribution for p(r)

c(H)= h"dP exp( —P /P,')e —P
rr 0

H cos2$/00
—f dx exp( —x )

i/7r

=—][1+4(H cos2$/H 0 ) ] . (29)

Here Ho =M(2Jpo)', e(x) is the step function defined
in Eq. (3), and @(x) is the probability integral. For the
case of small magnetic fields, H «Ho,

1 H
c (H) =—+ —

2 cos2$ .
v'~H,'

In strong fields much greater than the characteristic field

Ho, 1 —c(H)-0. If f=m'/4, then c =
—,'.

From this point of view we consider the magnetostric-
tion experiment. We denote the diagonal elements of
the deformation tensor for the preferred orientation cor-
responding to a given field direction by u„, uyy, and u„
and we obtain for the unfavorable phase the following
distribution of deformations among the axes, uyy u

and u„. Then the deformations ek found by experiment,

where h =H/M.
Minimizing Eq. (26) with respect to co, keeping in mind

that J ))p ))p, we obtain
2

M F]r = —
—,]Pcos4$+ ,'P cos P—co—s ((t) —P) . (27)
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expressed in terms of the random deformations u;k, have
the form

and

ex„=cu„„+(1—c)u —
—,'(u „+u )

=(c —
—,
' )(u„„—u ) =co(2C —1),

e = —(c —
—,')(u„„—uy )= —e„„,

e„=0, (30)

Eo= —,'(u —u ) .

The magnetostriction illustrated schematically in Fig. 7
compares well with the experimental data of Franus-
Muir et al. shown in Fig. 1 of Ref 6.

Finally, we determine the form of the temperature
dependence of the deformation eo and of the characteris-
tic field Ho. The energy of magnetostriction I'~ and elas-
tic energy I'E are written

~ =r."„,M,. Mgu„,
] 2 2 $ 2+E 2 11( xx+uyy +

2 33uzz+ 12uxxuyy
(31)

+c]3u~(uxx +uyy )+2c66u„+2C~(u„, +u, )

Here f' is the magnetostriction constant tensor, and c;k
are the elastic moduli; the Greek indices denote Cartesian
coordinate axes and the Latin indices the magnetic sub-
lattice axes. If the domains are sufficiently large then the
u;k may be determined from the condition o,k
=BE/Bu;k =0. Solving this system of equations, we ob-
tain

0

FIG. 8. Temperature dependence of the deformation E'p and
the characteristic field Hp (schematic).

where I j j =r„„„,I 12
= I „yy. From Eq. (32) we see that

eo varies like M and thus eo decreases almost linearly as
temperature increases. At the same time Ho —M
-(To —T)' . The temperature dependence of eo and Ho
illustrated in Fig. 8 is similar to that found by Franus-
Muir et al. and shown in Fig. 3 of Ref. 6.

VI. DISCUSSION

%'e can very roughly estimate the exchange field H,
from the low-temperature value mo of the magnetic mo-
ment per Fe atom, pyro =1.2p&, and the Noel temper-
ature, T~—:T, =287 K, by employing the formula

haik haik11 12

Cj] C12
(32) H, = -3X10 Am

kg T1v 8 —1

Plo
(33a)

8, =
]Huo, -400 T . (33b)

~xx

0

The use of an effective two-sublattice instead of a four-
sublattice model is justified by this large value for the ex-
change field. The number per unit volume of Fe atoms,
N =2.3X10 m, gives a moment per unit volume of
the sublattice

Mo=X~o=2. 6X10 Am (34)

H

so that 5 =H, /Mo —10, as given in Eq. (lc).
From H, we can estimate the tricritical field H, and

the critical field H, by use of the approximations (12b)
and (14b), respectively, and the value, aoq, =0.05, for the
wave vector of the spiral structure close to these critical
temperatures. The resultant values for the magnetic in-
duction at these critical points are

8, =IJ,OH, -@OH, a oq, -20 T,
~, =a&, -C %0(aoq, )'-».

(35a)

(35b)

FICx. 7. Magnetostriction in the basal plane for field along x
(schematic).

These values suggest that the interesting region of the
phase diagram in the neighborhood of the line kpc in Fig.
4, where these transverse spiral structure changes into
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and, with aoqc =0.05, we find that

so that

I ATk I =(b,T)o= T, —Tk =22 K

T, —
Tp -b, T —10 (ET)o-20 mK . (36)

An estimate can similarly be obtained for the slope,
b T/H =(T, —T)/H, of the paramagnetic phase
boundary from the experimental value of (ET)o and Eq.
(10), which gives

2

(37a)
H,

the longitudinal spiral structure or into the antiferromag-
netic structure, could be explored with quite modest mag-
netic fields. A considerably larger field would be required
to explore the neighborhood of the tricritical point.

Unfortunately the large value of the exchange field H,
makes the field dependence of the Neel temperature T,
very weak, while the small value of the wave vector aoq,
makes the range of temperatures over which the longitu-
dinal spiral phase exists very narrow. Thus Eqs. (11a),
(14a), and (17) give

b, T, = I To —T, I
—(5/a)(aoq, )

b, T =
I To —T

I -(5/a)(aoq, )

&T, =
I T, Tk I

-—(&/a)(aoq, )',

Thus, for 8 =poH=10 T, a quite large magnetic induc-
tion, we obtain

hT-20 mK . (37b)
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The e6'ect of a magnetic field is so small because the high
Neel temperature, T&= T„and large exchange field H,
go together, according to Eq. (33a). The field dependence
in Cr, with Tz =312 K, is very weak for the same reason,
with a magnetic induction, B= 16 T, producing no
change in T& greater than + 10 mK or —20 mK. '

Since the resolution of the temperature of the Neel
transition in the best available samples is only about 0.5
K (see Fig. 1 of Ref. 5) and Figs. 5 and 9 of Ref. 7), these
small values of T, —T and hT(H) make an experimen-
tal study of these features of the phase diagram unattrac-
tive. On the other hand, the relatively small value of the
critical field Hz given by Eq. (35b), and the fact that the
field at which the transition occurs from the transverse
spiral phase to the antiferromagnetic phase decreases
monotonically from T to Tk, as shown in Fig. 4, makes
this feature a promising candidate for an experimental
study.

We are planning a study of the magnetostriction and
the field dependence of the ultrasonic velocity and at-
tenuation in the intermediate phase between Tk and T„
in order to locate the transition from the transverse spiral
phase to the antiferromagnetic phase. If we are success-
ful, a neutron difFraction study will follow.
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